Introduction to OSF® DCE

Release 1.2.2

Open Software Foundation
11 Cambridge Center
Cambridge, MA 02142

The information contained within this document is subject to change without notice.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein, or for any direct or indirect, incidental, special or consequential damages in connection
with the furnishing, performance, or use of this material.

Copyright © 1995, 1996 Open Software Foundation, Inc.

This documentation and the software to which it relates are derived in part from materials supplied by the following:

Copyright © 1990, 1991, 1992, 1993, 1994, 1995, 1996 Digital Equipment Corporation

Copyright © 1990, 1991, 1992, 1993, 1994, 1995, 1996 Hewlett-Packard Company

Copyright © 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996 Transarc Corporation

Copyright © 1990, 1991 Siemens Nixdorf Informationssysteme AG

Copyright © 1990, 1991, 1992, 1993, 1994, 1995, 1996 International Business Machines

Copyright © 1988, 1989, 1995 Massachusetts Institute of Technology

Copyright © 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994 The Regents of the University of California

Copyright © 1995, 1996 Hitachi, Ltd.

All Rights Reserved

Printed in the U.S.A.

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A LICENSE, AND MAY BE USED
AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE ABOVE
COPYRIGHT NOTICE. TITLE TO AND OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN WITH OSF OR ITS
LICENSORS.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are registered trademarks of the Open Software Foundation,
Inc.

X/Open is a registered trademark, and the X device is a trademark, of X/Open Company Limited.

The Open Group is a trademark of the Open Software Foundation, Inc. and X/Open Company Limited.
UNIX is a registered trademark in the US and other countries, licensed exclusively through X/Open Company Limited.
DEC, DIGITAL, and ULTRIX are registered trademarks of Digital Equipment Corporation.

DECstation 3100 and DECnet are trademarks of Digital Equipment Corporation.

HP, Hewlett-Packard, and LaserJet are trademarks of Hewlett-Packard Company.

Network Computing System and PasswdEtc are registered trademarks of Hewlett-Packard Company.
AFS, Episode, and Transarc are registered trademarks of the Transarc Corporation.

DFS is a trademark of the Transarc Corporation.

Episode is a registered trademark of the Transarc Corporation.

Ethernet is a registered trademark of Xerox Corporation.

AIX and RISC System/6000 are registered trademarks of International Business Machines Corporation.
IBM is a registered trademark of International Business Machines Corporation.

DIR-X is a trademark of Siemens Nixdorf Informationssysteme AG.

MX300i is a trademark of Siemens Nixdorf Informationssysteme AG.

NFS, Network File System, SunOS and Sun Microsystems are trademarks of Sun Microsystems, Inc.

PostScript is a trademark of Adobe Systems Incorporated.

Microsoft, MS-DOS, and Windows are registered trademarks of Microsoft Corp.

NetWare is a registered trademark of Novell, Inc.

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED SOFTWARE
These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE:Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this computer software, the rights of
the Government regarding its use, reproduction and disclosure are as set forth in Section 52.227-19 of the FARS Computer Software-Restricted
Rights clause.

RESTRICTED RIGHTS NOTICE:Use, duplication, or disclosure by the Government is subject to the restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND:Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B)
of the rights in Technical Data and Computer Software clause in DAR 7-104.9(a). This computer software is submitted with "restricted
rights." Use, duplication or disclosure is subject to the restrictions as set forth in NASA FAR SUP 18-52.227-79 (April 1985) "Commercial

Computer Software-Restricted Rights (April 1985)." If the contract contains the Clause at 18-52.227-74 "Rights in Data General" then the
"Alternate 111" clause applies.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract.
Unpublished - All rights reserved under the Copyright Laws of the United States.

This notice shall be marked on any reproduction of this data, in whole or in part.

Contents

Preface

Chapter 1.

Chapter 2.

Audience
Applicability
Purpose

Document Usage .
Related Documents

Overview of DCE.

1.1 Why Distributed Computmg”
1.1.1 Why DCE?
1.1.2 Potential Users of DCE

1.2 Models of Distributed Computing .
121 The Client/Server Model. .
1.2.2 The Remote Procedure Call Model .
1.2.3 The Data Sharing Model.
1.2.4 The Distributed Object Model

1.3 Architectural Overview of DCE . . .
131 Overview of DCE Technology Components
1.3.2 The DCE Cell .

1.3.3 Integration of the DCE Technology Components

1.34 Relationship of DCE to Network and System
Services . o e
1.35 DCE Internatlonallzat|on

DCE Configuration « e .
2.1 Introduction to DCE Configuration
2.2 Basic Configuration Components.
2.3 DCE Machine Configuration Examples

X x

ONRN RPOO~ND® Wk -

B e
PRERR PR

Introduction to OSF® DCE

Chapter 3.

2.4

23.1
2.3.2
2.3.3

DCE User Machine Configuration

DCE Administrator Machine Configuration .

DCE Server Machine Configuration .

DCE Cell Configuration Examples

24.1
24.2
243

A Simple DCE Cell .
A DCE Cell with DFS
A Connected DCE Cell .

DCE Technology Components
DCE Threads .

3.1

3.2

3.3

3.4

3.5

3.1.1
3.1.2
3.1.3
3.14
3.15

What is DCE Threads’> .

End User’'s Perspective .

Programming with DCE Threads

DCE Threads Administration. . . .
Additional Information on DCE Threads.

DCE Remote Procedure Call .

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7

What is DCE RPC? .

End User’'s Perspective .
Programming with DCE RPC

DCE RPC Administration

How an RPC Call Works.

System Independence

Additional Information on DCE RPC.

DCE Directory Service.

3.3.1
3.3.2
3.3.3
3.34
3.35

DCE Directory Service Archltecture
DCE Cell Directory Service .

DCE Global Directory Service

DCE Global Directory Agent.

The Directory Service Interfaces.

DCE Distributed Time Service

34.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6

What is DTS?. .

End User’'s Perspective .

Programming with DTS .

DTS Administration .

Interaction with the Network Tlme Protocol
Additional Information on DTS

DCE Security Service .

3.5.1
3.5.2
3.5.3
3.54

What is the DCE Securlty Serwce”
How DCE Security Works

End User’'s Perspective .
Programming with DCE Securlty

Illclaooooooooooooooo

(R 1 1
NN NP R RRPR R

OFRPRFP OONONRPROX® OIS~ PhW

OOCIJOOOOOOO WwWwwwaoww
w
w

Contents

Chapter 4.

Appendix A.

3.55 DCE Security Service Administration
3.5.6 DCE Security and Kerberos .

3.5.7 Secure Remote Utilities .

3.5.8 The Generic Security Service API

3.5.9 The Public Key Certification API.

3.5.10 Additional Information on DCE Security.

3.6 DCE Distributed File Service .
3.6.1 What is DFS2
3.6.2 DFS Configuration
3.6.3 End User’'s Perspective .
3.6.4 Programming with DFS .
3.6.5 DFS Administration .
3.6.6 Additional Information on DFS

3.7 DCE/File-Access .
3.7.1 What is DCE/File- Access’>
3.7.2 End User’'s Perspective . .
3.7.3 DCE/File-Access Administration.

3.7.4 Additional Information on DCE/File-Access.

3.8 DCE Cross-Component Facilities.
3.8.1 Host Services .
3.8.2 Application Message Servu:e
3.8.3 Serviceability . . .
3.84 Backing Store Databases

3.9 The DCE Control Program
3.10 Two DCE Application Examples .

3.10.1 The greet Application: An Implementat|on

Using DCE RPC .

3.10.2 The greet Application: An Implementat|on

Using DCE DFS .

Integration of DCE Technology Components
4.1 Integration Matrix . . e
4.2 Integration by Technology Component
4.3 Implications of Mutual Dependencies.

Overview of DCE Documentation.

A.l DCE Documentation
Al.l Prentice-Hall Documents
A.1.2 Other Documents.

A.2 Reading Paths.

| |
N NNNANSN NNNNN NNNNNO0 O000 0
© NN OUIURDN WWWNRPRKON RNRPRRPRROO

WWWWW WWwWwwww UOCIJOUOUOUOUOUO Wwwwww

w
|

3-79

3-79

3-90

4-1
4-2
4-3
4-5

A-1

A-1
A-2
A-5

A-6

Introduction to OSF® DCE

Appendix B.
Glossary .

Index

A2.1
A.2.2
A.2.3
A.2.4
A.2.5
A.2.6

High-Level Overview of DCE.

End Users .
Application Programmers.
System Administrators
DCE Developers .

DCE Implementors

List of Acronyms and Abbreviations .

A-7
A-7
A-7
A-8
A-9
A-9

B-1

. GL-1

Index—1

Contents

List of Figures

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 1-7.
Figure 1-8.
Figure 1-9.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2—4.
Figure 2-5.
Figure 2—6.
Figure 2-7.
Figure 2-8.
Figure 2-9.
Figure 2-10.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.

A Potential DCE Network.
The Client/Server Model .

Communication Between the Print Client and Print Server .

The Print Server Acting as a Client of the File Server .
Two Servers Running on One Node.

A Client is General; Servers are Specialized
Client as a Library; Server as a Continuous Pracess
Layering of DCE and Related Software .

DCE Architecture.

Types of DCE Machines .

DCE Machines and Software.

Distributed Service Configuration Components .
DCE User Machine Configuration

DCE Administrator Machine Configuratian

DCE Server Machine Configuration Examples .
Simple DCE Cell Configuration .

DCE Application in Simple Cell .

Simple Cell Plus Distributed File Server.

Cell Connected via Global Directory Agent .
DCE RPC Programming Process

Client Finds Server via CDS and dced .

RPC Runtime Process

Three One-Celled Organizations.

Connected DCE Cell Namespaces .

Use of Global Directory Agents .

1-2
1-7

1-8
1-8
1-9
1-10
1-13
1-14
2-3
2-4
2-5
2-7

2-9
2-10
2-11
2-12
2-13
3-13
3-16
3-17
3-22
3-23
3-24

Introduction to OSF® DCE

Vi

Figure 3-7.

Figure 3-8.

Figure 3-9.
Figure 3-10.
Figure 3-11.
Figure 3-12.
Figure 3-13.
Figure 3-14.
Figure 3-15.
Figure 3-16.
Figure 3-17.
Figure 3-18.
Figure 3-19.
Figure 3—-20.
Figure 3-21.
Figure 3-22.

XDS: Interface to GDS and CDS.

Four Cells in DCE Global Namespace
Top of a Typical DCE Cell Namespace .
CDS Client and Server Machines

GDS Components

GDS Configurations .

GDS Object Entry.

The OSI Protocol Layers.

GDA and Other Directory Service Components.

DTS Time Clerks and Servers

Local, Courier, and Global Time Servers
DCE Security Interactions

DCE ACL Example .

Files, Directories, Filesets, and Aggregates.
DFS Client and File Server Machines

Other DFS Servets

3-24
3-25
3-26
3-30
3-36
3-37
3-38
3-40
3-43
3-47
3-49
3-55
3-59
3-64
3-71
3-72

Contents

List of Tables

Table 4-1. DCE Component Integration. . . . + + «+ + « « . 422
Table B-1. DCE Acronyms and Abbreviations B-1

Vii

Preface

Introduction to OSF DCEprovides an introduction to the OSFDistributed
Computing Environment (DCE) offering. The glossary introduces terms used in
DCE documentation.

Audience

The content and intended audience of this manual change from less technical to more
technical as the manual progresses. Chapter 1 is written for anyone interested in
an overview of DCE, including managers, system administrators, and application

programmers. Chapter 2 is intended for network managers and administrators.
Chapters 3 and 4 are targeted primarily for administrators and programmers.

Appendix A is written for anyone wishing to find further information on DCE. It
suggests reading paths through the DCE documentation set for various audiences.
The glossary contains terms used throughout the DCE documentation. Each term
is defined for the audience of the manual in which it appears. For example, the
definition of a term used in th®SF DCE Administration Guidés targeted for the
same audience as tl@SF DCE Administration Guideself.

Preface

Applicability

This revision applies to the OSF DCE Release 1.2.2 offering and related updates.

Purpose

After reading this document, a user will

» Have a high-level understanding of DCE

» Understand the individual technology components that constitute DCE

» Understand the interdependencies of the DCE technology components

» Be able to find further information about DCE in related documents

Document Usage

The manual is organized as follows:

Chapter 1

Chapter 2

Chapter 3

Gives an overview of DCE. It describes distributed computing and its
uses, and presents the client/server model of distributed computing, on
which DCE is based. It gives a summary of the DCE architecture,
along with a brief description of each of the technology components
that make up DCE, and their integration with one another.

Gives examples of typical DCE configurations. It explains the
concept of a DCE cell, and describes the DCE software configuration
components. It describes the configuration of different types of DCE
machines. It then gives examples of different cell configurations,
including a simple DCE cell, and cells with various combinations of
DCE services.

Describes each of the technology components that make up DCE. It
includes sections on DCE Threads, Remote Procedure Call, Directory
Service, Distributed Time Service, Security Service, Distributed File
Service, and cross-component facilities, including the DCE control
program. Its last section shows how some of these services are used
in a simple distributed application example.

Preface

Chapter 4 Describes the ways in which each of the DCE components uses the other

technology components of DCE, and what implications their integration
has for porting, testing, configuring, and starting up DCE systems.

Appendix A Gives an overview of DCE documentation, and suggests reading paths

for different audiences.

Appendix B Lists the acronyms and abbreviations used in this manual.

Glossary Defines terms used in this manual and the rest of the DCE documentation

set. Each term is defined for the audience of the manual in which it
appears. In some cases, a given term has a different meaning when used
in the context of different technology components. This is indicated by
the technology’s abbreviation as a prefix to its definition. For example,
the termserverhas a different meaning when used in conjunction with
the RPC, CDS, DTS, and DFS technology components. The four
definitions are listed in the entry faerverin the Glossary. When

no prefix is given, the definition applies to all DCE documentation.

Related Documents

The DCE documentation set comprises the following manuals. See Appendix A for
a description of each of these manuals.

Introduction to OSF DCE

OSF DCE Command Reference

OSF DCE Administration Guide—Introduction

OSF DCE Administration Guide—Core Components

OSF DCE DFS Administration Guide and Reference

OSF DCE GDS Administration Guide and Reference

OSF DCE Application Development Guide—Introduction and Style Guide
OSF DCE Application Development Guide—Core Components
OSF DCE Application Development Guide—Directory Services
OSF DCE Application Development Reference

OSF DCE/File-Access Administration Guide and Reference

Xi

Preface

* OSF DCE/File-Access User's Guide

» OSF DCE Problem Determination Guide

» OSF DCE Testing Guide

» OSF DCE/File-Access FVT User’s Guide

* Application Environment Specification/Distributed Computing
OSF DCE Technical Supplement

OSF DCE Release Notes

Xii

Chapter 1

Overview of DCE

1.1

OSF's Distributed Computing Environment (DCE) provides services and tools
that support the creation, use, and maintenance of distributed applications in a
heterogeneous computing environment. This chapter provides an overview of DCE,
beginning with a section describing distributed computing and its benefits. The next
section describes three distributed computing models—client/server, remote procedure
call (RPC), and data sharing. The final section gives an overview of DCE itself,
describing its technology components, the organization of a DCE environment, and
the relationship between DCE and the underlying computing system.

Why Distributed Computing?

By “distributed computing” we mean computing that involves the cooperation of two

or more machines communicating over a network (see Figure 1-1). The machines
participating in the system can range from personal computers to supercomputers; the
network can connect machines in one building or on different continents.

1-1

Introduction to OSF® DCE

Figure 1-1.

1-2

A Potential DCE Network

Personal Work-
Computer Station
Super- Work-
Computer Station
File
Server
NN A S Print
Server
NN NS
WAN
Typesetter
Server
} ‘ ‘ } LAN
Personal Work-
Computer Station

Why is enabling this type of cooperative computing important? One reason is
historical: computing resources that used to operate independently now need to
work together. For example, consider an office that acquired personal workstations
for individual use. After a while, there were many workstations in the office building,
and the users recognized that it would be desirable to share data and resources among
the individual computers. They accomplished this by connecting the workstations
over a network.

A second reason is functional: if there is special-function hardware or software
available over the network, then that functionality does not have to be duplicated on
every computer system (eorodg that needs to access the special-purpose resource.
For example, an organization could make a typesetting service available over the
network, allowing users throughout the organization to submit their jobs to be typeset.

A third reason is economical: it may be more cost effective to have many small
computers working together than one large computer of equivalent power. In addition,
having many units connected to a network is the more flexible configuration, because

Overview of DCE

1.11

if more resources are needed, another unit can be added in place, rather than bringing
the whole system down and replacing it with an upgraded one.

Finally, a distributed system can be more reliable and available than a centralized
system. This is a result of the ability to replicate both data and functionality. For
example, when a given file is copied on two different machines, then even if one
machine is unavailable, the file can still be accessed on the other machine. Likewise,
if several printers are attached to a network, then even if an administrator takes one
printer offline for maintenance, users can still print their files by using an alternate
printer.

Distributed computing inherently brings with it not only potential advantages, but also
new problems. Examples are keeping multiple copies of data consistent, and keeping
the clocks on different machines in the system synchronized. A system that provides
distributed computing support must address these new issues.

Why DCE?

Given that, for one of the reasons previously mentioned or some other reason, an
organization decides that it wants to acquire distributed computing capability, why is
DCE in particular advantageous? Why would an organization with a network such
as the one in Figure 1-1 benefit from using DCE to enable distributed computing?

DCE’s benefits can be categorized into its support of distributed applications, the
integration of its components with each other, DCE’s relationship to its platforms, its
support for data sharing, and DCE'’s interaction with the world outside of DCE, as
described in the following list.

» DCE provides tools and services that support distributed applications.

DCE provides a high-level, coherent environment for developing and running
applications on a distributed system. The DCE components fall into two
categories: tools for developing distributed applications, and services for running
distributed applications. The tools, such as DCE RPC and DCE Threads, assist
in the development of an application. The services, such as the DCE Directory
Service, Security Service, and Distributed Time Service, provide the support
required in a distributed system that is analogous to the support an operating
system provides in a centralized system.

1-3

Introduction to OSF® DCE

1-4

It is possibleto develop distributed applications with much less assistance than
what DCE offers. Programmers can write applications that cooperate across
machines by explicitly writing the code that performs the network communications
between them, but this requires much time and expertise. Programmers can also
write distributed applications by using a communications tool, such as remote
procedure call, while explicitly using other necessary technologies, like standalone
name and security services. However, DCE provides a set of components
necessary for distributed computing that are already integrated, and that do as
much work as possible automatically for the application programmer, system
administrator, and end user.

DCE'’s set of services is integrated and comprehensive.

A second benefit is the integration and comprehensiveness of the DCE
components. Not only does DCE provide all the tools and services needed
for developing and running distributed applications, but the DCE components
themselves are well integrated. They use one another’s services whenever
possible, since many of the DCE components are themselves distributed
applications. In addition to supporting the development of distributed
applications, DCE includes services that address some of the new problems
inherent in the distributed system itself, such as data consistency and clock
synchronization. Finally, DCE includes management tools for administering all
of the DCE services and many aspects of the distributed environment itself.

DCE provides interoperability and portability across heterogeneous platforms.

A benefit of DCE is its orientation toward heterogeneous rather than homogeneous
systems. One way to implement a distributed system is to use a single operating
system that runs on all nodes participating in the distributed network. The
DCE architecture, however, allows for different operating systems and hardware
platforms. Using DCE, a process running on one computer can interoperate with
a process on a second computer, even when the two computers have different
hardware or operating systems. DCE can therefore accommodate a wider range
of networks—especially networks needing distributed computing for the historical
reasons previously listed—than a model that requires the same operating system
running on every node. Applications that are built using DCE are portable to
other hardware/operating system platforms that run DCE.

» DCE supports data sharing.

Overview of DCE

1.1.2

Another benefit is DCE’s support of data sharing through its directory service
and distributed file service. A user anywhere in the distributed system can share
data by placing it in the namespace or in a file, whichever is appropriate for
the application. The data is then accessible by authorized users throughout the
system.

DCE participates in a global computing environment.

One final benefit of DCE is the way it interacts with the outside world. In addition

to supporting cooperation within and between themselves, DCE systems can also
interoperate with computing environments outside of DCE. In particular, the DCE
Directory Service can interoperate with two standard, global directory services—
X.500 and Domain Name Service (DNS)—allowing users from within DCE to
access information about the outside world. In this way, DCE participates in a
global directory service. One benefit of such participation can be seen in DCE’s
distributed file system: it looks like one global file system, and users anywhere
in the world can address the same file by using the same global nhame.

Potential Users of DCE

This section gives some examples of computing environments that can profit from
distributed computing capabilities. In general, any computing organization wishing

to take advantage of the benefits of a distributed computing environment—data and
resource sharing, extensibility, availability, interoperability—can benefit from using
DCE. For example:

» An office with isolated computing resources can network the computers together
and use DCE for data and resource sharing.

* An organization consisting of multiple computing sites that are already

interconnected by a network can use DCE to tie together and access resources
across the different sites. The different sites can be in different countries, or
even on different continents.

» Any computing organization comprising, or expecting to comprise in the future,

more cooperating hosts than can be easily administered manually (perhaps over
a dozen nodes) can benefit greatly from the administrative support afforded by

a DCE environment. For example, in DCE the database of computer users and
their associated information (such as passwords) can be administered centrally,

1-5

Introduction to OSF® DCE

1.2

1-6

removing the need for an administrator to update information on every single
node in the network each time a new user is added.

Organizations that write distributed applications can use DCE as a platform for
their software. Applications that are written on DCE can be readily ported to
other software and hardware platforms that also support DCE.

Organizations wishing to use applications that run on DCE platforms.

Organizations that wish to participate in networked computing on a global basis.
Since DCE supports standard directory services that will be used throughout the
world, a site that participates in DCE will be able to plug into that worldwide
directory service database, allowing it to both “see” and access information about
other sites and organizations around the world. In turn, it will be able to add itself
to the directory service, allowing itself to be “seen” and accessed, if desired, by
other sites worldwide.

» System vendors whose customers are in any of the preceding categories.

Organizations that would like to make a service available over the network on
one system (for example, a system running a non-UNIX operating system), and
have it accessible from other kinds of systems (for example, workstations running
UNIX).

Models of Distributed Computing

DCE is based on three distributed computing models—client/server, remote procedure
call, and data sharing. The client/server model is a way of organizing a distributed

application. The remote procedure call model is a way of communicating between

parts of a distributed application. The data sharing model is a way of handling data
in a distributed system.

DCE also supports a distributed object model, which is a way of distributing data and
functionality together in neat application packages known as distributed objects.

The following subsections briefly describe each model.

Overview of DCE

1.2.1 The Client/Server Model

A useful model for implementing distributed applications is thient/servermodel.

In this model, the distributed application is divided into two parts, one part residing
on each of the two computers that will be communicating during the distributed
computation (see Figure 1-2).

Figure 1-2. The Client/Server Model

Request
S —

-
Response

The client side of the application is the part that resides on the node that initiates the
distributed request and receives the benefit of the service (for example, a workstation
that requests that a file be printed). Téerverside of the application is the part that
resides on the node that receives and executes the distributed request (for example, the
node with the printer). In this model, two different sets of code are produced—one
that runs as a client, the other as a server.

Figure 1-3 shows a workstation running the client side of a distributed print program,
and a print server running the server side of the distributed program.

Figure 1-3. Communication Between the Print Client and Print Server

Workstation Print Server
Print
. Request .
Print »/ Print
Client)<= _ Server
Print
Response

Note that the terms<lient and server can be seen as relative roles rather than as
absolutes. For example, in executing the print request, the print server may in turn
become a client in a distributed communication; that is, it may ask the file server to
send it a copy of the file to be printed (see Figure 1-4).

1-7

Introduction to OSF® DCE

Figure 1-4. The Print Server Acting as a Client of the File Server

Workstation Print Server File Server
Print File
. Request Request
Print >/ File
Client /<= - Server
Print File
Response Response

The termsclient and serverare also used to refer to specific nodes. This can be
confusing since a given node, or even a given process, can be acting in both the client
and server role. Nevertheless, it is often convenient to use thefilerserverwhen
referring to the node on which the server side of a distributed file system is running—
probably a machine that contains a lot of disk storage. Likewiseditieetory server

is a node that contains a database with names in it, and answers requests for access to
those names. When clarification is needed, we use the neanhineto indicate the

node rather than the role. For example, in Figure 1-4, the print server, which runs
on the print server machine, is acting as a client to the file server.

Note that it is possible for more than one server to run on a given node. For example,
both a security server and a time server can run on the same machine. In this case,
the given node is both the security server machine and the time server machine (see
Figure 1-5).

Figure 1-5. Two Servers Running on One Node

Time and Security Servers

Time Security

Request Request
EEmm——_ ~~—————
- > —

Time Security
Response Response

In general, when referring to clients and servers as nodes, the server nodes are
specialized—they require software that is found only on that particular server (for
example, the directory server); whereas client nodes are generalized—client machines

1-8

Overview of DCE

Figure 1-6.

are typically configured with the capability to be many types of client (for example,
a directory, file, and security service client). See Figure 1-6.

A Client is General; Servers are Specialized

Server

Server

The reason client nodes are generalized is that the client code is usually relatively
small compared to the code that implements a server, and typically many nodes need
to be able to run the client side of an application; whereas only one or two nodes may
be equipped to run the server side of an application.

One final distinction between client and server is that the server is typically
implemented as a continuous process (daemon); whereas the client is usually
implemented as a library. In other words, the client side of an application consists of
a call to a routine that executes (sending the request over the network and receiving
the result) and then returns and goes on with whatever else it was doing; whereas the
server side of an application is a dedicated process that runs continuously—waiting
for a request, executing it and returning the answer, then waiting for the next request,
and so on. Figure 1-7 illustrates this distinction.

1-9

Introduction to OSF® DCE

Figure 1-7.

1.2.2

1.2.3

1-10

Client as a Library; Server as a Continuous Process

Applicatio
Client
Library

DCE is based on the client/server model. The DCE services are themselves examples
of distributed programs with a client and server side. The basic communications
mechanism used in DCE, remote procedure call, assumes the presence of a client and
a server. Since DCE applications are built using remote procedure call, they are also
based on the client/server model of distributed computation.

Server
Daemon

The Remote Procedure Call Model

One way of implementing communications between the client and server sides of a
distributed application is to use the procedure call model. In this model, the client
makes what looks like a procedure call. The procedure call is translated into network
communications by the underlying RPC mechanism. The server receives a request
and executes the procedure, returning the results to the client. One of the DCE
technology components, DCE RPC, is an implementation of this model. It is used
by most of the other DCE technology components for their network communications.
(See Section 3.2 of this manual for more information on remote procedure calls and
DCE RPC.)

The Data Sharing Model

Some of the DCE services are based on da¢a sharingmodel, in which data is
shared by distributing it throughout the system. Like RPC, data sharing assumes the
existence of clients and servers. Data sharing, however, focuses on distributed data
rather than distributed execution. In RPC, the client's procedure is executed on the
server. In data sharing, the server’s data is sent to the client. For example, if a
client wants to access a file, a copy of the file is sent from the server to the client.
The client then proceeds to access the file locally. Data sharing can be built on top
of RPC, using RPC as the communications mechanism between the client and server,
and as the means of transferring data.

Overview of DCE

1.2.4

Data sharing usually entails having multiple copies of the same data; for example,
a master copy of a file on a file server, and a copy of the file on one or more
client machines. As a result, copies of data may diverge; that is, a client may
make changes to its copy that make the client's copy inconsistent with the copy on
the server. Therefore, distributed services based on the data sharing model usually
include mechanisms for keeping copies of data consistent.

In addition, services that implement data sharing must be able to synchronize multiple
access to data. For example, two clients may each want to modify a given record
in a database. The server that manages the database must either prevent them from
making conflicting modifications or decide which modification takes precedence.

Two DCE services are based on the data sharing model. The first is the directory
service. Both DCE directory services, CDS and GDS, maintain caches on the client.
The caches contain copies of data that users on the client have recently accessed.
Subsequent access to the data can be made locally to the cache, rather than over the
network to the server.

The DCE Distributed File Service (DFS) is also based on the data sharing model.
A DFS client maintains a cache of files that have recently been accessed by a user
on the system. DFS servers distribute and revoke tokens, which represent a client’s
capability to perform operations on files. Through careful token management, the
DFS server can ensure that its clients do not perform conflicting operations on shared
files, and that they do not see inconsistent copies of the same file.

Data sharing, like RPC, enables users and programmers to communicate transparently
in a distributed system.

The Distributed Object Model

DCE allows for a distributed object model in conjunction with the other DCE models
to give a flexible way to distribute functionality and data for client/server applications.
In addition, a distributed object modebmbinesappropriate functionality with data,

by way of distributed objects, in a way that also hides how parts of the distributed
application communicates.

Objects are used to model the behavior of all sorts of application entities. In object-
oriented terminology, an object is simply an instance of its class. Each object contains

1-11

Introduction to OSF® DCE

member functions (methods) that are only specified in the class as operations. In
the distributed object model, a DCE interface is a public set of operations, but the
methods of implementation are separate and application specific. (Data types are
usually application specific but the interface can specify them as well.) A DCE
interface specifies what is known as an abstract base class because the class has a
public interface and a hidden implementation.

Object-oriented applications make it easy to hide data and implementation details by
using hierarchies of classes and other object-oriented features. Thus object-oriented
applications can help minimize the exposure of network details and the special DCE
mechanisms of distributed computing. In DCE, the IDL compiler generates a class
hierarchy for applications. This hierarchy contains an interface class derived from
a DCE RPC base class. The interface class becomes part of an application in such
a way that the network details, mechanisms of data transfer, and object location are
hidden (encapsulated) in the base class.

DCE interfaces have code generated in C++ to help implement a distributed object
model. This means that developers can write object-oriented applications in a more
natural way using C++ directly without relying on inadequate or cumbersome C-to-
C++ wrapper routines for DCE interfaces.

It has already been stated that the terms client and server are relative roles that an
application plays, and not absolute conditions of any particular part of a distributed
application. This is also true in the distributed object model.

1.3 Architectural Overview of DCE

OSF's Distributed Computing Environment is a layer between the operating system
and network on the one hand, and the distributed application on the other. DCE
provides the services that allow a distributed application to interact with a collection
of possibly heterogeneous computers, operating systems, and networks as if they were
a single system. Figure 1-8 shows DCE in relation to operating systems, network
communications software, and applications software.

1-12

Overview of DCE

Figure 1-8.

Layering of DCE and Related Software

Distributed Applications

DCE

OS and Network Services

Several technology components work together to implement the DCE layer. Many
of these components provide in a distributed environment what an operating system
provides in a centralized (single-node) environment.

Figure 1-9 shows the DCE architecture and its technology components, along with
their relationship to applications, underlying system support, and placeholders for
future technologies.

1-13

Introduction to OSF® DCE

Figure 1-9. DCE Architecture

|
Other Distributed |
|
|

DCE Services (Future) l\a/ll
S S L e - n
s]
u v g
r1 m
(I DCE Distributed File Service e
y t

DCE DCE ! Other Basic !

Distributed Directory \ Services |

Time Service Service | (Future) |

L - |

DCE Remote Procedure Call

DCE Threads

1.3.1 Overview of DCE Technology Components

This section gives a short description of each of the DCE technology components. A
more in-depth description of each of these components is given in Chapter 3.

DCE Threads supports the creation, management, and synchronization of multiple
threads of control within a single process. This component is conceptually a part of
the operating system layer, the layer below DCE. If the host operating system already
supports threads, DCE can use that software and DCE Threads is not necessary.

1-14

Overview of DCE

However, not all operating systems provide a threads facility, and DCE components
require that threads be present, so this user-level threads package is included in DCE.

The DCE Remote Procedure Call facility consists of both a development tool and
a runtime service. The development tool consists of a language (and its compiler)
that supports the development of distributed applications following the client/server
model. It automatically generates code that transforms procedure calls into network
messages. The runtime service implements the network protocols by which the client
and server sides of an application communicate. DCE RPC also includes software
for generating unique identifiers, which are useful in identifying service interfaces and
other resources.

The DCE Directory Service is a central repository for information about resources
in the distributed system. Typical resources are users, machines, and RPC-based
services. The information consists of the name of the resource and its associated
attributes. Typical attributes could include a user’'s home directory, or the location
of an RPC-based server.

The DCE Directory Service comprises several parts: the Cell Directory Service
(CDS), the Global Directory Service (GDS), the Global Directory Agent (GDA), and

a directory service programming interface. CDS manages a database of information
about the resources in a group of machines call&C& cell (Cells are described

in the next section.) GDS implements an international standard directory service and
provides a global namespace that connects the local DCE cells into one worldwide
hierarchy. GDA acts as a go-between for cell and global directory services. Both
CDS and GDS are accessed using a single directory service application programming
interface, the X/Open Directory Service (XDS) Advanced Programming Interface
(API).

The DCE Distributed Time Service (DTS) provides synchronized time on the
computers participating in a Distributed Computing Environment. DTS synchronizes
a DCE host’s time with Coordinated Universal Time (UTC), an international time
standard.

The DCE Security Service provides secure communications and controlled access
to resources in the distributed system. There are four aspects to DCE security:

authentication, secure communications, authorization, and auditing. These aspects
are implemented by several services and facilities that together constitute the DCE
Security Service, including the registry service, the authentication service, the privilege

service, the access control list (ACL) facility, the login facility, and the audit service.

1-15

Introduction to OSF® DCE

1-16

The identity of a DCE user or service is verified, or authenticated, by the authentication
service. Communications are protected by the integration of DCE RPC with the
security service so that communication over the network can be checked for tampering
or encrypted for privacy. Access to resources is controlled by comparing the
credentials conferred to a user by the privilege service with the rights to the resource,
which are specified in the resource’s ACL. The login facility initializes a user’s security
environment, and the registry service manages the information (such as user accounts)
in the DCE security database. Security-relevant events can be monitored through the
audit service. Code pointxan be set in DCE servers to record events that are deemed
to be important to the integrity of the system. For example, the login facility uses
the audit service to record logins by DCE users and services.

The DCE Distributed File Service allows users to access and share files stored on a
file server anywhere on the network, without having to know the physical location
of the file. Files are part of a single, global namespace, so no matter where in the
network a user is, the file can be found by using the same name. DFS achieves
high performance, particularly through caching of file system data, so that many users
can access files that are located on a given file server without prohibitive amounts of
network traffic and resulting delays.

DCE DFS includes a physical file system, the DCE Local File System (LFS), which
supports special features that are useful in a distributed environment. They include
the ability to replicate data; log file system data, enabling quick recovery after a crash;
simplify administration by dividing the file system into easily managed units called
filesets and associate ACLs with files and directories.

DCE/File-Access allows users of personal computers running in a Novell NetWare
network environment to read and write directories and files on a DCE DFS file server.
Users and DCE/File-Access software have DCE identities so DFS file usage is subject
to the DCE Security Service’s authentication and authorization controls.

The Management block shown in Figure 1-9 is actually not a single component but a
cross section of the other components. Each DCE service contains an administrative
component so it can be managed over the network. In addition, some of the DCE
services themselves provide for management of the distributed system as a whole. For
example, users are registered in the security service, and servers’ network addresses
are registered in the directory service.

Overview of DCE

1.3.2

The DCE Caell

A DCE cellis a collection of machines, users, and resources managed as a group. For
example, imagine an organization made up of several departments, each in a different
building and operating on its own budget. Each department in such an organization
could have its own DCE cell.

A cell has its own security service, CDS, and optionally, DFS; these services are

available cell-wide. The security service for a cell manages the cell’'s registry, where

user account information is kept. Each cell has its own namespace; the cell's CDS
manages that namespace and its hierarchy. If DFS is present in the cell, DFS allows
remote access to files from anywhere in the cell. Each cell also has its own DTS,

which keeps the clocks on all of the machines in the cell synchronized.

A cell provides a single security domain. Users log into accounts in a cell. ACLs
identify users and groups in the cell (they can also refer to users and groups in other
cells). A cell also provides a single naming domain. Each cell has a name, and all
objects in the cell share that name.

DCE cells can be connected so that they can communicate with each other. Going
back to the example, if the different departments’ cells are connected, then a user in
one department’s cell may be able to access resources in another department’s cell,
although this access would typically be less frequent and more restricted than access
to resources within the user’'s own cell.

Cells connect to each other by means of a global directory service. A cell’'s name is
registered in a global directory service, and the cell is then able to contact other cells
registered in that global service. Note that communication between DCE cells is
not automatic. Cells that wish to communicate with each other must first establish a
trust relationship between their cells’ security services; this process is catlss-cell
authenticationand is described in more detail in Chapter 2.

A cell can have more than one name. In this case, one of the cell's names is
designated itprimary namewhile the other names are the celbfias names. The

cell's primary name is the default name for the cell; that is, it is the name that DCE
services return. Cell name aliasing permits a cell to be registered in more than
one global namespace. It also provides a way to change a cell’s name if the need
arises; for example, to respond to organizational changes within the company. For
more information on how to create cell name aliases for a cell, se©8fe DCE

1-17

Introduction to OSF® DCE

1.3.3

1-18

Administration Guide—Introductioand theOSF DCE Administration Guide—Core
Components

A DCE cell can be configured in many ways, depending on its users’ requirements.
A cell consists of a network connecting three kinds of nodes: DCE user machines,
DCE administrator machines, and DCE server machines. DCE user machines are
general-purpose DCE machines. They contain software that enables them to act as
clients to all of the DCE services. DCE administrator machines contain software that
enables a DCE administrator to manage DCE system services remotely.

The DCE server machines are equipped with special software enabling them to provide
one or more of the DCE services. Every cell must have at least one each of the
following servers in order to function:

* Cell directory server
» Security server

 Distributed time server

Other DCE servers may be present in a given DCE cell to provide additional
functionality. A GDA may be present to enable the cell's directory server to
communicate with other cells’ directory servers; a global directory server may be
present to provide X.500 directory service; and distributed file servers may be present
to provide storage of files and the special functions of DCE LFS. (See Chapter 2 for
more detailed information on DCE cell configuration.)

Integration of the DCE Technology Components

One of the benefits of OSF's DCE is its coherence. Although the components
themselves are modular with well-defined interfaces, they are also well integrated;
the various DCE components each make use of the services of the other components
wherever possible. For example, the RPC facility uses the directory service to
advertise and look up RPC-based servers and their characteristics, it uses the security
service to ensure message integrity and privacy, and it uses DCE Threads to handle
concurrent execution of multiple RPCs. DFS uses threads, RPC, the directory service,
DTS, and the security service in providing its file service.

In general, the DCE components shown higher in the DCE architecture (see Figure
1-9) make use of the components shown lower in the architecture. For example,

Overview of DCE

1.3.4

DCE Threads is used by most other DCE components, but it does not itself use other
components. This ordering is not strictly hierarchical; often two services each depend

on the other. For example, the directory service uses the security service, which in

turn uses the directory service. The interdependence of DCE components is explained
in more detail in Chapter 4.

Relationship of DCE to Network and System Services

As shown in Figure 1-8, DCE is layered on top of local operating system and
networking software. DCE makes certain assumptions about the services provided
by the underlying network and operating systems. DCE’s requirements for these
services are described in the following subsections.

1.34.1 Network Services

In general, DCE is layered over a transport level service, such as User Datagram
Protocol (UDP), Transmission Control Protocol (TCP), or ISO TPO-TP4 transport
protocols, which is accessed through a transport interface, such as sockets or X/
Open Transport Interface (XTI). DCE assumes that all nodes participating in the DCE
environment are physically connected by a highly available network. The network
can be a Local Area Network (LAN), a Wide Area Network (WAN), or a combination

of both.

The DCE architecture supports different types of network protocol families. For
example, DCE could be ported to run over Open Systems Interconnection (OSI)
protocols. (The OSF DCE reference implementation runs over the Internet Protocol
(IP) family.) However, in order for DCE systems to communicate with one another,
they must have at least one set of network protocols in common. For example, DCE
is not designed to enable a node running only IP protocols to communicate with a
node running only OSI protocols.

Finally, DCE assumes the ability to identify a node with a unique network address,

and the ability to identify a process with a network endpoint address (for example, a
port or T-selector).

1-19

Introduction to OSF® DCE

1.35

1-20

1.3.4.2

Operating System Services

DCE assumes that certain services are available through the underlying operating
system, namely the following:

1.3.4.3

Multitasking

Timers

Local interprocess communications

Basic file system operations (VFS layer)
Memory management

Local security mechanisms (if appropriate)
Threads (or the ability to use DCE Threads)

General system utility functions

DCE Reference Implementation Dependencies

The previous two subsections listed assumptions made by the DCE architecture. The
OSF DCE reference implementation contains additional dependencies on the operating
system and network, which are specific to the implementation. These include the use
of IP and socket networking services, and UNIX operating system facilities.

DCE Internationalization

DCE internationalization has several aspects:

Ensuring character and code set interoperability
Preserving character data integrity

Ensuring that user-visible messages are easily localized

The next sections discuss these aspects in greater detail.

Overview of DCE

1.35.1 Ensuring Character and Code Set Interoperability

A character setis a group of characters, such as the English alphabet, Japanese
Kanji, or the European character set. To enable world-wide connectivity, DCE
guarantees that a minimum group of characters is supported in the DCE. The DCE
RPC communications protocol ensures this guarantee by requiring that all DCE RPC
clients and servers support the DCE Portable Character Set (PCS). The set of DCE
PCS characters consists of the following:

+0123456789
el ;<=2 @[_ |} "#$%&() +—. [<space>
eabcdefghijklmnopgrstuvwxyz

*ABCDEFGHIJKLMNOPQRSTUVWXYZ

A code setis a mapping of the members of a character set to specific numeric code
values. Examples of code sets include ASCII, EBCDIC, JIS X0208 (Japanese Kaniji),
and ISO 8859-1 (also known as Latin-1.) The DCE RPC communications protocol
automatically converts DCE PCS characters between the ASCIl and EBCDIC code
sets, if necessary. DCE RPC also provides constructs and routines for character
and code set interoperability between non-PCS, or international characters. These
features permit programmers to write DCE RPC applications that guarantee character
and code set interoperability between clients and servers in a DCE that supports a
variety of languages and encodings for those languages.

1.3.5.2 Preserving Character Data Integrity

The DCE components preserve character data integrity because they do not use, or
“mask off,” the eighth bit of a character for any purpose. In addition, DCE RPC
does not modify user data in any way when it is passetlapyte context, unless

the application is using the DCE RPC features for automatic code set conversion of
non-PCS characters.

1-21

Introduction to OSF® DCE

1.3.5.3 Ensuring Easy Localization of User-Visible Messages

The DCE components isolate all user-visible messages into separate message catalogs.
Separating DCE messages into distinct message catalogues makes it easier for DCE
licensees to localize DCE messages so that DCE users and administrators can view
DCE error messages and prompts in their native language.

1-22

Chapter 2

DCE Configuration

Chapter 1 gave some examples of organizations that could benefit from a distributed
computing environment. The examples showed that OSF DCE could be useful to
organizations for widely varying reasons. Similarly, one organization using DCE
could require a DCE configuration that is quite different from the DCE configuration
that another organization develops.

This chapter gives an overview of DCE configuration. It describes the basic DCE
software configuration components and how they are organized on different types of
DCE machines. It then describes some typical DCE cell configurations.

The DCE configuration description in this chapter is based on technical configuration
considerations. The packaging of DCE software by OSF and other vendors will
involve somewhat different configurations since the packaging is influenced by
additional considerations.

2-1

Introduction to OSF® DCE

2.1

2-2

Introduction to DCE Configuration

A distributed computing environment consists of machines that communicate over a
network and run DCE software. The machines in a DCE environment serve different
functions and can therefore run different configurations of DCE software. There are
three basic types of machines in a DCE environment:

* DCE user machine
Contains DCE software that enables the machine to participate as a client in the
DCE environment. A typical example is a user’s workstation.

» DCE administrator machine
Contains DCE software that enables an administrator to control servers running

in the environment. A typical example is the DCE system administrator’s
workstation.

» DCE server machine
Runs software that implements one or more of the DCE services. There can be

different kinds of DCE server machines. Some examples are a DCE file server
machine and a DCE security server machine.

Figure 2-1 shows an example of a DCE cell containing the three different kinds of
DCE machines.

DCE Configuration

Figure 2-1.

Types of DCE Machines

XX Server

ZZ Server

YY Server

The different types of DCE machines run different parts of the DCE software. The
basic software necessary for any machine to participate in a DCE environment is
the DCE usersoftware. The DCE user runs on all three types of DCE machines.
The software necessary for an administrator to control DCE servers remotely is the
DCE administratorsoftware. The DCE administrator runs on DCE administration
machines, along with DCE user software.

Finally, some of the DCE software implements a particular DCE service and is
intended to run only on a machine acting as that particular server. For example, the
DCE security server software only runs on a machine designated as a DCE security
server machine. There are different kinds of DCE server machines. They run their
server-specific software, plus the DCE user software. Figure 2-2 summarizes the
DCE software that runs on different kinds of DCE machines.

2-3

Introduction to OSF® DCE

Figure 2-2.

2.2

DCE Machines and Software

DCE XX Server Machine

DCE XX Server
DCE User

DCE User Machine

DCE YY Server Machine

DCE YY Server
DCE User

DCE Administrator Machine

DCE ;
DCE ZZ Server Machine
W DCE ZZ Server

DCE User

The following sections describe the DCE software configuration components, machine
configuration, and cell configuration in more detail.

Basic Configuration Components

DCE software can be divided into sevenfiguration componentghat is, parts

of the DCE software that are installed in various combinations on DCE machines.

Different configuration components are installed on different machines in a DCE

environment, depending on what the machine’s intended use is. For example, a
user’s workstation that acts mainly as a client in the DCE environment requires a
different set of DCE software from a machine that acts as a DFS file server.

The following description is a model for dividing DCE services into configuration
components. The way a service’'s implementation maps to this model varies from
service to service.

DCE Configuration

Figure 2-3.

First, each DCE service can be divided into two general categories of functionality:
user and administration. Theser functionality is the service provided to its users;

for example, reading a file or searching a database. abmeinistrationfunctionality

allows administrators to manage the server; for example, stopping and starting server
programs or backing up data.

Since the DCE services are based on the client/server model, both the user and
administration functions are divided into two parts: the client and server sides.
In total, each DCE technology component can be conceptually divided into four
configuration components:

» User client
» User server
» Administration client
» Administration server
As shown in Figure 2-3, the user client communicates over the network with the

user server, and the administration client communicates over the network with the
administration server.

Distributed Service Configuration Components

Distributed Service

Server Machine

User Client User Server

Resour}e

Admin Client Admin Server /

(.

2-5

Introduction to OSF® DCE

2.3

2-6

The user client component is typically installed on DCE users’ workstations. The
administration client might run only on the workstation used by the administrator of

the service. Both the user server and the administration server run on the server
machine, since they require access to the resource (such as a database) that the server
manages. The user server and administration server may actually run in the same
process or be implemented by several processes.

As an example, consider the DCE Security Service. One part of the security service
software is the login facility, which sets up a user’s security environment. This is an

example of a user client. It communicates over the network with the privilege server,

which runs on the security server machine. The privilege server is an example of
a user server. An example of an administration client in the security service is the
rgy_edit program, which administrators use to modify data in the security database.
It communicates over the network with the registry server, which runs on the security
server machine. The registry server is an example of an administration server.

The software for each of the DCE services, nhamely the directory service, DTS, the
security service, and DFS, can all be divided roughly into these four configuration
components.

DCE Threads and DCE RPC are separate configuration components. They help to
implement the communications between machines, so they must be present on every
DCE machine, whether the machine acts as a client or a server.

Section 2.3 describes how machines participating in a DCE environment are configured

by using various combinations of configuration components. Section 2.4 describes
how DCE cells are configured by using various combinations of DCE machines.

DCE Machine Configuration Examples

DCE machine configurations fall into three general categories: user machines,
administrator machines, and server machines.

DCE Configuration

2.3.1

Figure 2—-4.

DCE User Machine Configuration

An example of a DCE user machine is a user’'s workstation. This machine acts as
a client to any of the DCE servers, but it does not act as a server itself (with one

possible exception noted in the next paragraph). A DCE user machine contains DCE
Threads and DCE RPC software so it can communicate with other machines in the
DCE environment. In addition, it contains the user client configuration components

of all the DCE services (see Figure 2-4). Part of this software may be present in the
form of libraries linked with DCE application software.

DCE User Machine Configuration

(DFS Server)
DFS Client

Security Service Client

DTS Client

Directory Service Client
DCE RPC

DCE Threads

A DCE user machine may also contain DFS server software, although this is not

required. This enables the machine not only to access remote files through its DFS
client software, but also to export its own file system to other machines through its

DFS server software.

We call the software configuration of a typical DCE user machine D user
software. In summary, the DCE user contains the following:

* DCE Threads and DCE RPC

» User client configuration components of each DCE service

» DFS server software (optional)

2-7

Introduction to OSF® DCE

2.3.2

Figure 2-5.

2.3.3

2-8

DCE Administrator Machine Configuration

A DCE administrator's workstation is configured with the client sides of DCE
administration programs to enable the administrator to control servers remotely. This
configuration contains the administration client software for each of the DCE services.
It also contains the DCE user software, since the administrator machines act as user
clients as well as administration clients (see Figure 2-5).

DCE Administrator Machine Configuration

DFS Admin Client
Security Service Admin Client
DTS Admin Client
Directory Service Admin Client

DCE User

DCE Server Machine Configuration

Some machines in the DCE environment contain special-purpose server software.
These are calle®CE server machines

A DCE server machine is configured with the user server and administration server
components of a DCE service. It also contains the DCE user software, since a
server machine can act as a client to other servers. For example, a DTS server
machine contains the DCE user plus the DTS user server and DTS administration
server configuration components. It is not necessary to run one server per machine;
two or more types of servers can run on a single machine. Figure 2-6 shows the
configuration of a DTS server machine and the configuration of a second machine
acting as both a CDS server and a security server.

DCE Configuration

Figure 2-6.

2.4

24.1

DCE Server Machine Configuration Examples

Distributed Time Server Machine CDS and Security Server Machine

CDS User Server

| __ DTS User Server | |~ "CDS Admin Server |

DTS Admin Server s User S
r
DCE User | _ Security User Server
Security Admin Server

DCE User

From now on, we will use the ternserver to mean both the user server and
administration server software combined; for example, the texourity servemeans
the security user server and the security administration server together.

DCE Cell Configuration Examples

DCE cells are composed of various combinations of DCE machines connected by a
network. In order for DCE applications and the DCE services themselves to run,
there must be at least one each of the cell directory, security, and distributed time
servers in every DCE cell. In addition, a DCE cell can contain any combination of
the remaining DCE servers (GDS and DFS) depending on the needs of the DCE users.
The following subsections describe these typical DCE cell configurations:

» Simple DCE cell

» DCE cell with DFS file server machine

» Connected DCE cell

A Simple DCE Cell

Figure 2-7 shows an example of a simple DCE cell. The cell contains seven
nodes, each of them running the DCE user software. Four of the nodes are typical

2-9

Introduction to OSF® DCE

Figure 2-7.

2-10

workstations; they are running only the DCE user software. One is an administrator’s
workstation; it runs the DCE administrator software in addition to the DCE user
software. The other two nodes are DCE server machines. One of the server machines
is running a security server. The other server machine is running both a cell directory
server and a distributed time server. This configuration is a complete, basic DCE
cell.

Simple DCE Cell Configuration

5CE /
Administrator

CDS Server Security Server
DTS Server
DCE User DCE User

©

Time Provider

Figure 2-8 shows the same simple DCE cell, this time with a DCE application running

in it. Node C is offering the Bank service, and Nodes A and B have the client code

for accessing the Bank service. The Bank server has registered itself with CDS so
the Bank clients are able to locate it.

DCE Configuration

Figure 2-8. DCE Application in Simple Cell

DCE
Administrator

Node A

Bank Client
W Bank Client

—

Node B

Node C

CDS Server Security Serve
DTS Server
DCE User DCE User

Bank: location=Node C

2.4.2 A DCE Cell with DFS

In order to have full DFS support, including DCE LFS, a DCE cell can contain one
or more DFS file server machines (see Figure 2-9). As mentioned in Section 2.3.1,
the DCE user is equipped to act as a DFS client and can also export the client’s local
file system to other machines on the network, using the DFS server software. The
DFS file server machine, however, is specially equipped with DCE LFS, a physical
file system that supports distributed file system features such as file replication, online
backup, and other advanced administrative support.

2-11

Introduction to OSF® DCE

Figure 2-9.

2.4.3

2-12

Simple Cell Plus Distributed File Server

DCE

Administrator

CDS Server Security Serve

DTS Server DFS File Servey

DCE User &LFS) DCE User
DCE User

A Connected DCE Cell

An organization may wish its DCE cell to communicate with other DCE cells, or with
systems outside of DCE. One way to accomplish this is through one of the global
directory services that DCE supports:

* DCE GDS, which is an implementation of the X.500 directory service standard
provided as a DCE component

* DNS, which is a global directory service that DCE supports but does not provide
as a DCE component

A DCE cell is connected to a global directory service when its name is registered in
the global directory service’s namespace. The cell then establishes a trust relationship
between its authentication service and the authentication services of cells that it wants
to contact (this step is not necessary for contacting systems without DCE security);
this process is calledross-cell authenticatian The trust relationship established
through cross-cell authentication gives DCE users (and other principals) in the trusted
foreign cell authenticated access to resources in the local cell, and vice-versa.

A cell's CDS communicates with CDS servers in foreign cells with the help of an
intermediary, GDA. When a GDA machine is added to a DCE cell, the machines in

DCE Configuration

the cell will be able to contact DCE cells and other systems by using X.500 or DNS.
Figure 2-10 shows the simple DCE cell with a GDA added to it.

Figure 2-10. Cell Connected via Global Directory Agent

GDA

DCE
Administrator

CDS Server Security Serve
DTS Server
DCE User DCE User

Another way to connect DCE cells is by establishing a kigtarchy. A hierarchical

cell configuration consists of parent cell, which is registered in one of the global
directory services, and one or marieild cells, which are registered in the parent cell’'s
CDS. The GDA again acts as the intermediary for cells in the hierarchy to contact
each other, but the child cells do not have to register with the global directory service
to communicate with each other. A hierarchical cell configuration also provides for
more extensive, transitive trust relationships between cells. For more information
about hierarchical cells, see Chapter 3 of this manual.

If a cell contains a global directory server, not only can it access the X.500 namespace
through the GDA, but it can also own and administer a portion of that namespace in
GDS. For more information on GDS and CDS, see Chapter 3 of this manual.

2-13

Chapter 3
DCE Technology Components

OSF DCE comprises several technology components:
* DCE Threads
DCE RPC

DCE Directory Service
* DCE DTS

DCE Security Service
DCE DFS

The DCE components fall into two general categorieslistributed programming
facilities and distributed services The DCE Threads and RPC components are
distributed programming facilities, which include libraries that implement APIs and
program development tools.

The remaining DCE components are distributed services. These components consist

in part of a daemon, or server process, that runs continuously on a machine and
responds to requests sent over the network. They are equipped with administrative

3-1

Introduction to OSF® DCE

3-2

subcomponents to manage the service. They also have APIs through which a
programmer can access the server.

In general, application programmers deal mostly with the distributed programming

facilities: DCE Threads and RPC. Although the distributed services also have APIs
for accessing them, the programmer often uses distributed services only indirectly
through the RPC facility, which in turn uses the distributed services’ APIs. System

administrators, on the other hand, deal mostly with the distributed services since they
have significant management requirements.

There are also facilities that do not fall under a specific component, but perform
services common to multiple components. Among these facilities are the following:

* Host services

 Application message service
 Serviceability

» Backing store databases

» DCE control program

This chapter contains sections devoted to each of the technology components (Sections
3.1 through 3.6). Each of these sections starts with an overview of its technology,
along with a description of the pieces that constitute the technology. The sections
then describe their technologies from the perspective of different types of users such
as the end user’s viewpoint, how the programmer develops an application with the
technology, and how the administrator manages the technology. Finally, the sections
each explain how their technology works, and they describe important benefits or
features of the particular technology.

Section 3.7 describes the DCE/File-Access application, which makes DFS directories
and files available to NetWare clients.

Section 3.8 gives an overview of the cross-technology facilities. Section 3.9 describes
the DCE control programdgecp.

The last section of this chapter, Section 3.10, gives an example of a very simple
distributed application, describing the process for developing, installing, and running
it.

DCE Technology Components

3.1

DCE Threads

In a traditional computer program, there is only one thread of control. Execution of
the program proceeds sequentially, and, at any given time, there is only one point in
the program that is currently executing. It is sometimes useful, however, to write
a program that contains multiple threads of control. For example, some programs
lend themselves to being structured as multiple flows of control, some programs show
better performance when they are multithreaded, and multiple threads can be mapped
to multiple processors when they are available.

A distributed computing environment based on the client/server model and remote
procedure call can make good use of the capability for multiple threads of control.
For example, when a client makes an RPC call, it blocks until a response is returned
from the server. If there are multiple threads of control in the client, then work can
continue in another thread while the thread waiting for the RPC response is blocked.
On the server side, this same situation applies since a server may itself issue an RPC.
In addition, servers often handle the requests of multiple clients. It is sometimes
easier to write a well-structured program when each request can be handled by a
separate thread of control. Often servers manage information, requiring input/output
operations to a storage device. While one server thread is waiting for its input or
output operation to finish, another server thread can continue working, improving
overall performance.

Using multiple threads puts new requirements on programmers: they must manage
the threads, synchronize threads’ access to global resources, and make choices about
thread scheduling and priorities. A threads implementation must provide facilities
for programmers to perform these tasks.

Threads can be provided by a programming language, an operating system kernel,
or a user-space library. DCE Threads is provided as a user-space library; this
has implications for its interaction with other software on the system, such as an
operating system that delivers signals to or blocks a whole process, rather than just a
thread, and preexisting library calls that were not originally written for a multithreaded
environment.

The following subsections give an overview of the DCE Threads technology

component. They describe the different kinds of functions provided by the technology
and how DCE Threads is seen from the end user’s, programmer’s, and administrator’'s

3-3

Introduction to OSF® DCE

3.1.1

3.1.2

perspective, focusing particularly on programming with DCE Threads since the
application programmer is the main consumer of this technology.

What is DCE Threads?

DCE Threads is a user-level (nonkernel) threads library based on the pthreads interface
specified by POSIX in the 1003.4a standard (Draft 4). It consists of an API that gives
programmers the ability to create and manipulate threads, as described in Section 3.1.3.
The other technology components of OSF DCE assume the availability of threads
support. DCE Threads is provided for use on operating systems that do not provide
threads already; if a threads package is already available, then DCE Threads may not
be needed. DCE Threads can be used as is—as a user-level threading facility—or it
can be mapped to an existing threads facility provided by the host operating system.

DCE Threads is designed for compatibility with existing operating systems that deal
with processes rather than threads, and libraries that are not reentrant (that is, not
written to handle multiple threads executing within them at the same time). This
compatibility is provided through the use of “jacket” routines, which are used in
conjunction with existing libraries, and modified operating system calls. Since
messages from the outside world (such as interrupts and signals) have traditionally
been addressed to a process, rather than a specific thread in a process, this interaction
must be modified as well. For further information on the way DCE Threads
interacts with other software, see the chapters on threads @3feDCE Application
Development Guide

End User’s Perspective

An end user is not aware whether or not threads are being used in an application,
except for a possible difference in performance. An application written with threads
may run faster than a single-threaded version of the same application.

DCE Technology Components

3.1.3

Programming with DCE Threads

The distributed application programmer can use threads to help structure a program.
However, having multiple threads of control can introduce a higher level of complexity
than programming with a single thread of control. Threads must be managed,
scheduled, and allowed to communicate with one another in a controlled manner.

3.1.3.1 Threads Management

In a traditional process, there is only one thread of control, and it is started and
terminated implicitly. However, when it is possible to have more than one thread of
control, the threads must be created and destroyed explicity. DCE Threads provides
the facilities for doing this.

3.1.3.2 Threads Scheduling

In the traditional process model, no scheduling is needed since there is only one thread
of control, and, whenever the process runs, that thread runs. However, with multiple
threads, if there are fewer available processors than the number of threads to be run,
some decision must be made as to which thread runs first. This is analogous to the
scheduling of processes by the operating system on a timesharing system, except that
the threads scheduling is visible to and controllable by the application programmer.
(Note that POSIX specifies that scheduling is optional, so systems using their own
threads implementations may not include the functionality provided by DCE Threads
that is described in this section.)

DCE Threads scheduling is built on two basic, interacting mechanisms:

» Scheduling priorities

» Scheduling policies
Each thread has a scheduling priority associated with it. Threads with a higher priority
have precedence over threads with a lower priority when scheduling decisions are

made. The exact treatment of threads of different priorities depends on the scheduling
policy under which they are running.

3-5

Introduction to OSF® DCE

3-6

DCE Threads offers three scheduling policies:

* First-In, First-Out (FIFO)

The thread in the highest priority category that has been waiting the longest to
run is scheduled first. It runs until it blocks, then again the thread that has been
waiting the longest runs, and so on. Threads in the highest priority level are run
in this first-in, first-out manner, then the threads in the next highest priority level
are run FIFO, and so on.

* Round-Robin (RR)

All of the threads at the highest priority level are given turns running by
timeslicing. That is, one thread runs for a period of time, then it is interrupted
and another thread runs for a period of time, and so on, until all threads have had
a chance. The process is repeated until all threads in that priority are finished or
blocked. Then the threads in the next highest priority level are also run RR until
they are all finished or blocked, and so on.

o Default

Each thread is given turns running liyneslicing Higher priority threads are
given longer periods of time to run, but even the lowest priority thread eventually
has a chance to run. This is in contrast to FIFO and RR scheduling, in which
it is possible for higher priority threads to prevent lower priority threads from
running at all.

3.1.3.3 Thread Communication and Synchronization

Threads communicate through shared variables; that is, one thread sets a variable
that another thread later reads. However, if multiple threads are accessing the same
variable, incorrect results can occur due to scheduling of threads and race conditions.
To resolve this problem, access to shared variables must be synchronized. DCE
Threads provides three facilities for synchronizing threads within a process:

» Mutual exclusion objects (mutexes)
 Condition variables

» Thejoin routine

DCE Technology Components

The mutexobject is used to synchronize access to a given resource, such as a shared
variable, by multiple threads. Mutexes ensure that only one thread accesses the
resource associated with the mutex at a time, thus the naoteal exclusionor

mutex

The mutex works as follows. One mutex object is associated with each shared
resource; for example, a shared variable. Before reading or writing the variable, a
thread attempts tock the variable’s mutex. If it succeeds in locking the mutex, the
thread proceeds to access the variable, and thenldgcksthe mutex.

If a second thread tries to access the object while the first thread is accessing it (the
condition that can cause indeterminate results if the shared variable is not protected),
the second thread is blocked when it tries to lock the mutex. When the first thread

finishes with the variable and unlocks the mutex, the second thread is unblocked and
gains the lock for the mutex. It can then proceed to access the shared variable.

The mutex is a facility by which threads can ensure that their access to shared resources
is synchronized. The threads may or may not be communicating through the shared
data. The second method of thread synchronizationctmelition variable is used

for explicit communications among threads. This is done through the use of a shared
resource—the condition variable—and as a result requires the use of a mutex.

For example, using a condition variable, Thread A can wait for Thread B to accomplish
some task. To do this, Threadwaitson the condition variable until Thread$ignals
the condition variable, indicating that the particular task has been accomplished.

Note that, although the condition variable is used for explicit communications among
threads, the communications are anonymous. For example, Thread B does not
necessarily know that Thread A is waiting on the condition variable that Thread
B signals, and Thread A does not know that it was Thread B that woke it up from its
wait on the condition variable.

There is another synchronization method that is not anonymous4eiteroutine.

This allows a thread to wait for another, specific thread to complete its execution.
When the second thread has finished, the first thread unblocks and continues its
execution. Unlike mutexes and condition variables,jtie routine is not associated

with any particular shared data.

3—7

Introduction to OSF® DCE

3.1.34 DCE Threads Exceptions

3.1.4

3.1.5

3.2

3-8

DCE Threads provides two ways to obtain information about the results of a threads
call. One way, specified by the POSIX P1003.4a (pthreads) draft standard, is that
status values are returned to the thread. DCE Threads also gives the programmer
an alternative to status values. This is provided by the exception-returning interface,
which is an extension to the basic POSIX functionality. Exceptions enable routines
to ignore status returns when other parts of the program are handling errors.

DCE Threads Administration

There are no administrative tasks associated with the DCE Threads component.

Additional Information on DCE Threads

For additional information on DCE Threads, see the following:
» The DCE Threads chapters of tlessF DCE Application Development Guide
» The (3thr) reference pages of tt@eSF DCE Application Development Reference

* The POSIX P1003.4a/Draft Threads Extension for Portable Operation Systems
Specification

* The Implementation-Specific Addendum to the POSIX P1003.4a/Draft 4
Specification

DCE Remote Procedure Call

A distributed application based on the client/server model consists of two parts: the
client side of the application, which runs on one machine and makes a request for
service on behalf of a user, and the server side of the application, which runs on
another machine on the network and fulfills the service request. The two pieces of
code on two different machines need to be able to communicate across the network.
One model for implementing communications between the client and server of an
application is the RPC facility.

DCE Technology Components

RPC gives programmers the ability to express an interaction between the client and
server of a distributed application as if it were a procedure call; the programmer defines
a calling interface and a procedure that implements it, makes a call to the procedure
along with any arguments, and receives a return value through the argument list or as
the procedure result.

In RPC, as in a traditional local procedure call, control is passed from one code
segment to another, and then returns to the original segment. However, in a local
procedure call, the code segments are in the same address space on the same machine;
whereas, in a remote procedure call, the called procedure runs in a different address
space, usually on a different machine than the calling procedure. As a result,
arguments and results are passed differently for local and remote procedure calls.
In local procedure calls, arguments and return values can be passed on the process’s
stack. In remote procedure calls, arguments and return values must be packed up
into messages and sent to the peer machine over the network. The underlying RPC
mechanism makes this look like a procedure call to the programmer.

An RPC facility shields the application programmer from the details of network
communications between client and server nodes, such as the following:

» Fragmentation and reassembly of messages

» Handling different data formats (such as byte ordering) between different
machines

» Using a directory service to find message recipients

» Using security services to ensure secure communications

Programmers using RPC do not need to rewrite applications in order to port
them to different architectures, operating systems, communications protocols, or
languages. @ RPC provides a high-level programming model to the distributed
application programmer, hiding communications details, and removing nonportable
system and hardware dependencies.

The following subsections give an overview of the DCE RPC technology component.
They describe the components that constitute the technology, and how DCE RPC is
seen from the end user’'s, programmer’s, and administrator’'s perspectives, focusing
primarily on programming with RPC since the application programmer is the main
consumer of this technology. The subsections also describe the steps involved in the
execution of a remote procedure call. They describe the ways in which DCE RPC

3-9

Introduction to OSF® DCE

3.2.1

3-10

frees the programmer from system software and hardware dependencies, and then list
additional sources of information on DCE RPC.

What is DCE RPC?

DCE RPC is a facility for calling a procedure on a remote machine as if it were a
local procedure call. To the application programmer, a remote call looks (almost) like

a local call, but there are several RPC components that work together to implement
this facility, including the Interface Definition Language (IDL) and its compiler, a
Universal Unique Identifier (UUID) generator, and the RPC runtime, which supports
two RPC protocol implementations. One RPC protocol operates over connection-
oriented transports such as the Transmission Control Protocol/Internet Protocol (TCP/
IP), and the other RPC protocol operates over connectionless transports such as the
User Datagram Protocol/Internet Protocol (UDP/IP).

An end user does not see RPC at all, and the minimal amount of administration
involved in RPC can usually be handled by the server-side application code, such as
advertising an application server in the DCE Directory Service. It is the application
programmer who most comes into contact with the RPC component. Since many of
the DCE components are themselves client/server applications, they use RPC as their
basis for distributed communications.

The components that constitute the DCE RPC are as follows:

» IDL and the IDL compiler

An RPC interface is described in DCE IDL. The IDL file is compiled into object
code via the IDL compiler. The object code is in two main parts: one for the
client side of the application, and one for the server side.

* The RPC runtime library

This library consists of a set of routines, linked with both the client and server sides
of an application, which implement the communications between them. This
involves the client finding the server in the distributed system, getting messages
back and forth, managing any state that exists between requests, and processing
any errors that occur.

» Authenticated RPC

DCE Technology Components

DCE RPC is integrated with the DCE Security Service component to provide

secure communications. Levels of security can be controlled by the RPC

application programmer through the authenticated RPC API. (See Section 3.5.4
for more information on authenticated RPC.)

» Name Service Independent (NSI) API
DCE RPC is integrated with the DCE Directory Service component to facilitate
the location of RPC-based servers by their clients. The NSI routines allow a

programmer to control the association, or binding, of a client to a server during
RPC.

* DCE host daemon
Thedcedprogram runs on every DCE machine. It includes (among other things)
an RPC-specific name server called #rapoint mapper servicavhich manages

a database that maps RPC servers to the transport endpoints (in IP, the ports) that
the server is listening for requests on.

» DCE control program

dcecpis a tool for administering DCE.

» UUID facilities
These are ancillary commands and routines for generating UUIDs, which uniquely
identify an RPC interface or any other resource. Thedgen program can

optionally generate an IDL template for a service interface, along with a unique
identifier for the interface.

3.2.2 End User’s Perspective

The end user does not come in direct contact with DCE RPC, but does see the end
result in the form of

» The availability of distributed applications built using RPC

» The ability to use remote resources accessed via RPC

3-11

Introduction to OSF® DCE

An end user who is browsing through the namespace may also notice the names of
RPC-based servers, since these servers advertise themselves to their clients through
the DCE Directory Service.

3.2.3 Programming with DCE RPC

This section provides a brief overview of the process a programmer goes through
in using DCE RPC to write an application. For an example of how this process
applies to a simple application, see Section 3.10 of this manual. For a more detailed
description of the DCE RPC programming process, seeQB8€& DCE Application
Development Guide

Figure 3-1 shows an overview of the DCE RPC application development process. The
dashed boxes indicate application code written by the DCE programmer. The other
boxes indicate compiled code or code generated automatically for the programmer by
DCE RPC.

3-12

DCE Technology Components

Figure 3-1. DCE RPC Programming Process

IDL File

| #typedef account)

|
| . |

Define Interface in DCE IDL:! debit() !
1 credit() I

| |

! get_balance() !

|

Run IDL Compiler:

‘ Server StuA

‘ Client Stub ‘ ‘ Header File

7777‘77—\ !'777‘77—\

RPC Runtime L Client AppJI}. L Server ApL‘DL RPC Runtime

Bank Client

Install on Install o
Client Server,

3.23.1 The IDL File

First, the application programmer defines the RPC interface, and associated data types,
using IDL. An interfaceis a group of operations that a server can perform. This
grouping is similar to a module or library in a conventional programming language;
that is, a group of operations defined in a single file or unit. For example, a Bank
service might perform operations to debit, credit, or read the balance of an account.
Each of those operations and their parameters must be defined in the IDL file. The
collection of Bank service operations—debit, credit, read balance—together form the
Bank service interface.

3-13

Introduction to OSF® DCE

3-14

The process of defining RPC operations is similar to defining the input and output of
a local procedure call, except that in IDL only the calling interface is defined, not the
implementation of the procedure. (An IDL interface definition is similar to an ANSI
C prototype definition.)

Next, the programmer compiles the IDL file with the IDL compiler. The compiler
produces output in a conventional programming language, which is the C language in
the DCE offering and then calls the appropriate compiler to produce object code. The
output of the compilation consists of dient stubh a server stuband a header file.

The client and server stubs are routines that make the remoteness of the operation
transparent to the caller or callee of the operation.

3.2.3.2 The Client Side

For the client side of the application, the programmer writes application code that
makes calls to the operations in the IDL file. The client stub code is linked with this

application code and (along with the RPC runtime code) performs the tasks that turn
what looks like a procedure call into network communications with the server side of
the application. Usually the client side of the application contains a relatively small

amount of RPC code.

3.2.3.3 The Server Side

For the server side, the programmer writes application routines that implement the
operations defined in the IDL file. For example, in the banking application, a database
lookup might implement the operation to read an account balance. The server stub,
generated by the IDL compiler, is linked with the server application code. The server
stub unpacks the arguments and makes the call to the application routine as if the client
program had called it directly. The server side of the application contains the bulk
of the RPC code that needs to be written by the distributed application programmer.

DCE Technology Components

3.2.34 Binding

In order for the client to send an RPC to the server, it must be able to find the server.
This process is calledinding A client may have some direct way of knowing what
server it needs to communicate with; for example, it may get this information from a
file, a value hardcoded into its program, an environment variable, or a user. A more
flexible way for a client to find a server is to take advantage of DCE RPC’s use of
the DCE Directory Service.

A client can find a server by asking the directory service for the location of a server that
handles the interface that the client is interested in (in our example, a Bank server).
In order for the directory service to be able to give the client this information, a
server must first advertise itself in the directory service. The server adds itself to
the namespace, along with information about what interfaces it implements, what
protocols it uses to communicate with, and where it is located. This way, a server
can move, or there can be multiple servers implementing a given interface, without
affecting the client. The client can still go to the directory service, a well-known
central source of information, and find out where the server is located.

The DCE programmer does not make calls directly to CDS; binding is supported by
the NSI API, an RPC-specific name service layer. Calls to this library are made by
the client side of an application in order to look up binding information for a server
based on various criteria, such as the type of service, the objects it manages, and the
interfaces it supports. The server side of an application calls this library to advertise
information about itself to the namespace where clients can find it.

3.2.3.5 The Endpoint Mapper Service of the DCE Host Daemon

There are two parts to a server’'s location: the network address of the machine it
resides on and the transport-specific address of the process—the network endpoint
(for example, a UNIX port). The machine location is fairly stable, so its address can
reasonably be entered into CDS. The network endpoint, however, can change each
time the server process is started. Instead of making frequent changes to CDS to
update a server's endpoint address, DCE RPC uses a specialized type of directory
service, the endpoint mapper service, a servicelatdd When a server starts, it
registers its endpoint(s) witiced Most servers will register an endpoint for each
transport protocol supported on the host (for example, TCP and UDP).

3-15

Introduction to OSF® DCE

Figure 3-2.

3.2.4

3-16

Every machine that runs an RPC server also meesd The dced process always

uses the same network endpoint, so its process address is well known. Therefore,
once a client knows what machine a server is running on, it can find the endpoint

mapper running on that same machine. It can then ask the endpoint mapper for the
network endpoint of the server process. This process is shown in Figure 3-2 (read
the messages, shown in quotes, in clockwise order).

Client Finds Server via CDS and dced

"Bank?"

“"Node A"

"Bank?"

¢

@§erver
Port

Node A

DCE RPC Administration

A few administrative tasks must be performed when running a distributed application
using RPC. The application server executes most of these tasks when it first starts.
As described in the previous section, the server registers its (dynamically assigned)
listening endpoint withdced The server also advertises information about itself and
the interfaces it supports in the DCE Directory Service.

Nonautomated RPC administration is minimal. The administrator must ensure that
each DCE machine has a DCE host daemon running on it. An administrator may be
involved in registering servers in the namespace, but this can also be done from server
code upon initialization as just described. Usually, an administrator will be needed
to change the ACL on the directory where the server will register so that the server
has write permission. The DCE control progradtecp allows an administrator

DCE Technology Components

3.2.5

Figure 3-3.

to (among many things) control thédced and administer RPC information in the
namespace.

An administrator may be involved in installing a new RPC-based application. In
particular, the server side of the application must be started before it can begin
receiving and servicing requests. The administrator may arrange for the server process
to be started each time the machine is booted, for example.

How an RPC Call Works

A short “walk-through” of what happens during an RPC call may help clarify the
RPC concept and how it works. This section describes the RPC call shown in Figure
3-3. (This description is somewhat simplified. The uselcédis not shown.)

RPC Runtime Process

BANK CLIENT BANK SERVER
"Bank@Node

i "Bank?")

2. Find Server T 1. Advertise
"Node B"
3. credit(acct) Client 6. Receive RP(
Appl
4 Package " guments
Arguments credit(acct) 9

5. Make RPC

axe 8. credit(acct)

On the server side, the Bank server process is started up. Before it begins its
continuous cycle of receiving and servicing requests, the server process advertises

3-17

Introduction to OSF® DCE

its location in CDS (see Step 1 in Figure 3-3). In this way, when a client queries
the directory service for a bank server, it will be able to find it. After initialization,
the server listens for a request to come in from a client over the network. This call
to wait for client requests is a call to the RPC runtime, since the runtime handles
network communications.

Eventually, a user on the Bank client machine invokes the bank application. The
Bank client initialization code calls the RPC runtime to find a server offering the
Bank service (see Point 2). The Bank client application code makes a call to a
remote procedure; for example, a call to a procedure that credits a bank account (3).
This results in a call to the client stub code. The stub transforms the arguments of
the call into a network message (4). It then calls the client's RPC runtime library,
which sends the message to the server (5).

Back on the server side, the RPC request is received by the RPC runtime, which has
been waiting for a client request (6). The runtime passes control, and the received

packet, to the server stub. The stub unpacks the arguments sent by the client (7) and
passes them to the appropriate operation by making a procedure call to it. At this

point, the server application code that implements the requested operation is called.
The operation is performed; that is, the account is credited (8).

The RPC reply (not shown in the figure) returns in the reverse direction. The Bank
server application procedure returns the results of the credit operation to the stub.
The stub packs up the return parameters and passes the resulting message to the RPC
runtime to send off to the client over the network. The server then waits for the next
client request to come in.

The client’s runtime receives the server’s reply. The client stub then unpacks the
received network message, arranging returned parameters such that, when the client
application call to RPC returns, it looks like it has just performed a local procedure
call.

The mechanisms in both the client and server stubs and the runtime library are
transparent to the application programmer. The programmer writes the application
calls to the RPC operations on the client side, and provides implementations for those
operations on the server side, but the network communications code is generated
automatically.

3-18

DCE Technology Components

3.2.6

System Independence

There are several ways in which using DCE RPC frees a programmer from dependence
on other parts of a system. It provides portability across programming languages, data
transfer syntax mechanisms, transport and network protocols, and operating system
and architecture platforms.

» Language independence

DCE RPC islanguage independerih the sense that the stubs generated by the
IDL compiler can be called by programs written in any traditional programming
language, provided that the language follows the calling conventions that the stub
expects. The DCE IDL compiler generates stubs that use the C language calling
conventions. A client written in FORTRAN, for example, can call an IDL stub

in the same way that it calls any local C procedure. It can then make a remote
call to a server (possibly written in another language) that contains the server stub
generated from the same IDL file as the client stub was generated from.

Data representation independence

The defaultdata representationformat is the DCE Transfer Syntax, which

is currently the Network Data Representation (NDR). It allows various
representations for different types of data, including multiple encodings for
characters, integers, and floating-point numbers. Iinigdticanonical that is,

there are several canonical formats that can be used. The sender chooses one of
these formats (in most cases, it will be the sender’s native data representation),
with information about what representation it has chosen. The receiver
transforms data into its own format, if it is different from the format the data
was sent in. This model optimizes for the case when both sender and receiver
use the same data representation, a frequent occurrence. (Note that this data
transfer is handled by the RPC software and is not visible to the application
programmer.)

The DCE RPC architecture allows the use of transfer syntaxes other than DCE
Transfer Syntax (although the only transfer syntax currently provided in the OSF
implementation is DCE Transfer Syntax). For example, data could be formatted
according to the ISO ASN.1/BER specification and sent over the wire in that way.

 Protocol independence

3-19

Introduction to OSF® DCE

3.2.7

3-20

Independence of RPC, transport, and network protocols is achieved as follows.
The DCE RPC offering includes two different RPC protocols. The first runs
over connection-oriented transport protocols; the second runs over connectionless
(datagram) transport protocols. The programmer can specify the underlying RPC
protocol, but the semantics of RPC calls are the same whether the RPC is running
over a connectionless or connection-oriented transport. Another RPC protocol
could be used in place of these two DCE RPC protocols; for example, when ISO
defines an RPC standard, it could be used transparently as a third RPC protocol
under the DCE RPC interfaces.

Servers identify themselves to the directory service according to the interface they
support and the protocols they use. In this way, a client can look up a server that
uses network protocols that are compatible with those that the client supports.

* Machine independence

Because DCE RPC uses the DCE transfer syntax, distributed applications are
machine independent DCE transfer syntax allows machines to transfer data
even when their native data representations are not the same.

» Operating system independence

Finally, DCE RPC offers independence from tloeal operating system The
application programmer is not directly using the networking system calls provided
by the local operating system. By being one level of abstraction up from this
layer, the programmer is insulated from networking system calls that are operating
system specific.

Additional Information on DCE RPC

For additional information on DCE RPC, see the following:

» The RPC chapters of th@SF DCE Application Development Guidad theOSF
DCE Administration Guide

» The (3rpc) reference pages of tHeSF DCE Application Development Reference
» The (1rpc) and(8rpc) reference pages of theSF DCE Command Reference

» The RPC-related error messages in @8F DCE Problem Determination Guide

DCE Technology Components

3.3

3.3.1

DCE Directory Service

A distributed system may contain many users, machines, and other resources, along
with large amounts of data, all geographically dispersed. The distributed system’s
attributes, such as the number of users, location of servers, and contents of data,
are continuously changing. It is difficult to keep track of this potentially large,
geographically distributed, rapidly changing system.

A directory service can help solve this problem. When a directory service is available,

it is no longer necessary to maintain local copies of information, such as databases of
users, hosts, and server locations, on each system. Instead, an application queries the
directory service when it needs information. In a sense, the directory service is the
most basic of all distributed system services since it is used to find the information
needed for accessing other services.

The next section gives an overview of the DCE Directory Service architecture.
Sections 3.3.2 through 3.3.4 describe each of the DCE Directory Service
components—CDS, GDS, and GDA. Section 3.3.5 describes the directory service
application programming interface.

DCE Directory Service Architecture

The DCE Directory Service is a distributed, replicated database service. It is
distributed because the information that forms the database is stored in different places;
for example, information about one group of users and resources might be stored in
one directory server, while information about a second group of users and resources
is stored in a different directory server. The directory service is replicated because
information about a given name or group of names can be stored in more than one
location, for higher availability.

The directory service database consists of a hierarchical set of namesntiespace

which have associated attributes. Given a name, its associated attributes can be
looked up in the directory service. For example, given the name of a print server,
the directory service can return the printer's location. The directory service gives
distributed system users a well-known, central place to store information, which can
then be retrieved from anywhere in the distributed system.

3-21

Introduction to OSF® DCE

3.3.1.1 Overview of Directory Service Components

There are three components that together make up the DCE Directory Service:

» DCE Cell Directory Service (CDS)

» DCE Global Directory Service (GDS)

» DCE Global Directory Agent (GDA)
The X/Open Directory Service (XDS) application programming interface is used to
access the directory service components. A brief overview of the directory service

components and interface is given in this section; subsequent sections in this chapter
describe them in more detail.

3.3.1.11 DCE Cell Directory Service

Figure 3—-4.

3-22

CDS stores names and attributes of resources located in a DCE cell. Itis optimized for
local access since most directory service queries are for information about resources
within the same cell as the originator of the query. CDS is replicated; this is important
for a local directory service since the directory service must be highly available.
There must be at least one CDS server in each DCE cell. Figure 3-4 shows three
organizations, each with its own DCE cell.

Three One-Celled Organizations

Organization A Organization B Organization C

CDS can be used to connect independent cells integarchical cell configuration,

as shown in Figure 3-5. In this configuration, one cell’'s CDS acts as a higher-level
directory service to connect other independent cells. The cell whose CDS acts as the
higher-level directory service is known as tharent cell, while the cells connected
through the parent’s CDS are known ¢sld cells.

DCE Technology Components

3.3.1.1.2 DCE Global Directory Service

GDS is a distributed, replicated directory service based on the CCITT X.500/ISO 9594
international standard. GDS interworks with other X.500 implementations and can
therefore participate in the worldwide X.500 directory service.

GDS can act as a higher-level directory service to connect cells, as shown in Figure
3-5. DCE supports the use of a second standard directory service, the DNS, which
is widely used in the Internet community. It, too, can act as a higher-level connector
of DCE cells.

Figure 3-5. Connected DCE Cell Namespaces
Cell B
/ CDSs \
Organization A / Organization B\ Organization C|
Parent Cell
/ \
/ \
/ \
/ \
Organization D Organization E
hild Cell hild Cell

3.3.1.1.3 DCE Global Directory Agent

GDA is the intermediary between a cell’'s CDS and the rest of the world. It takes
a name that cannot be found in the local cell and finds the foreign cell in which
the name resides, using GDS, DNS, or CDS, depending on where the foreign cell is

3-23

Introduction to OSF® DCE

Figure 3-6.

registered. Figure 3-6 gives a functional picture, including the use of GDAs, of the
configuration shown in Figure 3-5.

Use of Global Directory Agents

CORRED

CellA Cell B CellC

Organization A Organization B Organization C

3.3.1.14 DCE Directory Service Application Programming Interface

Figure 3-7.

3-24

DCE programmers use the XDS API to make all directory service calls. The XDS

library knows, based on the format of the name to be looked up, whether to direct the
calls it receives to GDS or to CDS (see Figure 3-7). XDS uses the X/Open Object
Management (XOM) API to define and manage its information.

XDS: Interface to GDS and CDS

Application

XDS Interface
/.../C=US/O=OSF/OU=DCE/CN=SIG-13C/ \/;./cs.univ.edu/hosts/machine-b

DCE Technology Components

3.3.1.2 The DCE Namespace

Figure 3-8.

The DCE namespace is the set of hames used by the DCE Directory Service. It is
hierarchical, similar to the structure of a UNIX file system. Names catyjbedor
untyped reflecting the different name formats supported by the two global directory
services: GDS and DNS. GDS names are typed; that is, they consist of a type and
a value separated by an = (equal sign). A name suclCatlS/O=ABCcompany,
names an object that exists in GDS. An untyped name consists only of values such
asabc.com DNS names use this format.

Figure 3-8 shows the root of the DCE namespace, indicated by..theprefix, and
four cell entries below it.

The two cells on the left).../C=US/O=0SF/OU=DCEand/.../C=CA/O=B-College/
OU=EE-Department, are in the X.500 namespace, while the two cells on the right,
/.../company_b.comand/.../cs.univ.edy are in the DNS namespace.

Four Cells in DCE Global Namespace

Global Root: /...

c=Uus C=CA company_b.com cs.univ.edu

O =0SF O = B-College

OU =DCE OU = EE-Department

Figure 3-9 shows the top of a typical DCE cell namespace. It contains an entry for
security information, an entry for the cell’s DFS file system, an entry for subsystems
such as DCE services, an RPC profile entry, and an entry for host names. (See
the OSF DCE Administration Guide—Introductidor more information on the cell
namespace.)

3-25

Introduction to OSF® DCE

Figure 3-9.

3-26

Top of a Typical DCE Cell Namespace

Global Root: /...
Cell Root: cs.univ.edu
sec fs subsys cell-profile hosts

The following is a list of examples of typed and untyped names:

/.../C=US/O=0SF/OU=DCE/sec/principals/snowpaws
/.../C=US/O=0SF/OU=DCE/fs/usr/snowpaws
/...Ics.univ.edu/sec/principals/ziggy
/...Ics.univ.edu/fs/usr/ziggy

The/... prefix indicates that the name igllbbal name The first two names are typed
names using X.500 syntax, and the second two names are untyped names using DNS
syntax. The first name in each set indicates the name of a user in an authentication
database; the second name in each set is the user’s home directory in a file system.

In each of the name examples, there is a global component and a local component.
The global component consists of a cell name, which is registered in a global directory
service. In one case, the cell is an entry in the X.500 namespacfC=US/O=0SF/
OU=DCE. In the other case, the cell is an entry in the DNS namespatos.univ.edu

The remainder of the name is an entry in the cell’'s namespace; for exalfisplisy/
snowpaws

The names listed here reside in the DCE cell namespace, but it is also possible to
maintain names in the X.500 namespace by using GDS. An example of this kind of
name is/.../C=US/O=0SF/OU=DCE/CN=SIG-DCE This name could be used, for
example, for an electronic mail list.

DCE Technology Components

3.3.1.3 Viewpoints on the Directory Service

The DCE Directory Service looks very different to the end user, programmer, and
administrator. This section takes a brief look at the directory service from each of
these three perspectives.

3.3.1.31 End User’s Perspective

The DCE Directory Service is one of the few DCE technologies that is visible to the
end user. An end user can use the CDS browser to look through the cell’s namespace.
A frequent use of the namespace is in referencing the file system. The pathname
for a file in a foreign cell is partially a pathname in the directory service, as in the
example/.../cs.univ.edu/fs/usr/ziggygiven previously.

3.3.1.3.2 Application Programmer’s Perspective

DCE application programmers do not necessarily need to interface directly with the
directory service, since a frequent use of the directory service—to look up the location
of a server—can be done automatically by DCE RPC. Programmers who do use the
directory service interact with it through the X/Open directory service interface. XDS
provides facilities for adding, deleting, modifying, and looking up names and their
attributes.

Programmers use XDS for accessing both DCE directory services—CDS and GDS.
However, the programmer needs to understand the different types of names used for
different namespaces, and be aware of some XDS calls that are not available when
CDS is being used. An example is teearchquery, which is possible in GDS, but

not in CDS.

3.3.1.3.3 Administrator's Perspective: Two Directory Services and an Intermediary

Unlike the end user and application programmer, the directory service administrator
is aware of the cell's directory service configuration, since the two directory services
are administered separately. The administrator manages the CDS server, GDA, and
the GDS server, if the cell has one.

3-27

Introduction to OSF® DCE

3-28

3.3.14 Related Services: Registration and Lookup Path

There are two services in DCE that are distinct from, but related to, the DCE Directory
Service. The first is registration. In naming an object in a distributed system, it is
useful to have a unique name for the object. DCE provides a facility for generating
UUIDs, which are used to name DCE objects such as RPC interfaces, users, and
computing resources. More information on UUIDs is contained in the RPC chapters
of the OSF DCE Application Development Guide

A second service that is related to directory service is the ability to specify a path
through the directory service for looking up names. In DCE, this capability is

provided by RPCprofiles Profiles can be used, for example, to look up names

relative to a certain location. If a user wants to look up a printer based on the
printer's proximity to the user, for example, a profile may specify that a directory
service lookup for a printer begin in the local cell, and then, if a printer is not found,
look in the two neighboring cells, and so on. For more information on RPC profiles,
see the RPC chapters of tle&F DCE Application Development Guide

3.3.15 Specialized Naming Services

The DCE namespace is not contained entirely in the DCE Directory Service. Other
system services contain parts of the namespace and some of them require their own
specialized naming services, which supplement the DCE Directory Service. These
include

» DCE host daemondgced)

Maintains a database of local data that is essential for operating in a DCE
environment, such as the host’s cell name. It also keeps a database of server
configuration information that it uses to manage DCE server operation on a host;
for example, starting or stopping a DCE server. An example of a name in the
DCE host daemon part of the namespace is as follows, whides_clip is the

name of a DCE application server:

/...Ics.univ.edu/hosts/gunther/config/srvrconf/video_clip

» DCE Security Service database

DCE Technology Components

3.3.2

Keeps a database of DCE principals (users and servers) and information related
to them such as their passwords. An example of a name in the security part of
the DCE namespace is./cs.univ.edu/sec/principal/ziggy

* DFS Fileset Location server database

Maintains a database that maps DFS filesets to the DFS file server machines they
are kept on. An example of a name in the DFS part of the DCE namespAce is
.../cs.univ.edu/fs/usr/ziggy

DCE Cell Directory Service

One of the two directory services underlying the XDS API is DCE CDS. The following
subsections describe CDS in terms of the data elements that it deals with and the
components that implement it. They then describe how CDS handles replication,
caching, and data consistency. Finally, they describe CDS from the end-user,
programmer, and administrator perspectives.

3.3.2.1 What is CDS?

DCE CDS is made up of several components, including the CDS server, CDS clerk,
and CDS administration programs.

* CDS server

Runs on a node containing a database of directory information. It responds to
gueries from clients by accessing the database. (A CDS database is called a
clearinghousg

» CDS clerk

Runs on the client node and serves as an intermediary between client applications
and CDS servers. One of the clerk’'s most important functions is to maintain
a cache of information acquired through directory queries. The clerk stores
the response to a query in its cache so that the next time a related query is
made, the information is already available on the client node, and no network
communications with the CDS server are necessary. The cache is written to disk
periodically, so it persists even if the clerk process dies or the client node crashes.

3-29

Introduction to OSF® DCE

» CDS administration programs

Carry out CDS administrative tasks. Administrators can use the DCE control
program,dcecp for the majority of CDS administrative tasks. There are also
two administrative programs included in the CDS technology—the CDS browser
and the CDS control program. The CDS browser, which end users as well as
CDS administrators can use, is a CDS client application that allows you to inspect
the cell's namespace. The CDS control progragscp enables administrators

to control CDS servers and data.

Figure 3-10 shows a client application that sends a request to the CDS clerk, which

in turn communicates with the CDS server. The server performs a database lookup

or update, depending on the request. The response is then sent back to the client
application.

Figure 3-10. CDS Client and Server Machines

3-30

machine 1 machine 2

Client CDS CDS -

Application Clerk Server

learinghouse

3.3.2.2 The CDS Database

CDS information is contained in three types of data elements:
« Directory entries
A directory entry consists of a name and its attributes. One example is the name

of an application server, whose attributes include the interface it exports and its
location on the network.

» Directories

DCE Technology Components

A CDS directory is a logical grouping of CDS information; it is a collection of
directory entries. The directory is the administrative unit for replication. There
can be one or more copies, @plicas of a given directory. CDS directories are

in a hierarchical relationship to one another; each directory has a parent directory
and can also have child directories.

* Clearinghouses

A clearinghouse is a physical CDS database; it is a collection of directory replicas.
The clearinghouse is the database on a CDS server machine that the CDS server
accesses in order to respond to its requests.

As an example of how the different types of CDS data elements relate to one another,
imagine a directory P, which contains all the information about the printers in a given
cell. This directory contains one directory entry per printer. The administrator of the
cell may decide that the information contained in the P directory is important enough
that it needs to be replicated on more than one CDS server, so, if one server goes
down, the P information can still be found on the other server. To that end, replicas
of the P directory might be kept in two clearinghouses: one replica in Clearinghouse
A, and the other in Clearinghouse B.

3.3.2.3 Replication and Data Consistency in CDS

A directory service must be highly available since other services depend on it. It

must also be fast. CDS achieves these two goals through the replication of directories
and caching of directory entries. It also provides mechanisms for keeping various
degrees of consistency among copies of data.

There are two types of directory replicas in CDS:

» Master replica

» Read-only replica
There is exactly one master replica of a given directory, and any kind of operation
can be performed on it. The only operations that can be performed on a read-only

replica are those limited to read access to the directory; no updates can be made to
this type of directory replica. There can be zero or more read-only replicas.

3-31

Introduction to OSF® DCE

CDS provides two methods for maintaining data consistency among replicas of a
directory:

» Immediate propagation
» Skulking

With immediate propagation, a change made to one copy is immediately made to
other copies of the same data. Immediate propagation is used when it is important
for all copies of a directory to be consistent at all times.

In some cases, it is not necessary for copies to be updated immediately. Sometimes
it is not even possible since a server holding a copy may be unavailable to receive
updates. In these cases, the other consistency mechasksitking can be used.

A skulk happens periodically (for example, every 24 hours), and is done on a per-
directory basis. All changes made to the given directory are collected and propagated
in bulk to all clearinghouses that contain replicas of the directory. If a skulk cannot
complete (that is, if one or more of the nodes containing a replica to be updated is
down), then an administrator is notified and the skulk is attempted again later.

Caching is also a form of replication and therefore leads to the problem of keeping
multiple copies of information consistent (or in this case, dealing with the fact
that cached information may be out of date). As mentioned previously, the CDS
clerk caches directory information so that information will be available on the local
node rather than having to repeatedly query directory servers. CDS allows the
client application to bypass the clerk’s cache and go directly to the CDS server for
information, when the application wants to make sure it has the latest information.

3.3.24 End User’s Perspective

An end user may be interested in perusing the cell namespace to look for information
contained in CDS. This can be done using the CDS browser.

3.3.2.5 Programming with CDS

Programmers can access CDS through XDS. They also use CDS indirectly when they
use the name service routines of the RPC API.

3-32

DCE Technology Components

3.3.2.6 CDS Administration

In general, CDS administrators udeecpto administer CDS; They can also us#scp

in the few cases whermcecpdoes not provide the necessary administrative function.
Administrators can use the CDS browser to inspect CDS data. CDS administrative
tasks include monitoring CDS servers, managing access control on CDS directories,
and specifying replication and update of CDS data.

3.3.2.7 Additional Information on CDS

For additional information on CDS, see the following:

» The dcecp and CDS chapters of th©SF DCE Administration Guide—Core
Components

» The (8dce)and (8cds)reference pages of tHeSF DCE Command Reference

3.3.3 DCE Global Directory Service

DCE GDS is a directory service implementation based on the international standard
CCITT X.500/ISO 9594. When present in a DCE cell, GDS can serve two basic
functions. First, it can participate in a high-level, possibly worldwide directory
service tying together independent DCE cells. Second, it can be used as an additional
directory service to CDS for storing object names and attributes in a central place.

Like CDS, GDS is a replicated, distributed database. The GDS database contains
information that can be distributed over several GDS servers. In addition, copies of
information can be stored in multiple GDS servers, and the information can also be

cached. The unit of replication in GDS is the directory entry (whole subtrees can

also be specified).

The GDS directory is structured differently from CDS, and names are also different in
that they are typed, as described later. Programmers can access both DCE Directory
Services, however, using the X/Open Directory Service API (see Section 3.3.5.2 for
a description of XDS).

3-33

Introduction to OSF® DCE

3-34

The following subsections describe the GDS components, possible GDS
configurations, the GDS database and names, an overview of how GDS works,
and the relationship of DCE GDS to underlying network services and international
standards.

3.3.3.1

What is GDS?

There are several components that work together to provide DCE GDS:

Directory System Agent (DSA)

This process runs on the GDS server machine and manages the GDS database. It
is the server side of GDS. In order to handle simultaneous requests from different
users, the GDS server machine can run several DSA processes.

Directory User Agent (DUA)

The DUA is a library that implements the GDS client; this library is present on
all GDS client machines.

Directory User Agent cache

This process keeps a cache of information obtained from DSAs. One DUA cache

runs on each client machine and is used by all the users on that machine. The
DUA cache contains copies of recently accessed object entries and information
about DSAs. The programmer specifies which information should be cached,

and it is possible to bypass the DUA cache to obtain information directly from

a DSA. This is desirable, for example, when the user wants to make sure the
information obtained is up-to-date.

C-Stub and S-Stub

The C-Stub process runs on each client machine and manages communications
with DSAs. It implements the upper layers of the ISO protocol stack (see Section
3.3.3.5). Its function is similar to the RPC runtime (GDS uses OSI protocols
instead of DCE RPC). The S-Stub is similar to the C-Stub, except it runs on the
server machine and manages its communications with DUAs and other DSAs.

Shadow update and cache update processes

DCE Technology Components

Unlike the processes listed previously, which run continuously, the processes for
updating replicas in DSAs and DUA caches run as needed and then terminate.
The shadow update process runs on the GDS server machine; the cache update
process runs on GDS client machines.

The GDS administration programs

DCE GDS continues to provide three programs for administering its service.
The gdssysadmprogram supports administration of the local GDS installation,
such as configuration, server activation, and backup. gdsslitadm program
supports remote administration of the contents of a GDS database. Finally, the
gdscacheadmprogram supports the administration of the contents of the local
DUA cache.

For Release 1.1, GDS also provides tpgscp and gdssetupprograms. The
gdscp program allows the administrator to enter object administration functions
by using command-line and interactive modes. It can be used as an alternative
to the Object Administration menu interface and part of the Cache Administration
menu interface of the GDS administration program.

The gdssetupcommand provides the administrator with an interface to simplify
the process of creating and initializing a directory configuration. The other
method of creating and initializing a directory configuration requires that the
administrator perform initialization steps by using the masks ofgtieditadm
program either manually or by using batch file scripts.

The advantages of both of these programs are described i@$feDCE GDS
Administration Guide and Reference

Figure 3-11 shows the interaction between the directory service application, the XDS
interface, and the GDS client and server. The GDS client and server use the Directory
Access Protocol (DAP) to communicate. The GDS servers use the Directory System
Protocol (DSP) to communicate with one another. DAP and DSP perform functions
similar to the function that the DCE RPC protocols perform in other DCE services.
The DAP and DSP protocols are defined in the X.500 standard, enabling worldwide
interoperability among directory services.

3-35

Introduction to OSF® DCE

Figure 3-11. GDS Components

3-36

GDS Client
GDS Server
DAP
Appl | XPS DUA > DsA
+ i D
DUA
Cache
DSP
DAP
GDS Server
Y
9 DSA
—

3.3.3.2 GDS Configurations

A GDS machine can be configured in two ways:
* Client-only
A node can contain only the client side of GDS. This node can access remote
DSAs and cache some information in the DUA cache.

» Client/Server

A machine can be configured with both the GDS client and server. This is the
typical configuration for a machine acting as a GDS server. This configuration
can be useful even if a node acts mainly as a client because the DSA can be used
as a larger, more permanent cache of information contained in remote DSAs.

Figure 3-12 shows a GDS client configuration that goes through the network to access
a DSA on another machine running the GDS client/server configuration.

DCE Technology Components

Figure 3-12. GDS Configurations

Client

Application

DUA

Communication
Layer

Client/Server

Communication Communication
Layer Layer Database
DUA
DSA
Application

3.3.3.3 The GDS Database

The GDS database is a hierarchical, object-oriented database. The OSF DCE
reference implementation of GDS uses the C-ISAM database software. The
information that makes up GDS takes the following forms:

» Object entry
An object entryis an entry in the database that names and describes an object,

such as a person, machine, or server. It consists of one or more attributes,
and each of the attributes has a type and a value. For example, an attribute

3-37

Introduction to OSF® DCE

Figure 3-13.

3-38

type might beCOMMON NAME (or CN) and the value might be snowpaws;
another attribute might be typdACHINE ADDRESS and the value might be
100.100.1.177 Some attributes may have more than one value. Each object
entry has an attribute of typ@BJECT CLASS, and its value specifies what the
object’s class is, which determines what other attributes the object entry has. The
name of an entry consists of one or more of its attributes (see Figure 3-13).

GDS Object Entry

Object Entry

OBJECT COMMON
TvPe [vaL @ CLASS NAME || Ppaws

Attribute Attribute Attribute Attribute
(Multivalued) (Class) (RDN)

Relative Distinguished Name (RDN)

The name attribute of an object contains the object's RDN. An RDN contains
both the type and value of the naming attribute; for examph,= snowpawsor
MACHINE NAME = MachineA . (In DCE Directory Service notation, the type
and value of an attribute are separated by an equal sign.)

Distinguished Name (DN)
The DN is the concatenation of the object's RDN and the RDNs of all its ancestors
in the GDS naming hierarchy, like a full pathname for a file in a UNIX file system.

An example of a DN might bé../C=US/O=0SF/OU=DCE/CN=snowpaws (In
DCE Directory Service notation, the RDNs are separated by slashes.)

Directory Information Base (DIB)

The DIB consists of all the object entries in all the DSAs in GDS.

Directory Information Tree (DIT)

The DIT is the structure of the GDS namespace; it determines the hierarchy of
GDS names. For example, the DIT might specify that the only entries that can

come directly under the DIT root are entries describing countries, such./fas
C=USor/...IC=JP.

Directory schema

DCE Technology Components

The directory schema contains structuring rules for the GDS information. This
includes object classes, their attributes, and their syntax.

» Authentication

The directory service supports simple user authentication using name and
password. In addition to simple authentication, GDS supports DCE authentication
as a security method for accessing DSAs in the DCE environment. DCE
authentication requires that users and the DSAs these users want to access are
registered in the DCE registry. The extended attributes feature of the DCE
registry is used for this purpose.

* GDS access control lists (ACLS)

GDS internally uses ACLs, but GDS ACLs are different from other DCE ACLs.
Each object entry has an ACL associated with it. It specifies permission to
access the object’s attributes. The attributes can be classifigeUgsIC,
STANDARD, or SENSITIVE. The object’'s ACL grants a user or group of users
five different types of permission: modiffUBLIC attributes, read or modify
STANDARD attributes, read or modiffENSITIVE attributes. When a new
object entry is created in the GDS directory, it inherits the security characteristics
of its parent entry by default. An object entry’s ACLs are attributes of the object
entry.

3.3.34 How GDS Works

When an application program makes a GDS call using the XDS API, the call is handed
to the DUA library. The DUA first looks in the DUA cache (if specified) to see if
the requested information is already available on the local node. If it is not, the
DUA queries a DSA. The DSA may have the requested information and, if it does,
it returns the results to the DUA. If it does not, the query can proceed in one of two
ways. Either the DSA can query a different DSA on behalf of the DUA, or the DSA
can return information such that the DUA can query a second DSA itself. The first
method is callecchainingand the second method is callegferral. In either case,
different DSAs are queried until the information is found. It is cached (if specified)
in the DUA cache and the results are returned to the GDS application program.

3-39

Introduction to OSF® DCE

3.3.35 GDS and Network Services

Figure 3-14.

3-40

The X.500 directory service standard was written to run on top of the OSI
communications protocols. The OSI protocols are divided into seven layers: the
Physical, Data Link, Network, Transport, Session, Presentation, and Application
Layers (see Figure 3-14). The upper three layers are usually implemented as libraries
that are linked together with the application process. The lower layers are part of the
operating system, and their services are made available to the upper layers through a
transport interface. The transport interface is the double line in Figure 3-14.

The OSI Protocol Layers

Application Layer

Presentation Laye

Session Layer

Transport Interface—

Transport Layer

Network Layer

Data Link Layer

Physical Layer

The directory service is an application layer protocol. Its specification requires

the use of the underlying layers and two other Application Layer service elements:
Association Control Service Element (ACSE) and Remote Operation Service Element
(ROSE). ROSE and ACSE of Layer 7, and the presentation service of Layer 6, are
implemented in GDS by the Remote Operation Service (ROS) library. The OSI

Session Service (Layer 5) is implemented in GDS by the OSI Session Service (OSS)
library. These layers are equivalent to the communications support supplied by the
DCE RPC runtime system, which also fills in the gap between an application and

the underlying transport communications. Although GDS supplies support for these
upper OSI layers, they are used only for the directory service and are not made
available for application programmers.

DCE assumes that the system it runs on provides support for transport layer
communications (either OSI transport or IP transport). The OSI protocols running
above the transport layer were originally designed to run over OSI transport protocols.
Many DCE systems run TCP/IP, so GDS provides the capability for running over the
TCP/IP transport protocol as specified in RFC 1006.

DCE Technology Components

The GDS software includes a compiler and a runtime library called MAVROS. The
compiler takes specifications written in the Abstract Syntax Notation (ASN.1) and
compiles them into C language code for header files and encoding/decoding routines,
much as the RPC IDL compiler takes an IDL specification and compiles it into a
header file and client and server stubs. MAVROS is used to encode/decode the DAP
and DSP protocols and their data values.

3.3.3.6

GDS Relation to Standards

The OSI software provided in DCE is based on the following ISO standards:

X.500/ISO 9594

The CCITT 1988 version (Blue Book), which shares the same text as ISO
Directory Standard 9594 (v1) published in 1990.
ROSE/ACSE/Presentation/Session

ISO 9072 (v1:1989), 8650 (v1:1988), 8649, 8823 (v1:1988), and 8327

(v2:1988) Protocol International Standards. The implementation follows EWOS
agreements.

ASN.1/BER

The ASN.1 compiler accepts ASN.1 syntax conformant to ISO 8824 and generates
routines to encode/decode data conformant to ISO 8825 Basic Encoding Rules.

The GDS software provides functional extensions to the standards in the following
areas:

Replication

Knowledge information modeling and administration
Schema modeling and administration

Subtree administration

Caching

Remote administration

Security (access control)

3-41

Introduction to OSF® DCE

3.3.3.7 Additional Information on GDS

3.3.4

3-42

In addition to the standards listed in the previous section, information on DCE GDS
and related standards can be found in @®&F DCE GDS Administration Guide and
Reference

DCE Global Directory Agent

DCE GDA is the third major component of the DCE Directory Service. It acts as
an intermediary between the local cell's directory service and the global directory
services. In particular, the GDA handles CDS calls that are directed to foreign cells.
The foreign cells must be registered with one of the two global directory services that
DCE supports; the X.500 directory service or the Domain Name Service (DNS).

3.34.1 What is GDA?

DCE GDA is a process that interfaces between CDS and GDS or DNS. The GDA is
not visible to the end user. Programmers access the GDA indirectly through the XDS
API. GDA administration consists simply of starting and stopping the GDA process.

At least one GDA must be present in a DCE cell in order for that cell to acquire
directory service information from other DCE cells.

3.34.2 GDA and Other Directory Service Components

Figure 3-15 shows how the GDA relates to other directory service components.

DCE Technology Components

Figure 3-15. GDA and Other Directory Service Components

Typed Name Untyped or Mixed Name
Foreign Cell Name

Untyped Cell Name

The application uses XDS to make a directory service call. If a typed name such
as/...IC=US/O=0SF/OU=DCE/CN=SIG-DCEis to be accessed, then the query is
passed to GDS. If the name to be accessed is an untyped name, sudtsasniv.edu/
fs/usr/ziggy, or a partially typed name, such As/C=US/O=0SF/OU=DCE/fs/usr/
snowpaws then the query is passed to CDS. If the name is a local name, contained
in the local CDS, then the query is handled by the local CDS server. If it is a name
that resides in a foreign cell, it is passed to the GDA.

Typed Cell Name

The GDA determines whether the foreign cell is registered in X.500 or DNS, based
on the format of the name. It then contacts a GDS server or DNS server to find the
foreign cell. Once the foreign cell is found, information about that cell is cached
so that subsequent lookups of names in that cell do not require the involvement of a
global directory server. Finally, the CDS server in the foreign cell is contacted to
handle the query about the name.

3.34.3 Additional Information on DCE GDA

For additional information on DCE GDA, see the GDA sections of @&F DCE
Administration Guide

3-43

Introduction to OSF® DCE

3.3.5

The Directory Service Interfaces

The XDS and XOM APIs provided by the DCE Directory Service are based on X/
Open specifications. APIs are not really separate components (every DCE component
includes APIs to access it), but we call them out separately in this case because

programmers use the directory service APIs to access both DCE directory services
(CDS and GDS).

3.35.1 The XOM Application Programming Interface

XOM is an interface for creating, deleting, and accessing objects containing

information. It is an object-oriented architecture in that each object belongs to

a particularclass and classes can be derived from other classes, inheriting the

characteristics of the original class. The representation of the object is transparent to
the programmer; the object can only be manipulated through the XOM interface, not
directly. XOM is used to create the objects that make up the directory service.

XOM defines basic data types, such as Boolean, string, object, and so on. It defines
an information architectureincluding concepts such as objects, their attributes, and
their classes. It also provides definitions of routines for manipulating objects.

3.3.5.2 The XDS Interface

3-44

The XDS API is used by DCE programmers for accessing information in the DCE
Directory Service, whether the information is managed by CDS or GDS. It uses
the XOM interface for defining and handling the information objects that compose
the directory. These objects are passed as parameters and as return values to the
XDS routines. The XDS API contains routines for managing connections with a
directory server; reading, comparing, adding, removing, and modifying entries; listing
directories; and searching for entries. Some extensions to the X/Open standard that
the DCE XDS API provides include provisions for security and cache management.

DCE Technology Components

3.4

3.3.5.3 Additional Information on XDS and XOM

For additional information on the XDS and XOM interfaces, see the following:
» The XDS and XOM chapters of th@eSF DCE Application Development Guide

» The (3xds), (4xds), (3xom), and (4xom) reference pages of th©®SF DCE
Application Development Reference

» X/Open CAE Draft 1 (May 1991) Specification, APl to OSI Object Management
(XOM)

» X/Open CAE Draft 1 (May 1991) Specification, API to Directory Services (XDS)

DCE Distributed Time Service

A distributed computing system has many advantages but also brings with it new
problems. One of them is keeping the clocks on different nodes synchronized. In a
single system, there is one clock that provides the time of day to all applications.
Computer hardware clocks are not completely accurate, but there is always one
consistent idea of what time it is for all processes running on the system.

In a distributed system, however, each node has its own clock. Even if it were
possible to set all of the clocks in the distributed system to one consistent time at
some point, those clocks would drift away from that time at different rates. As a

result, the different nodes of a distributed system have different ideas of what time
it is. This is a problem, for example, for distributed applications that care about the
ordering of events. It is difficult to determine whether Event A on Node X occurred

before Event B on Node Y because different nodes have different notions of the
current time.

DCE DTS addresses this problem in two ways:

» DTS provides a way to periodically synchronize the clocks on the different hosts
in a distributed system.

» DTS also provides a way of keeping that synchronized notion of time reasonably
close to thecorrecttime. (In DTS, correct time is considered to be UTC, an
international standard.)

3-45

Introduction to OSF® DCE

These services together allow cooperating nodes to have the same notion of what time
it is, and to also have that time be meaningful in the rest of the world.

Distributed time is inherently more complex than time originating from a single source
since clocks cannot be continuously synchronizing, there is always some discrepancy
in their ideas of the current time as they drift between synchronizations. In addition,
indeterminacy is introduced in the communications necessary for synchronization
since clocks synchronize by sending messages about the time back and forth, but
that message passing itself takes a certain (unpredictable) amount of time. So in
addition to being able to express the time of day, a distributed notion of time must
also include aninaccuracyfactor; that is, how close the timestamp is to the real
time. As a result, keeping time in a distributed environment requires not only new
synchronization mechanisms, but also a new form of expression of time—one that
includes the inaccuracy of the given time. In DTS, distributed time is therefore
expressed as a range, or interval, rather than as a single point.

34.1 What is DTS?

There are several different components that constitute DCE DTS:
» Time clerk
» Time servers
— Local time server
— Global time server
— Courier time server
— Backup courier time server

DTS API

» Time-Provider Interface (TPI)
» Time format, which includes inaccuracy
The active components are the time clerk and different kinds of time servers. There

are two interfaces: a programming interface (DTS API) and an interface (TPI) to an
external time-provider. Finally, DTS defines a new format for expressing time.

3-46

DCE Technology Components

34.1.1 Time Clerk

The time clerk is the client side of DTS. It runs on a client machine, such as a
workstation, and keeps the machine’s local time synchronized by asking time servers
for the correct time and adjusting the local time accordingly.

The time clerk is configured to know the limit of the local system’s hardware clock.
When enough time has passed that the system’s time is above a certain inaccuracy
threshold (that is, the clock may have drifted far enough away from the correct
time), the time clerk issues synchronization It queries various time servers for

their opinion of the correct time of day, calculates the probable correct time and its
inaccuracy based on the answers it receives, and updates the local system’s time.

The update can be gradual or abrupt. If an abrupt update is made, the software register
holding the current time is modified to reflect the new time. Usually, however, it is
desirable to update the clock gradually and, in this case, the tick increment is modified
until the correct time is reached. In other words, if a clock is normally incremented
10 milliseconds at each clock interrupt, and the clock is behind, then the clock register
will instead be incremented 11 milliseconds at each clock tick until it catches up.

Figure 3-16 shows a LAN with two time clerks (C) and three time servers (S). Each
of the time clerks queries two of the time servers when synchronizing. The time
servers all query each other.

Figure 3-16. DTS Time Clerks and Servers

6. A

3-47

Introduction to OSF® DCE

3-48

34.1.2 Time Servers

A time server is a node that is designated to answer queries about the time. The
number of time servers in a DCE cell is configurable; three per LAN is a typical
number. time clerks query these time servers for the time, and the time servers
guery one another, computing the new system time and adjusting their own clocks as
appropriate. One or more of the time servers can be attached to an external time-
provider (described later in this section).

A distinction is made between local time servers (time servers on a given LAN) and

global time servers. This is because they are located differently by their clients. A

client may need to contact a global time server if, for example, the client wants to get
time from three servers, but only two servers are available on the LAN. In addition, it

may be desirable to configure a DTS system to have two LAN servers and one global
time server synchronizing with each other, rather than just having time servers within
the LAN synchronizing with each other. This is where couriers are needed.

A courier time server is a time server that synchronizes with a global time server;
that is, a time server outside the courier’s LAN. It thus imports an outside time to the
LAN by synchronizing with the outside time server. Other time servers in the LAN
can be designated as backup courier time servers. If the courier is not available, then
one of the backup couriers serves in its place.

Figure 3-17 shows two LANs (LAN A and LAN B) and their time servers (S). In
each LAN, one of the time servers acts as a courier time server (Co) by querying a
global time server (G) (that is, a time server outside of either LAN) for the current
time.

DCE Technology Components

Figure 3-17. Local, Courier, and Global Time Servers

LAN A LAN B

Ee—(®

€9
©

3.4.1.3 DTS Application Programming Interface

DTS provides an API library that allows programmers to manipulate timestamps. For
example, programmers can obtain a timestamp representing the current time, translate
timestamps to different formats, and compare two timestamps.

3414 Time-Provider Interface

So far, all the components described are those supporting the synchronization of a
distributed system’s clocks. There must also be a way to ensure they are synchronized
to thecorrecttime. The notion of the correct time must come from an outside source,
which is the external time-provider. This may be a hardware device such as one that
receives time from radio or telephone sources. This external time is given to a time
server, which then communicates it to other servers. Such an external time-provider
can be very accurate. If no such device is available, the external time source can be
the system administrator, who consults a trustworthy time source and enters it into
the system. This cannot, of course, be as accurate as an automatic time source, but
it may be sufficient in some cases.

3-49

Introduction to OSF® DCE

3.4.2

3.4.3

3-50

DTS supports the ability to interface with an external time-provider through the time-
provider interface. The external time-provider itself, however, is a hardware device
(or a person), and is therefore outside the scope of DCE.

3.4.15 DTS Time Format

The time format used in DTS is a standard one: UTC, which notes the time since
October 15, 1582, the beginning of the Gregorian calendar. This time is interpreted
using the Time Differential Factor (TDF) for use in different time zones. For example,
the TDF in New York City is -5 hours. The TDF for Greenwich, England is O.

End User’s Perspective

From a user’'s point of view, the advantage of having a distributed time service is
that more applications work as expected in a distributed environment. For example,
the UNIX make program compiles new binary files if it discovers that the source
file has been changed since the last time the binary was compiled. In a distributed
system, this may not work properly if the source is on one machine and the binary is
on another, and the two machines have different ideas of what time it is (and of what
time it was when their files were updated). Having DTS means that the nodes have
roughly the same notion of time, and theake program works as expected.

Programming with DTS

There are two ways a programmer can be affected by the presence of DTS in a system.
It is possible for an application to retrieve the time from the system in the same way
as before DTS was introduced. But with DTS, the system’s time is more correct and
is synchronized with other nodes’ clocks in the distributed system.

It is also possible for the programmer to use the DTS API to directly deal with
distributed time. Since DTS time is represented differently than single-node time—
it includes inaccuracy—new routines are provided for comparing times and for
converting from DTS time format to the native system’s time format. The API also

DCE Technology Components

3.4.4

3.45

includes routines for retrieving the current time, performing calculations on times, and
handling time zone information.

If programmers choose to use DTS directly, they must handle a new contingency
when comparing times. When asking the question “Which time is earlier, Time A
or Time B?” it is possible to get the answer “We do not know.” When the two time
intervals overlap, there is no way of determining which occurred first. Programmers
can handle this in two ways: they can ignore the inaccuracy and compare the two
median times, or (the safer alternative) they can acknowledge that either time could
have been first and take the more conservative action. For example, if it cannot be
determined when running thmake program, whether the source or the executable
was modified last, the compilation can be rerun just in case the source was modified
after the executable was generated.

DTS Administration

Administering a distributed time service is more involved than administering the time
in a single node. In a single node, time administration typically consists of setting the
time and date when a system is first started up and then updating the time occasionally
to compensate for clock drift.

DTS requires more set-up and configuration work for the administrator, although, once
it is up and running, the administrative maintenance tasks are infrequent.

Interaction with the Network Time Protocol

The Network Time Protocol (NTP), an Internet recommended standard that is widely
used in the Internet, is another method of synchronizing time in a distributed
environment. It is possible for NTP servers to provide time to a DTS system, and
for DTS servers to provide time to an NTP system. See the chapter on NTP in the
OSF DCE Administration Guidéor additional information.

3-51

Introduction to OSF® DCE

3.4.6

3.5

3.5.1

3-52

Additional Information on DTS

For additional information on DCE DTS, see the following:

» The DTS chapters of th®@SF DCE Application Development Guidad theOSF
DCE Administration Guide

» The (3dts) reference pages of tHeSF DCE Application Development Reference
» The (8dts) reference pages of tH@eSF DCE Command Reference

DCE Security Service

A distributed computing environment brings with it new security requirements beyond
those found in a nondistributed system. In a nondistributed system, the operating
system can be trusted to protect resources from unauthorized access. This is not
the case in open distributed systems, however. Communications take place over an
accessible network, where messages between machines can be observed or forged. A
new security system is required in order to control access to resources in a distributed
environment. In DCE, resource protection is provided by the DCE Security Service
or, alternatively, the Generic Security Service (GSS).

What is the DCE Security Service?

The DCE Security Service comprises several parts, including the authentication
service, the privilege service, the registry service, the ACL facility, the login facility,
and the audit service.

» Authentication service

This service enables two processes on different machines to be certain of one
another’s identity, oauthenticated On a timesharing system, this functionality

is provided in part by the operating system kernel. However, since a local
host’'s operating system cannot necessarily be trusted in a distributed system, an
authentication service is necessary in a distributed computing environment.

* Privilege service

DCE Technology Components

Once a server has verified the identity of the user who is making a request, it still
needs to determine whether the user shoulduiborized or granted the requested
access to a resource that the server controls. This functionality is provided by the
DCE authorization service called the privilege service. It forwards in a secure
way the information that a server needs to know in order to determine what
permissions it should grant to the user.

Both the authentication service and the privilege service are used in conjunction
with DCE RPC and the login facility, so the typical application programmer does
not interact with them directly, but instead uses authenticated RPC.

Registry service

The regqistry service is a replicated service that manages the cell's security
database. The security database contains entries for security entities, which are
called principals A principal can be a user or a server, for example. The
database also contains information associated with each principal; for example,
encryption keys, which are used in authentication, authorization, and encryption
of messages. The registry service enables administrators to access and modify
the database of DCE users.

The extended registry attribute (ERA) interface allows the registry schema to be
modified so that user-defined attributes can be associated with registry objects.

ACL facility

DCE ACLs are lists of users who are authorized to access a given resource.
For example, a user can put a colleague on an ACL for a certain file, thereby
granting the colleague permission to read and write the file. DCE ACLs are
associated with many DCE resources: files, entries in the directory service, and
entries in the security service. DCE ACLs are based on the POSIX 1003.6/Draft
3 specification. An ACL API allows programmers to manipulate ACLs, and
dcecpallows users to modify ACLs associated with resources they own.

Login facility
The DCE login facility initializes a user's DCE security environment. It
authenticates the user to the security service by means of the user’'s password.

The security service returns security credentials, which are then used to
authenticate the user to distributed services that are accessed during the user’'s

3-53

Introduction to OSF® DCE

3.5.2

3-54

session, such as DFS or other applications. The login facility permits log in
using the following authentication protocols:

— The public keyprotocol, which provides the highest level of security
— The third-party protocol, which is less secure than public key protocol
— The timestampgprotocol, which is less secure than the third-party protocol

— The DCE Version 1.0 protocol, which is the least secure protocol. This is
provided solely for compatibility with DCE Version 1.0 clients.

» Audit service

The audit service detects and records the execution of DCE server operations that
are relevant to the maintenance of a secure distributed computing environment.
The audit service records tleventin a log file called araudit trail file. DCE
application programmers build auditing into their DCE servers by designating
security-relevant operations @&®de pointsfor which auditing is required, and
using an audit API to establish auditing of those operations. The DCE Security
Service and DCE DTS also use the audit service to track and record the use of
their security-critical operations. Administrators can use the audit seevient

class and filter mechanisms to organize and tailor the recording of events into
audit trail files.

How DCE Security Works

This section gives an overview of how the DCE security services and facilities interact
to provide a secure distributed computing environment. Figure 3-18 shows this

process. The presentation in this section is a simplified view of the transactions that
actually take place.

DCE Technology Components

Figure 3-18. DCE Security Interactions

,,,,,,,, r-r—-——>">">-"~-"~-"~"—"~"“~"—"“"“~"“—“~—~"7"
Security |

Server |

|

|

|
al |
| Log Me In

ecurit
DB

| Ticket |
| |
[. \
| Authorize Me
i (with Ticket) |

Privilege
Server

| EPAC |
| L - J
|
: Authenticated RPC
Application)} With EPAC)_/~ Application ACL

Client | Server ---
| —
|

When a DCE cell is first created, the DCE security administrator runs a program to
create an initial DCE security database. The administrator then starts up a DCE
security server, calledecd on the same machine as the database. Usilegp the
administrator creates user accounts in the security database.

After the administrator has created an account for a user, the user can participate in
a secure DCE system. Typically a user logs into the account at the beginning of
a session. The login facility interacts with both the authentication server and the
privilege server. It sends a request for authentication credentials to the authentication
server. The authentication server sends back the authentication credentials, called a
ticket The authentication server’s reply is encrypted using the user’s password; so,
if the user can supply the right password, the reply can be decrypted and the ticket
can be accessed. Tickets are used by clients to authenticate themselves to servers;
that is, to prove that clients are really who they say they are.

Next, the login facility sends the ticket to the privilege server. The privilege server

returns authorization credentials, called an extended privilege attribute certificate
(EPAC). The EPAC contains authorization information specific to the user, such as
which groups the user belongs to. EPACs are used to authorize users; that is, to

3-55

Introduction to OSF® DCE

3.5.3

3-56

help a server decide whether users should be granted access to resources that the
server manages. When the login facility has finished running, the user has a security
environment and can communicate in a secure way with application servers.

For example, if the user runs an application client, the application client can use
authenticated RPC to communicate with the application server. The application
server receives the RPC-based request, which includes the user's EPAC. The server
inspects the user’s authorization credentials and the ACL associated with the resource
the user wants to access. |If, for example, the ACL says that any user in the group
friends can access the resource, and the user's EPAC shows that the user is in the
friends group, then the server will give the user access to the resource.

The authentication and authorization information that is sent over the network is
all encrypted so that only the intended recipients are able to decrypt and read the
messages. If desired, the application data can be encrypted as well. This prevents
any unauthorized user from being able to read data that is sent over the network.

The encryption used in DCE is secret key encryption, in which two parties share a
secret—the encryption key. Using that key, they can encrypt and decrypt each other’s
messages. (For information on the generation, transfer, and use of encryption keys
in DCE security, see the security chapters of @®F DCE Application Development
Guide—Introduction and Style Guid@dOSF DCE Application Development Guide—
Core Components

Finally, although it is not shown in Figure 3-18, all of the security service events just
discussed (creating a user, logging in, obtaining a ticket, and so on) are recorded and
logged in an audit trail file by the audit service daemauditd. In addition, if the
application server has been designed to use the audit service, and the operation that
the application client is requesting has been designated an audit code point, then the
audit service logs the execution of the server operation on behalf of the requesting
client.

End User’s Perspective

Much of the DCE security mechanism occurs without the knowledge of users; for
example, secure communications take place without the user’s intervention. There
are several ways, however, in which users do come in contact with DCE security.
One instance is when users type in their passwords to authenticate themselves to

DCE Technology Components

3.54

DCE, usually at login time. Another case is when they change access to resources
they own, usinglcecp Finally, a user notices the security service in action when he
or she is denied unauthorized access to resources.

Programming with DCE Security

Typically, a DCE programmer uses DCE RPC to implement a distributed application.
DCE security is integrated with RPC, so in some cases the programmer does not need
to access security services directly. However, programming interfaces to the security
service are available to the programmer who needs them. They include the ACL,
audit, login, extended registry attribute, security credentials, and registry APIs, along
with the API for authenticated RPC. This section gives an overview of programming
with authenticated RPC and DCE ACLs.

3541 Authenticated RPC

DCE RPC and DCE security cooperate to provide authentication, authorization, and
secure communications. In order to use authenticated RPC, the client must already
have a security environment, such as that set up by the login facility. The server side
of the application registers its name and the type of authentication service it supports.
In DCE, two types of authentication service are supported: secret key authentication,
which is based on Kerberos (see Section 3.5.6), or no authentication.

The client makes a call to indicate which authentication service, protection level, and
authorization service it wants to use for RPC communications with a given server.
Theauthentication servicean be either secret key authentication or no authentication.
The protection levelranges from authentication at the beginning of an RPC session,

to authenticating each message or packet, to ensuring that a packet has not been
modified in transit, to encrypting all user data. In general, the more secure the
protection level, the higher the price paid in terms of performance since the security
mechanisms involve encrypting and decrypting data, which take up CPU time.

The authorization servicehosen by the client can be either uncertified or certified.
In uncertified authorization, the authorization information sent to a server consists
only of the client's name. In certified authorization, the authorization information
consists of the UUIDs of the client's name and groups. The certified authorization

3-57

Introduction to OSF® DCE

3-58

information is in the form of an EPAC, which is produced by the privilege service. In
both the certified and uncertified authorization service, the authorization information
is sent securely.

The authentication and authorization information about the client are used by the
server to determine whether the client should be granted the access to the resource
that it has requested. The server knows for certain the identity of the client and
what authorization groups the client belongs to. The server can therefore compare
the client’s credentials against information in ACLs and determine whether a client
should be given the access it is requesting.

3.5.4.2 ACLs

If a distributed application uses ACLs to control access to its resources, then the

distributed application programmer needs to write an ACL manager to handle access
to the resources. The ACL manager is part of the server side of the application.

Typically, there is one ACL associated with each resource that the server manages.
The ACL contains one or more entries specifying a user or group and what operations
the user or group is permitted to perform on the resource (for example, read, write, or
execute permission). The ACL manager takes the authorization information supplied
by the application client during an RPC and compares it to the ACL for the requested

resource. The ACL manager indicates whether the client is or is not allowed the

requested access to the resource.

Figure 3-19 shows a simple DCE ACL. Every DCE ACL contains a field indicating
what type of ACL itis. The ACL type in this case $p_data_acl Each DCE ACL
also contains a field indicating what the default cell is for the entries in the ACL.
In the example, the default cell is./C=US/O=0SF/OU=DCE The rest of the ACL
consists of ACL entries.

DCE Technology Components

Figure 3-19.

3.5.5

DCE ACL Example

sp_data_acl «—— ACL Type

/.../C=US/O=0SF/OU=DCE ~«—— Default Cell

user:snowpaws:rw «—— ACL Entry

group:friends:r «—— ACL Entry

foreign_user:zig@/.../cs.univ.edu:e—— ACL Entry

ACL entries can be of several types. The preceding example shows three types of
ACL entries: user, group, andforeign_user. The cell to which theaiser andgroup

entries belongs is the default cell listed in the ACL. The cell to whichHaheign_user

entry belongs is specified in the entry.

Each entry includes a list of permissions. The different possible permissions are
determined by the ACL type (in this exampkn_data_ac). There are two types of
permissions in the preceding ACL example: for read permission, and for write
permission.

Based on this ACL, thep_data_aclACL manager will give the principasnowpaws

in the cell/.../.C=US/O=0SF/OU=DCEread and write permission to the object, the
members of théiends group in the'.../C=US/O=0SF/OU=DCEcell read permission
to the object, and the principalg in the foreign cell'.../cs.univ.eduread permission.

DCE Security Service Administration

There are two types of DCE security administration: local and cellwide. The
administrator of a DCE machine controls the lopalsswd_overridefile. This file
determines some security aspects that are specific to the local machine, such as which
principals may use the machine, the password for a local account (suobtasand

so forth. The local security administrator also controls the local file that contains user
and password information, if it exists. (This file may contain a copy of information
from the security database to be used in case the security server cannot be reached,
or for already existing applications that expect such a local file.) If the machine
runs DCE servers that use the audit service (application servers, the DTS server, or

3-59

Introduction to OSF® DCE

3.5.6

3-60

the security server) the local security administrator also manages the audit daemon
(auditd).

The cell-wide security administrator manages the cell’s security server(s). This
includes managing theecdprocess, which provides security services on the security
server machine, creating and editing the security database drsérog and controlling
replication of security data. The cell-wide security administrator can also carry out
remote administration of the audit daemons running on hosts in the cell. The cell-
wide security administrator is also responsible for administering audit service event
numbers and event class numbers to ensure that unique numbers are being issued.

The cell-wide security administrator is also involved in cross-cell authentication. It
is possible for clients in one cell to communicate securely with servers in another cell.
In order for this to happen, the security administrators in the two cells must register
each other’s authentication service in their registry. This enables clients in one cell
to authenticate to servers in another cell. In this way, it is possible for authorized
clients in one cell to access services in a foreign cell.

DCE Security and Kerberos

This section contains a note on the relationship between the DCE Security Service and
Kerberos, for those who are already familiar with Kerberos. The DCE authentication
service is based on MIT Project Athena’s Kerberos Network Authentication Service,
Version 5. The Kerberos Key Distribution Center (KDC) server is a part of the
DCE security serversecd The authorization information that is created by the DCE
privilege server is passed in the Kerberos Version 5 ticket's authorization data field.

The Kerberos user commanémit, klist, andkdestroy are used in DCE security.

The Kerberos API is used internally by DCE security but is not exposed for use by the
application programmer. Instead, DCE application programmers use the authenticated
RPC API.

DCE Technology Components

3.5.7

3.5.8

3.5.9

Secure Remote Utilities

Two secure remote utilities provided by DCE alegin andrsh. Therlogin utility
starts a terminal session on a remote host. Bheutility executes a command on a
remote host. Both utilities use the Kerberos V5 authentication protocol.

The Generic Security Service API

The Generic Security Service (GSS) provides an alternate way of securing distributed
applications that handle network communications by themselves. With the Generic
Security Service APl (GSSAPI), applications that establish the secure connection are
like a DCE RPC client. Applications that accept the secure connection are like a
DCE RPC server.

The GSS available with DCE includes the standard GSSAPI routines (defined in the
Internet RFC 1509), as well as OSF DCE extensions to the GSSAPI routines. These
extensions are additional routines that enable an application to use DCE security
services.

The GSSAPI combines authentication and authorization under a single security
mechanism type. The security mechanism provides applications a choice of either
authenticated Kerberos security or authenticated PAC authorization under DCE
security.

Although an application that uses GSSAPI may not make explicit calls to RPC
routines, the GSSAPI implementation itself uses DCE RPC to communicate with
the DCE registry.

The Public Key Certification API

The DCE Certification Service application programming interface can be used to store
and retrieve public keys on behalf of users and applications. DCE permits the use of
public keys as part of the public key authentication protocol that works via public and
private key pairs. Messages encrypted under one of the keys can be decrypted using
the other (and vice versa); but messages cannot be encrypted and decrypted by using
the same key. The certification service is used by a certifying authority to certify the

3-61

Introduction to OSF® DCE

authenticity of distributed public keys. Two policy modules are provided with DCE
release 1.2.2 that can be used by developers to implement a certification authority.

3.5.10 Additional Information on DCE Security

For additional information on the DCE Security Service and the GSSAPI, see the
following:

* The security chapters of th@SF DCE Application Development Guide—Core
Componentsand theOSF DCE Administration Guide—Core ComponefidCE
Security Service only)

» The (3sec)reference pages of tHeSF DCE Application Development Reference

» The @secand5seg reference pages of theSF DCE Command Reference

3.6 DCE Distributed File Service

Distributed systems can provide many advantages over centralized systems, such as
higher availability of data and resources, the ability to share information throughout

a very large (even worldwide) system, and efficient use of special computing
functionality.

A distributed file system is an example of an application that can take advantage of
all of these aspects of a distributed system. It can make files highly available through
replication, making it possible to access a copy of a file even if one of the machines on
which the file is stored goes down. A distributed file system can provide access to files
from anywhere in the world, allowing cooperation among geographically dispersed
users. A distributed file system can also give users on machines with very little
storage space the ability to access and store data on machines with much more disk
space available.

DCE DFS is a distributed client/server application built on the underlying DCE
services. It takes full advantage of the lower-level DCE components (such as RPC, the
security service, and the directory service). The following subsections describe DFS
and the configuration of its components, and they provide various user perspectives
on DFS.

3-62

DCE Technology Components

3.6.1 What is DFS?

DFS is a distributed application that manages information in the form of a file
system. This section describes the units into which DFS data is organized, the active
components that manage that data, and the benefits of DFS.

3.6.1.1 DFS Data Organization

DFS data is organized at three levels. (See Figure 3-20.) The three levels of DFS
data are as follows, from smallest to largest:

* Files and directories
The unit of user data. Directories organize files (and other directories) into a
hierarchical tree structure.

* Filesets
The unit of administration. A fileset is a subtree of files and directories that is no
larger than a disk or partition (or logical volume, if supported). The fileset is a

convenient grouping of files for administrative purposes; for example, the subtree
of files pertaining to a particular project can be grouped in the same fileset.

» Aggregates
The unit of disk storage, similar to a disk partition. It is also the unit of fileset

exporting, which makes the data in filesets available to users of DFS. It can
contain one or more filesets.

3-63

Introduction to OSF® DCE

Figure 3-20.

Files, Directories, Filesets, and Aggregates

Disk
Aggregate

Aggregate

/ Fileset

y y File
/ 4 File
, ’ Directory
Aggregate/ Fileset” File
\ \\ Directory

N Fileset

3.6.1.2 DFS Components

3-64

DFS consists of several components. This section briefly describes each of these
components, discussing the software that runs on DCE client machines (the cache
manager), then the software that runs on DCE file server machines (the file exporter,
token manager, and DCE Local File System), and finally the administrative server
processes, which typically run on DFS file server machines (the fileset server, basic
overseer server, replication server, update server, fileset location server, and backup
server). It also briefly describes the administrative tools used to monitor DFS use
and activity (Scout and thdfstrace utility), and it describes the DFS/NFS secure
gateway, which provides authenticated access to DFS from NFS clients.

DCE Technology Components

3.6.1.2.1 Cache Manager

The cache manager is the client side of DFS. The cache manager runs on any machine
that is acting as a DFS client. It takes a user’s file system request and looks in a
local cache to see if a copy of the data is already on the local system. If it does not
find the data in the local cache, the cache manager sends a request for the data to the
file server machine and caches the data locally, either on disk or in memory.

Because files are cached on the client, a local copy of a cached file can subsequently
be accessed instead of the remote copy on the file server machine. As a result,
network traffic to the file server machine, as well as file server machine load, is much
lighter than if the client had to go to the server each time it needed to access a file.

3.6.1.2.2 File Exporter

The file exporter is the server side of DFS. The file exporter runs on a DFS file server
machine, where it handles requests from clients for the files that it manages. The
file exporter receives an RPC call and accesses its own local file system, which can
be the DCE Local File System (DCE LFS) or another file system such as a UNIX
File System (UFS), to service the request. Using the token manager, it handles the
synchronization of different clients concurrently accessing the same file and returns
the requested information to the client.

3.6.1.2.3 Token Manager

The token manager runs on a file server machine to synchronize access to files by
multiple clients. It does this by issuingkens which represent the ability to perform
operations. The tokens that a token manager issues to DFS clients carry various
access rights, usually read or write. There are four different kinds of tokens: data
tokens for access to file and directory data, status tokens for access to file and directory
status, lock tokens for locking a portion of a file, and open tokens for opening a file.

The token manager on the server side cooperates with the token management layer
in the cache manager (on the client side) to manage tokens. If a client requests an
operation that conflicts with a token that another client holds, the token manager must

revoke the existing token and grant a new token before the requested operation can
proceed.

3-65

Introduction to OSF® DCE

3.6.1.24 DCE Local File System

DCE LFS is the physical file system provided with DCE. It manages the storage of files
on a disk. The scope of DCE LFS is a single computer. LFS is analogous to a UFS.
However, DCE LFS is more powerful than most local UFSs since it includes features
that result in greater capabilities than a distributed file service based on a traditional
UFS. These capabilities include the ability to use more flexible data protection in
the form of DCE ACLs; the ability to replicate, back up, and even move different
parts of the file system without interruption to service; and the use of logging for fast
recovery after a crash (in contrast to UFSs, which must execute the time-consuming
fsck command). DCE LFS also includes support for DCE cells; for example, the
owner of a file or the name in an entry on an ACL can be a name from a foreign cell.

A UFS can be used as a file server machine’s physical file system as an alternative or
complement to DCE LFS. DFS can export a UFS, issue synchronization tokens for
files in a UFS, and perform fileset operations such as dump and restore on a UFS.
However, there is only one fileset per UFS partition, which results in large filesets;
and, unlike DCE LFS filesets, UFS filesets cannot be replicated or moved. Although
UFS systems are supported in DFS, a file server machine that uses DCE LFS has
more functionality than a file server machine that uses only UFS.

3.6.1.2.5 Fileset Server

The fileset server allows administrators to create, delete, move, and perform other
operations on filesets. For example, the fileset server enables an administrator to
move a fileset from one file server machine to another for load balancing. (If DCE
LFS is not being used as the physical file system, an entire partition is treated as a
single fileset; in this case, some fileset operations may not be supported.)

3.6.1.2.6 Basic Overseer Server

The basic overseer server, or BOS server, monitors the DFS processes that run on a
server and restarts them when needed. The BOS server maintains information about
the processes and responds to administrative requests for that information.

366

DCE Technology Components

3.6.1.2.7 Replication Server

The replication server is an administrative server that handles replication of filesets.

For example, an administrator can create read-only copies of a fileset on multiple file

server machines. The replication server updates the replicas either manually, at the
request of an administrator, or automatically, as data in the fileset changes. With

replication, even if a file server machine that houses one copy of a fileset goes down,
another copy of the fileset is still available on another file server machine.

3.6.1.2.8 Update Server

The update server provides the ability to distribute binary files or administrative
information to machines configured as DFS servers. The update server consists of
the upclient andupserver processes. Thepclient software runs on a machine that
needs to receive new versions of the binary files or administrative information. The
upserver software runs on a master machine and on request propagates any changes to
binaries or administrative information to the machines runninguihedient software.

3.6.1.2.9 Fileset Location Server

The fileset location server, or FL server, provides a replicated directory service that
keeps track of the site (file server machine and aggregate) at which each fileset resides.
The FL server provides a lookup service analogous to the service CDS provides, with
the exception that the FL server is specialized for DFS. It provides fileset location
transparency; that is, users can access a fileset simply by knowing its name; they do
not need to know the fileset's location. As a result, a fileset can be moved without
users and applications being aware of the move. DFS automatically updates the
fileset’s location in the fileset location database (FLDB).

3.6.1.2.10 Backup Server

The backup server is a facility for backing up data on file server machines. The

backup server maintains backup records in the replicated backup database. It
maintains a schedule for the backing up of file system data, and it has the ability

to perform both full and incremental dumps. The unit of backup is the fileset.

3-67

Introduction to OSF® DCE

3-68

3.6.1.2.11 Scout

The Scout administrative tool collects and displays information about the file exporters
running on file server machines, enabling a system administrator to monitor the use
of DFS.

3.6.1.2.12 Thelfstrace Utility

Thedfstrace utility allows sophisticated administrators and system developers to trace
DFS processes that run in either the user-space or the kernel. The utility consists of
a suite of commands that provide low-level diagnostic and debugging information.

3.6.1.2.13 DFS/NFS Secure Gateway

The DFS/NFS secure gateway provides authenticated access to DFS from NFS
clients. Users who have DCE accounts can authenticate to DCE via a DFS client
configured as a gateway server and access DFS data according to their DCE identities.
Administrators can give users the ability to authenticate to DCE from NFS clients,
or administrators can reserve the ability to grant authenticated access from a gateway
server only.

Some DFS components run in the host machine’s kernel. These are the cache manager
and token management layer on DFS client machines; and the file exporter, token
manager, and DCE LFS on file server machines.

3.6.1.3 Features of DCE DFS

DCE DFS has the following features:

» Uniform file access

DFS is based on a global namespace. A DFS file is accessed by the same name
no matter where in the distributed system it is accessed from. Users do not need
to know the network address or name of the file server machine on which the file
is located to name and access the file. For example, thé files.univ.edu/fs/

DCE Technology Components

usr/ziggy/thesiscan be addressed by that name from anywhere in DCE, including
from foreign cells.

Intracell location transparency

Data can move from one location to another within a cell without a user or
programmer being affected by the move. Because of this transparency, an
administrator can move a fileset from one file server machine to another for load
balancing, for example, without disturbing users.

Performance

DFS is a high-performance file service. Fast response is achieved in part through
the caching of file and directory data on the DFS client machine. This reduces
the time it takes for a user to access a file, and it also reduces the traffic on the
network and the load on the file server machine. The first time a user on a
machine accesses a file, the cache manager gets a copy of the file from the file
server machine and caches it on the client machine. Subsequent access to the
file can then be made to the copy on the client machine rather than to the copy
on the file server machine.

Availability

DFS makes its services and data highly available in several ways. One way is
through replication, in which a read-only copy of a file can be stored on more
than one file server machine. This way, if the file server machine that houses
one copy of the file is down, another copy of the file may still be available on
another file server machine. DFS replication is especially useful for files that are
accessed by many users but change infrequently (for example, binary files).

Another way DFS achieves high availability is through caching. Copies of files
are cached on DFS clients. Even if a client is temporarily disconnected from the
network, users of the client may be able to access copies of files that reside in
the local cache.

DFS administration can occur while users continue to access DFS files, which is
another means of providing high availability. Both backups and relocation of
DFS filesets can be done without making the data in the filesets unavailable to
users.

3-69

Introduction to OSF® DCE

3-70

The physical file system portion of DFS, DCE LFS, is designed for fast recovery
(vielding high availability) after failures. DCE LFS is a log-based file system;
that is, DCE LFS keeps a record of actions taken that affect the file system
structure so that, in the case of a system crash, the record can be replayed to
bring the file system to a consistent state.

Support for distributed application programming

DFS is itself a distributed application, but it in turn supports the development
of other distributed applications. Programmers can use DFS to share data
or to communicate in a distributed application. DFS takes care of network
communications and the movement, synchronization, and storage of shared data.

Ease of administration and scalability

DFS files are grouped into units callBgsetswhich are convenient to administer.

The processes that implement DFS, such as the FL server and the backup server,
are monitored and maintained automatically by the BOS server, resulting in less
work and a more scalable system for a DFS administrator. Because of the high
performance mentioned previously, DFS has a high client-to-server ratio. This
leads to a scalable system in which clients can be added with low impact on other
clients and the rest of the system. Finally, DFS includes tools such as the update
server to automate time-consuming administrative tasks.

Integration

DFS is fully integrated with other DCE components, including RPC, the security
service, the directory service, and threads.

Interoperation

DFS interoperates with other file systems; for example, a UFS can be exported
to users of DFS.

Standards

DFS maintains POSIX single-site read/write semantics. DCE LFS adheres to
POSIX 1003.1.

DCE Technology Components

3.6.2

Figure 3-21.

DFS Configuration

This section describes which of the DFS components run on the different types of
DFS machines: DFS client machines, DFS file server machines, and other DFS server
machines.

The cache manager runs on every machine that acts as a DFS client. It communicates
with file server machines to provide DFS service. (See Figure 3-21.)

DFS Client and File Server Machines

DFS FILE SERVER MACHINE

DFS CLIENT MACHINE BOS upclient
Server
Fileset Replication|
Server erver | User
Cache Manager]
(in Kernel) File | Token | Kernel
Exporter : Manager

[—
On-Disk DCE LFS
Cache or UFS
— =

Files and
Directories

Several processes run on DFS file server machines: the file exporter (which includes
the token manager), the BOS server, the replication server, the fileset server, and the
client side of the update server. Also present on the file server machine is a physical
file system, DCE LFS, UFS, or both.

Some DFS processes must run on a machine that contains the files or database they
access. These processes usually run on DFS file server machines. (See Figure 3-22.)

3-71

Introduction to OSF® DCE

Figure 3-22. Other DFS Servers

UPDATE SERVER
upserver upclient
—— \
m upclient
Files
= < =
FILESET LOCATION SERVER
8o i
\ ¥ 4 ~
DFS File m
Server —

BACKUP SERVER

Backup

Server - DFS File

Server

Backup DFS File
Server

vs)

These processes are the server side of the update server (which runs both on machines
that contain master copies of configuration files and on machines that contain master
copies of binary files), the FL server (which runs on machines on which the fileset
location database is located), and the backup server (which runs on machines on which
the backup database resides).

3.6.3 End User’s Perspective

Users are usually not aware that some of the files that they access are stored on their
local computer, some on their cell’s file server machines, and some in another cell,

3-72

DCE Technology Components

3.6.4

3.6.5

3.6.6

because to a user, DCE DFS presents one large, worldwide file system. Users do
notice a few differences between working on a distributed file system and working
on a local file system. For example, DFS users are issued quotas for file storage,
which they can use DFS commands to examine. DFS also includes commands for
determining the location of a file and other information that is unique to a distributed
file system.

Programming with DFS

Application programmers typically use DFS transparently by making POSIX 1003.1
file system calls. Additional DFS interfaces provide administrative capabilities such
as calls for administering filesets. The fact that programmers can use a distributed file
system through a familiar interface means that DFS enables distributed applications
programming without special distributed programming expertise. Through the use
of DFS, programmers can write distributed applications without the use of RPC and
the client/server model, assuming the DFS data sharing model is appropriate to the
application.

DFS Administration

Administration of DFS is a significant task because several processes that implement
DFS need to be set up and maintained. However, administrative tools are provided
to aid in this task. DFS configuration is varied and flexible, so a DFS administrator
has the additional task of designing and evolving a configuration of DFS servers and
clients that best suits the needs of the system’s users. DFS day-to-day administration
includes fileset administration such as making filesets available, backing them up, and
moving them.

Additional Information on DFS

For additional information about the DCE Distributed File Service, see the chapters
and reference pages in tld&SF DCE DFS Administration Guide and Reference

3-73

Introduction to OSF® DCE

3.7

3.7.1

3-74

DCE/File-Access

DCE is a comprehensive environment offering users secure access to services within
the environment.

Although DCE offers convenience and consistency to its users, some organizations
using DCE may not have all users included in the distributed environment. For
example, users on PC networks might not need access to most of the applications
running in the DCE environment. For these users, it is not worth the overhead in
disk space usage, DCE client licensing, and so on, to become full participants in the
DCE environment.

DCE/File-Access software enables users on PC networks running Novell NetWare
software to read and write directories and files stored on a DCE Distributed File
Service (DFS) server. Although these users need to be registered in the DCE
environment where the files are stored, their local machines do not require DCE client
software. Instead, DCE/File-Access software on the NetWare server temporarily
copies requested DFS files to a dedicated volume in the NetWare server, making it
available to the requesting NetWare client user.

What is DCE/File-Access?

DCE/File-Access is a distributed application that makes DFS directories and files
available to NetWare clients (NetWare users). DCE/File-Access software consists of
three programs. The Client utility, Gateway software, and Agent software.

3.7.1.1 The Client Utility

The Client utility runs on the NetWare server. NetWare client users log into the
NetWare server to log into (and out of) DCE and to set or change a DCE password.
Administrators use the Client utility to add or delete rights to or from DFS files and
directories.

DCE Technology Components

3.7.2

3.7.3

3.7.1.2 Gateway Software

Gateway software runs on each NetWare server. This program converts DCE access
requests from NetWare formats to ones understood by DFS. After conversion, the
program sends the information to the Agent program in the DFS client. A Gateway
program may access only a single Agent program.

The Gateway program includes an administration utility which creates the DCE/File-
Access environment on the NetWare server. An administrator uses the administration
utility within the Gateway program to allocate DFS directories to a Gateway volume
on the NetWare server. Once all of the DFS directories are allocated to the Gateway
volume, users can edit data just like directories and files in other NetWare servers.

3.7.1.3 The Agent Program

The Agent program resides in and runs on the DFS client. This program receives
DCE access requests from the Gateway program, accesses directories and files on a
DFS server, and returns the transaction results to the Gateway program. One Agent
program can process access requests from multiple Gateway programs.

End User’s Perspective

DCE/File-Access software enables end users (Novell NetWare client users) to access
DFS directories and files in the same manner as NetWare directories and files. Users
must initially log into DCE using the Gateway program on the NetWare server.

DCE/File-Access Administration

DCE/File-Access administrators will use the administration utility within the Gateway
program to perform administrative functions. The basic administrative functions are:

* installing and configuring DCE/File-Access software

» starting and exiting DCE/File-Access

3-75

Introduction to OSF® DCE

3.7.4

3.8

3.8.1

3-76

* registering NetWare users, administrators, and Gateway programs in the DCE
environment

» administering rights, users, and groups

« creating DCE/File-Access volumes on NetWare servers

Additional Information on DCE/File-Access

For additional information on DCE/File-Access software, see the following:
* OSF DCE/File-Access Administration Guide and Reference
* OSF DCE/File-Access User's Guide
» OSF DCE Problem Determination Guide

DCE Cross-Component Facilities

For most applications, multiple DCE components work in concert. Several services
are dedicated to facilitating interaction among components and are described separately
from the components themselves in the following subsections.

Host Services

The DCE host services provide remote system management. Each host runs a DCE
host daemondced) as the interface to the host services. In many cakesl
automatically maintains the data and performs the functions. Some of the data that
can be accessed (and maintained) remotely includes the host name, the host’'s cell
name, configuration and execution data for all servers on the host, and a database of
endpoints (server addresses) on which running servers can be found. Some of the
functions that can be performed remotely include starting and stopping servers.

A security validation servicamaintains a login context for host identification and
certifies for application programs that the DCE security daemsend is legitimate.

DCE Technology Components

3.8.2

3.8.3

3.8.4

The key table management servieaables remote management of server key tables.
A server uses private keys rather than human-readable passwords for authentication.
This service can be used to add, remove, and change keys and entire key tables.

The endpoint mapper serviamaintains a local database (an endpoint map) associating
port addresses that locate servers on a host with servers, interfaces, and objects.
Remote procedure calls use this service via the RPC runtime to resolve bindings
between clients and servers. The data can be remotely perused, and even changed
(although changes to the database are usually performed automaticaledynd

the RPC runtime).

Application Message Service

The application message serviig a general-purpose messages manager for readable
character strings that are commonly displayed to application users. The service
automatically and transparently takes care of many of the special problems that
distributed application messaging can give rise to. The service uses catalog files
to maintain message text and explanations separate from the program in a culture- or
nationality-specific way.

Serviceability

Serviceability is another kind of message text service with functionality beyond just
the display of general-purpose text. To the general-purpose messaging service,
Serviceability adds storage of additional attributes specifying subcomponents (program
modules), message severity, the action users or programs should take, and the debug
level.

Backing Store Databases

DCE provides a backing store library for the convenience of programmers who are
writing DCE servers. Abacking storeis a persistent database or persistent object
store from which typed data can be stored and retrieved by a key. Designed to satisfy
the needs of programmers writing servers that deal with ACLs, this facility can be

3-77

Introduction to OSF® DCE

3.9

3-78

used to store any data IDL can describe that needs to persist between invocations
of applications. The backing store routines can be used in servers, in clients, or in
standalone programs that do not involve remote procedure calls.

These cross-component facilities are described in detail ifDtBE DCE Application
Development Guide—Core Components

The DCE Control Program

The core services (especially CDS and the security service) for large cells can be
complex, with some services being replicated or even partitioned across differing
systems. The host services described in the previous section will exist on every
computer in the cell. An administrative interface is needed that provides consistent
and uniform access to DCE administration functions, wherever they reside, from any
and every point in the cell. Administrative commands must work consistently and

predictably regardless of the platform on which they execute.

The DCE control programdcecp available with DCE Version 1.1 was developed

to provide consistent, portable, extensible, and secure access to nearly all DCE
administration functions from any point in a DCE cell. The DCE control
program implements most of the operations previously performed by using various
component control programs (for instanqeccp, cdscp rgy_edit, acl_edit, dtscp,

and sec_admir). Where before administrators needed multiple control programs
with different syntaxes to perform certain operations such as adding a host to a cell,
now onlydcecpis required. Furthermore, these complex operations can be done now
using a single “task script” that walks administrators through the pertinent commands
prompting for input as necessary.

To do this,dcecpis able to manipulate data (for instance, directories, entries, groups,
principals, accounts, and ACLS) stored in the various databases (for instance, the
registry, clearinghouses, and ACL managers). It can also perform certain management
operations likeuser create server disable andregistry synchronize

The DCE control program is built on a portable command language called Tcl
(pronounced “tickle”), which stands for Tool Command Language. Tclis a platform-
independent command language that runs on every system where DCE Version 1.1
is installed. The Tcl command interpreter is provided along witecp Together,

these enable administrators to use variabiestatements, looping functions, and

DCE Technology Components

3.10

3.10.1

other programming operations to enhance the command set. Administrators can share
scripts, moving them to other platforms without change. A common cell environment
can be developed by propagating scripts.

The DCE control program uses an object-operation syntax, in which an object comes
first, followed by an operation. The object-operation order makes it easy to add new
objects and operations to DCE.

In summary,dcecpis an interactive command-line interface used to manage most
aspects of the DCE core components. Only a few infrequently performed control
operations have not been replaceddmgcp

Two DCE Application Examples

This section presents two implementations of a very simple distributed application
calledgreet This section assumes some familiarity with UNIX systems and the C
programming language. Tlgreet application is implemented two different ways:
one using DCE RPC, the other using DCE DFS. For a more extensive application
example, which uses many more DCE services and facilities, sa@bp example

in the OSF DCE Application Development Guide

The greet Application: An Implementation Using DCE RPC

This first implementation of th@reet application is an example of a simple DCE

RPC-based application. The client side of the application sends a greeting to the
server side of the application. The server prints the client’'s greeting and sends a
return greeting back to the client. The client prints the server’s reply and terminates.

3.10.1.1 Steps in Developing a DCE RPC Application

This section provides a step-by-step description of the development ofréet
application.

1. Generate an IDL template.

3-79

Introduction to OSF® DCE

3-80

The first step is to run thauidgen program, which creates a Unique Universal
Identifier for uniquely labeling the application’s interface. It also creates a
template for an IDL file. The following command creates the difeet.idl:

uuidgen -i > greet.idl
The file greet.idl contains the following:

[
uuid(3d6ead56-06e3-11ca-8dd1-826901beabcd),

version(1.0)

]
interface INTERFACENAME

{
}

. Name the interface.

Replace the strindNTERFACENAME in the IDL file with the name of the
application interface, in this casgreetif.

[
uuid(3d6ead56-06e3-11ca-8dd1-826901beabcd),

version(1.0)

]

interface greetif

{
}

. Define the interface operations.

Within the braces, write definitions of the operations constituting the interface.
In this example, there is only one operation, caljgdet

/*
* greet.idl

DCE Technology Components

*

* The "greet" interface.
*/

[uuid(3d6ead56-06e3-11ca-8dd1-826901beabcd),
version(1.0)]

interface greetif

{
const long int REPLY_SIZE = 100;
void greet(
[in] handle_t h,
[in, string] char client_greetingf],
[out, string] char server_reply[REPLY_SIZE]
)i
}

The first line of the operation definition gives the name of the operatjmeet,

and indicates by theoid declaration that it has no meaningful return value. The
next three lines specify the arguments to the operation, namelient_greeting,
andserver_reply. The first argument is a handle containing binding information
for the server. The second is a string that is passed from the client to the server
(the client’'s greeting). The third argument is a string returned from the server
back to the client (the server’s reply).

. Run the IDL compiler.
The following command runs the IDL compiler:
idl greet.idl

(Some of the commands in this section are somewhat simplified. See the Makefile
in Section 3.10.1.3 for the complete command.) Three new files are created
automatically as a result of this command:

* greet.h
* greet_cstub.o

* greet_sstub.o

3-81

Introduction to OSF® DCE

5. Write the client application codgreet_client.c

In general, the DCE RPC application programmer writes three application code
files:

» The client code
» The server initialization code

» The server operation code

The following is the client code for thegreet application, a file called
greet_client.c

/*

* greet_client.c

*

* Client of "greet" interface.
*

#include <stdio.h>
#include <dce/nbase.h>
#include <dce/rpc.h>

#include "greet.h"
#include "util.h"

int

main(
int argc,
char *argv[]

rpc_ns_handle_t import_context;
handle_t binding_h;
error_status_t status;

idl_char reply[REPLY_SIZE];

if (argc < 2) {

fprintf(stderr, "usage: greet_client <CDS pathname>\n");
exit(1);

3-82

DCE Technology Components

/*
* Start importing servers using the name specified
* on the command line.
*
rpc_ns_binding_import_begin(
rpc_c_ns_syntax_default, (unsigned_char_p_t) argv[1],
greetif v1_0_c_ifspec, NULL, &import_context, &status);
ERROR_CHECK(status, "Can't begin import");

/*

* Import the first server (we could interate here,

* put we'll just take the first one).

*

rpc_ns_binding_import_next(import_context, &binding_h, &status);
ERROR_CHECK((status, "Can't import");

/*

* Make the remote call.

*/

greet(binding_h, (idl_char *) "hello, server", reply);

printf("The Greet Server said: %s\n", reply);

In this routine, the client makes two calls to the RPC runtime to acquire binding
information needed to communicate with the server.
greetremote procedure, supplying a greeting to be sent to the server. The client

prints the reply received by the server.

. Write the server initialization codgreet_server.c

RPC application.

The second file that the DCE RPC application programmer must write is the server
initialization code. This idoilerplatecode; that is, it is largely the same for any
Thegreet_server.cfile contains the server initialization code

for the greet application.

3-83

The client then calls the

Introduction to OSF® DCE

3-84

* greet_server.c

*

* Main program (initialization) for "greet" server.
*/

#include <stdio.h>
#include <dce/dce_error.h>
#include <dce/rpc.h>

#include "greet.h"
#include "util.h"
int

main(

int argc,
char *argv[]

unsigned32 status;
rpc_binding_vector_t *binding_vector;

if (argc < 2) {
fprintf(stderr, "usage: greet_server <CDS pathname>\n");

exit(1);
}
Iz
* Register interface with RPC runtime.
*
rpc_server_register_if(greetif_vl_0_s_ifspec, NULL, NULL,
&status);

ERROR_CHECK(status, "Can't register interface");

/*

* Use all protocol sequences that are available.

*/

rpc_server_use_all_protseqs(rpc_c_protseq_max_reqs_default,
&status);

ERROR_CHECK(status, "Can’t use protocol sequences");

DCE Technology Components

/*

* Get the binding handles generated by the runtime.
*

rpc_server_ing_bindings(&binding_vector, &status);
ERROR_CHECK(status, "Can't get bindings for server");

/*
* Register assigned endpoints with endpoint mapper.
*
rpc_ep_register(
greetif v1_0_s_ifspec, binding_vector, NULL,
(unsigned_char_p_t) "greet server version 1.0", &status);
ERROR_CHECK(status, "Can't register with endpoint map");

/*

* Export ourselves into the CDS namespace.

*/

rpc_ns_binding_export(
rpc_c_ns_syntax_default, (unsigned_char_p_t) argv[1],
greetif vl _0_s_ifspec, binding_vector, NULL, &status);

ERROR_CHECK((status, "Can’t export into CDS namespace");

/*

* Start listening for calls.
*

printf("Listening...\n");

rpc_server_listen(rpc_c_listen_max_calls_default, &status);
ERROR_CHECK((status, "Can't start listening for calls");

/*
* Unregister from endpoint mapper.
*/
rpc_ep_unregister(
greetif vl _0_s_ifspec, binding_vector, NULL, &status);

ERROR_CHECK(status, "Can't unregister from endpoint map");

3-85

Introduction to OSF® DCE

In this file, the server registers its interface with the RPC runtime. It then
retrieves the binding information assigned to it by the runtime. It registers its
binding information with the RPC endpoint mapper, and then with CDS. It then
is ready to service requests. Before exiting, the server unregisters its information
in the endpoint map.

7. Write the server operation codgeeet _manager.c

The third file that an RPC programmer writes is the code that implements the
operations defined in the IDL file. In this case, there is only one operajiert.
The greet_manager.cfile implements this operation.

/*
* greet_manager.c
*

* Implementation of "greet" interface.
*/

#include <stdio.h>
#include "greet.h"

void

greet(
handle_t h,
idl_char *client_greeting,
idl_char *server_reply

printf("The client says: %s\n", client_greeting);

strepy(server_reply, "Hi, client!");

The server prints the message it received from the client, then puts its own
message in the reply parameter to be sent back to the client.

8. Write any utility code.

3-86

DCE Technology Components

In addition to the three standard RPC application code figgsget_client.c
greet_server.¢ and greet_manager.¢ the greet application contains a utility
file for handling errors. This file is callegtil.c.

/*

* util.c

*

* Utility routine(s) shared by "greet" client and server programs.
*

#include <stdio.h>
#include <dce/nbase.h>
#include <dce/dce_error.h>

void
error_exit(
error_status_t status,
char *text
)
{
unsigned char error_text[100];
int dummy;
dce_error_ing_text(status, error_text, &dummy);
fprintf(stderr, "Error: %s - %s\n", text, error_text);
exit(1);
}

The util.c file comes with a header file calladil.h.

/*
* util.h

*

* Declarations of utility routine(s) shared by "greet" client
* and server programs.
*/

#define ERROR_CHECK(status, text) \
if (status != error_status_ok) error_exit(status, text)

3-87

Introduction to OSF® DCE

void

error_exit(
error_status_t status,
char *text

9. Compile the client and server programs.

The greet_clientand greet_serverprograms can now be compiled. The client
side of the application is compiled using the following command (again, somewhat
simplified):

cc -0 greet_client greet_client.c \
greet_cstub.o util.o -Idce

The server side of the application is compiled as follows:

ccC -0 greet_server greet_server.c greet_manager.c greet_sstub.o \
util.o -Idce

3.10.1.2 Installing and Running tlggeet Application

This section describes the process for an administrator who is installing and starting
up thegreet application, and a user who is running it.

« Installing the client and server programs
An administrator installs thgreet_client program on machines on which users
will run the greet application. The administrator also installs the=et_server

program on one or more machines that will execute the server part afrédes
application.

« Starting thegreet server

To start up thegreet server, the administrator enters the following command on
a machine that has thgreet server installed:

3-88

DCE Technology Components

greet_server /.../my_cell/subsys/my_company/greet_server
* Running thegreet application

To run thegreet application, a user types the following command on grset
client machine:

greet_client /.../my_cell/subsys/my_company/greet_server

The greet server will print the message it received from tipeet client. Then
the greet client prints the reply that thgreet server sent back to it.

3.10.1.3 Makefile for thgreet Application

The commands given in the preceding description for buildinggtfeet application
have been simplified. Following is the actual Makefile, containing the complete
commands for generating the application:

DCEROOT = /opt/dcelocal

CC = /bin/cc

IDL = idl

LIBDIRS = -L${DCEROOT}ust/lib

LIBS = -ldce

LIBALL = ${LIBDIRS} ${LIBS}

INCDIRS = -I. -I${DCEROOT}usr/include

CFLAGS = -g ${INCDIRS}
IDLFLAGS = -v ${INCDIRS} -cc_cmd "${CC} ${CFLAGS} -c"

all: greet_client greet_server

greet.h greet_cstub.o greet_sstub.o: greet.idl
${IDL} ${IDLFLAGS} greet.idl

greet_client: greet.h greet_client.o util.o greet_cstub.o
${CC} -0 greet_client greet_client.o greet_cstub.o \

util.o ${LIBALL}

greet_server: greet.h greet_server.o greet_manager.o util.o \

3-89

Introduction to OSF® DCE

3.10.2

3-90

greet_sstub.o
${CC} -0 greet_server greet_server.0 greet_manager.o \
greet_sstub.o util.o ${LIBALL}

greet_client.c greet_server.c util.c: util.h
greet_manager.c greet_client.c greet_server.c: greet.h

The greet Application: An Implementation Using DCE DFS

This section describes an implementation of gneet application using DCE DFS.
In this version, the client and server use well-known files in the DCE filespace to

communicate with each other.

This application looks just like an application that uses a local file system, except for
the names of the files in the DCE filespace. The communication (using RPC) is done
by DFS and is not visible to the programmer.

Note: Please note that this example is intended to be simple, not necessarily to
model good programming. For example, a real application would check
return values for errors, and would be likely to use thek system call to
synchronize client and server access to files, rather than waking up every few
seconds to check if a file had been created.

The application contains three files: dfs_greet.h dfs_greet client.c and
dfs_greet_server.c

» The dfs_greet.hfile

This file gives the well-known filenames that the client and server communicate
through.

/*

* DCE Program Example Using DFS
*

* dfs_greet.h

*/

#define C_GREET_FILE "/.../my_cell/fs/opt/my_company/greet/client"

DCE Technology Components

#define S_GREET_FILE "/.../my_cell/fs/opt/my_company/greet/server"

» Thedfs_greet_client.cfile

This is the client side of the application.

* DCE Program Example Using DFS
* dfs_greet_client.c

* The client writes a message for the server into
* a well-known file. It waits until the server has
* created its own well-known file, then reads the
* server's message from the file, prints it, and

* deletes the file.

#include <stdio.h>
#include "dfs_greet.h"

#define C_GREET_TEXT "Hi, server!"

main()

{

FILE *f;

size t ret;

char s[BUFSIZ];

f = fopen(C_GREET_FILE, "w");
ret = fwrite(C_GREET_TEXT, sizeof(C_GREET_TEXT), 1, f);

fclose(f);

while ((f = fopen(S_GREET_FILE, "r")) == NULL)
sleep(3);

ret = fread(s, sizeof(char), BUFSIZ, f);

fclose(f);

printf("Server says: %s\n", s);
unlink(S_GREET_FILE);

3-91

Introduction to OSF® DCE

» The dfs_greet_server.dile
This file contains the server side of tigeeet application.

/*
* DCE Example Program Using DFS
* dfs_greet_server.c

* The server waits until the client has created a

* well-known file, then reads the client's message

* from the file, prints the message, and removed the
* file. The server then writes a message for the

* client into another well-known file.

#include <stdio.h>
#include "dfs_greet.h"

#define S_GREET_TEXT "Hi, client!"

main()

{

FILE *f;

size t ret;

char s[BUFSIZ];

while ((f = fopen(C_GREET_FILE, "r")) == NULL)
sleep(3);

ret = fread(s, sizeof(char), BUFSIZ, f);

fclose(f);

printf("Client says: %s\n", s);
unlink(C_GREET_FILE);

f = fopen(S_GREET_FILE, "w");
ret = fwrite(S_GREET_TEXT, sizeof(S_GREET_TEXT), 1, f);
fclose(f);

The Makefile for creating the client and server programs is as follows:

3-92

DCE Technology Components

Makefile for DCE Program Example Using DFS

all: dfs_greet_client dfs_greet_server

dfs_greet_client: dfs_greet.h dfs_greet_client.c
cc -0 dfs_greet_client dfs_greet client.c

dfs_greet_server: dfs_greet.h dfs_greet_server.c
cc -0 dfs_greet_server dfs_greet_server.c

The greet client andgreet server are installed as in the RPC application.

run in the same way, except they do not takeeavernamergument.

They are

3-93

Chapter 4

Integration of DCE Technology
Components

One of the advantages of OSF DCE is the integration of its component technologies
with one another. Wherever appropriate, DCE technologies make use of other DCE
technologies to accomplish their tasks. For example, CDS uses many of the other
DCE components—Threads, RPC, DTS, and Security—in providing its service.

Because the DCE technologies are well integrated, they also depend on one another
for correct functioning. For example, CDS needs a running DCE security server
in order to provide its directory service in a secure manner. These dependencies
among technology components have implications for DCE activities such as porting,
planning, and bringing up a DCE cell.

This chapter describes how DCE components are integrated and the implications
of their resulting interdependencies. First a matrix shows the integration of the
technology components. Then a section on each of the components describes its use
of other DCE technologies. The final section discusses the impact of technology
interdependencies on DCE-related activities.

Introduction to OSF® DCE

4.1

Table 4-1.

Integration Matrix

Table 4-1 shows which DCE components are used by each of the other DCE
components. The components listed in the leftmost column are the technology
consumers. The components listed in the top row are the technology providers. For
example, in the box (row RPC, column Threads), the X indicates that RPC makes use
of the Threads technology. The abbreviation NA (for Not Applicable) in a box shows
the intersection of a technology with itself. A blank box indicates that the consuming
technology does not use the providing technology. The following sections include
discussions of technology integration, including reasons why certain technologies do
not make use of other technologies.

DCE Component Integration

Threads| RPC CDs DTS Security] GDS DFS
Threads| NA
RPC X NA X X
CDS X X NA X X X
DTS X X X NA X
Security| X X X X NA*
GDS NA
DFS X X X X X NA

Note: The security service is actually a client of itself, because it uses the audit
service to log security service events.

The DCE components support distributed applications, and, in accomplishing that task,
they also use each other’s services, as shown in the matrix. The use of a given DCE
component by another DCE component can provide an example for the application
programmer.

Note that many of the boxes are filled in, especially those representing the five
most basic components (threads, RPC, CDS, DTS, and security). As a result, some
pairs of components have mutual dependencies; for example, the security and CDS

Integration of DCE Technology Components

4.2

components. The security service uses information from CDS, while CDS uses the
security service to control access to its information. The implications of these mutual
dependencies are discussed in Section 4.3.

Integration by Technology Component

This section takes each of the DCE technology components in turn and describes its
use of other technology components.

» DCE Threads integration

The DCE Threads component does not involve distribution across nodes and
therefore does not use any other DCE component.

DCE RPC integration

RPC uses threads, CDS, and the security service. Threads are used to allow
clients and servers to deal with multiple simultaneous RPCs. Note that, as a
result of the use of threads by RPC, any component that uses DCE RPC also uses
threads.

RPC uses CDS to look up servers that support a given interface or object in order
to discover the locations of those servers and the protocols that they use. GDS
can be used indirectly by RPC. If an RPC server is located in a foreign cell that
is registered in the X.500 namespace, then GDS is accessed via CDS to find the
given RPC server.

RPC uses a notion of time; for example, how long to wait for a reply to a message.
However, this involves only the time on the local node, such as comparing the
time when a message was sent with the current time to see if a timeout has
expired. As a result, RPC does not use DTS timestamps directly. RPC does,
however, depend on DTS to help ensure that clocks on different machines run at
approximately the same rate.

The DCE Security Service is used to authenticate the RPC client and server to
one another, and to pass authorization information about the client for the server
to check against its ACLs.

» DCE CDS integration

Introduction to OSF® DCE

4-4

CDS makes use of several DCE technology components. It uses DCE Threads to
allow the CDS server and the CDS clerk to handle multiple requests concurrently.
It uses RPC in communications between CDS clerks and CDS servers, as well as in
communications between CDS servers, such as for keeping replicated information
consistent.

CDS relies on DTS to maintain synchronized clocks in the network for use in the
sequencing of updates to the namespace and for use in replication. CDS uses
GDS (via the GDA) to find foreign cells registered in GDS. And finally, CDS
uses DCE security’s ACLs and authenticated RPC to ensure authorized access to
directory data and administrative functions.

DCE DTS integration

DTS uses RPC in the communications between DTS clients and DTS servers. It
also uses RPC in the protocol between a time server and a time-provider. Since
DTS is based on DCE RPC, which uses DCE Threads, DTS also uses Threads.

DTS depends on CDS to find time servers and their locations. GDS may be used
indirectly if a global time server is registered in a foreign cell that is registered
in the X.500 namespace. DTS uses the DCE Security Service to authenticate its
interactions and to audit security-critical DTS events.

DCE Security Service integration

The DCE security server, like all DCE RPC-based applications, uses DCE
Threads. The security server communicates with its clients via DCE RPC. CDS
is used to find security servers. GDS may be used indirectly in accessing a
security server that is in a foreign cell registered in the X.500 namespace.

The security service uses a notion of time for the expiration of credentials
and for detecting replays of authentication information. It assumes reasonable
synchronization of the clocks in the network, which is accomplished in DCE by
DTS. The security service does not use DTS timestamps in this version of DCE.

DCE GDS integration
The GDS server does not use DCE Threads; instead, it uses multiple processes

to handle multiple requests. Since GDS is based on the X.500 standard, which
is specified to run over ISO protocols, GDS does not use DCE RPC.

Integration of DCE Technology Components

4.3

GDS does not use CDS; since GDS is at a higher level in the global namespace
hierarchy, CDS refers to GDS but not the other way around. GDS supports
DCE authentication and has a separate security mechanism based on its own
implementation of ACLs. Again, this is in order for GDS to comply to the
international directory service standard.

» DCE DFS integration

The DFS servers that run in user space (for example, the backup, fileset location,
and fileset servers) all use DCE Threads to handle multiple requests. Because
the DFS file exporter and cache manager run in the kernel, they do not use DCE
Threads; DCE Threads is a user-space, not kernel, threads implementation.

DFS uses DCE RPC for all remote interaction between the DFS clients (for
example, the cache manager and Scout) and servers (for example, the file exporter,
fileset location server, and backup server). Because the cache manager and file
exporter run in the kernel, they use a kernel version of RPC. DFS uses CDS to
locate fileset location servers. DFS may use GDS indirectly (via CDS) to locate
fileset location servers in foreign cells registered in the X.500 namespace. DFS
uses authenticated RPC and DCE ACLs to protect its resources. DFS relies on
DTS to maintain clock synchronization in the network.

Implications of Mutual Dependencies

Mutual dependencies among DCE technology components result in restrictions in areas
such as the startup of a cell. For example, since the security service depends on CDS
to find the location of a security server, and CDS depends on the security service
to verify the authenticity of a CDS server, how can a DCE system ever get started?
This section identifies the implications of mutual dependencies in the areas of DCE
system startup, porting and testing of DCE, and planning for DCE configuration.

* Implications for startup

Mutual dependencies in DCE technologies dictate the order in which some steps
must be taken in bringing up a DCE client machine, a DCE server machine, and
a DCE cell. In particular, a DCE cell's servers must be started up in a particular
order. The security server is started first, since its dependency on CDS can be
circumvented through the use of a local file to find security servers. Then the

Introduction to OSF® DCE

CDS server is started. For information on starting up DCE, see€tBE DCE
Administration Guide—Introduction

Implications for porting and testing

The interdependencies among DCE technologies constrain the order in which
technologies can be ported. DCE Threads can be ported first, since other
technologies use it, and it has no dependencies. Many of the other technologies
have mutual dependencies, however. To resolve this, a porting effort can proceed
by first porting the libraries of all the components, and then going on to port and
test the servers. GDS can be ported independently, since it has no dependencies
on other DCE components. For information on porting DCE technologies, see
the OSF DCE Porting and Testing Guide

Implications for configuration

DCE technology interdependencies also have implications for configuration. The
servers that other servers depend on are the servers that are the highest priority
for replication, in environments where high availability is important. This means
that CDS and security servers should be replicated since other DCE servers
depend on them in order to operate. Among the various DFS servers, the fileset
location server is the highest priority for replication. For information on DCE
configuration, see th®SF DCE Administration Guide—Introduction

Implications for application programmers

Since DCE RPC is integrated with DCE Threads, programmers writing RPC-
based applications need to be aware of the implications of using multiple threads
of control. See th©SF DCE Application Development Guide—Introduction and
Style Guideand OSF DCE Application Development Guide—Core Components
for information about programming with Threads.

Appendix A

Overview of DCE Documentation

Al

This appendix describes the documentation set supplied with the OSF DCE offering
and suggests reading paths for different audiences.

DCE Documentation

DCE documentation consists of the following documents:
* Introduction to OSF DCE
OSF DCE Application Development Guide

OSF DCE Application Development Reference

OSF DCE Command Reference

OSF DCE Administration Guide

OSF DCE DFS Administration Guide and Reference
OSF DCE GDS Administration Guide and Reference

Introduction to OSF® DCE

Al1l

* OSF DCE/File-Access Administration Guide and Reference
* OSF DCE/File-Access User's Guide

» OSF DCE Problem Determination Guide

» OSF DCE Testing Guide

» OSF DCE/File-Access FVT User’s Guide

* OSF DCE Technical Supplement

* OSF DCE Release Notes

Application Environment Specification/Distributed Computing (RPC Volume)

Application Environment Specification/Distributed Computing (Directory Services
Volume)

Application Environment Specification/Distributed Computing (Time Services
Volume)

Application Environment Specification/Distributed Computing (Security Volume)

The OSF DCE Testing Guidis intended for DCE source licensees, as is much of the
information in theOSF DCE Technical SupplemenNote also that the AES volumes
are not tied to a specific release. They are specifications, not implementations.

A brief description of the purpose and audience of each document follows.

Prentice-Hall Documents

The following OSF DCE Release 1.1 documents are published by Prentice-Hall:

* Introduction to OSF DCHSBN 0-13-185810-6

The Introduction to OSF DCHthis manual) provides an overview of DCE and
serves as an introduction to the rest of the DCE documentation. It also contains
the glossary of terms used in DCE documentation.

» OSF DCE Application Development Guide

The OSF DCE Application Development Guidemprises the following three
volumes.

Overview of DCE Documentation

— OSF DCE Application Development Guide—Introduction and Style Guide
ISBN 0-13-185877-7

— OSF DCE Application Development Guide—Core ComponEsiN 0-13-
185885-8

— OSF DCE Application Development Guide—Directory ServiG®BN 0-13-
185893-9

This guide is targeted for the distributed application programmer. It provides
conceptual and task-oriented information for developing an application by using
DCE. Thelntroduction and Style Guidfirst describes programming with DCE in
general, using its various components and facilities. Next it describes relevant
issues regarding distributed applications.

The Core Componentsvolume describes the APIs for the various DCE
components. Théirectory Servicesvolume describes the DCE naming and
access to CDS through XDS, the use of the X/Open Directory Service Interface,
and the Object Classification Tables and other information on XDS, X.500
Directory, and GDS objects.

OSF DCE Application Development Reference

The OSF DCE Application Development Referergoasists of two volumes:

— OSF DCE Application Development Reference, Volurt&BN 0-13-185869-
6

— OSF DCE Application Development Reference, Volur&BN 0-13-241464-
3

The OSF DCE Application Development Referenpeovides reference
material for the DCE programming interfaces. It also has command
references for a few commands needed by the DCE programmer, in
particular those used with the RPC componeMolume 1covers the DCE,
RPC, and directory service calls/olume 2covers the threads, DTS, and
security calls.

OSF DCE Command Referent®BN 0-13-185851-3
The OSF DCE Command Referengarovides reference material for DCE

commands, including administrative commands. It is divided into technology
component sections.

Introduction to OSF® DCE

OSF DCE Administration Guide

The OSF DCE Administration Guideonsists of two volumes:
— OSF DCE Administration Guide—Introductid8BN 0-13-185836-X
— OSF DCE Administration Guide—Core Compondi@BN 0-13-185844-0

It provides conceptual and task-oriented information for the DCE administrator.
The first volume is an overview, which describes administering DCE as a whole,
including planning and configuring information. The second volume is devoted
to the management of specific components. T®F DCE Administration
Guide—Core Componentkescribes management of DCE RPC, CDS, DTS, and
the security service.

OSF DCE DFS Administration Guide and Referef8BN 0-12-185828-9

The OSF DCE DFS Administration Guide and Referemeevides concepts and
procedures for managing DFS in a DCE cell. It provides detailed reference
information about the complete syntax and use of each DFS command and
configuration file.

OSF DCE GDS Administration Guide and ReferefSBN 0-13-185901-3

The OSF DCE GDS Administration Guide and Referepcevides concepts and
procedures that enable you to manage DCE GDS.

OSF DCE/File-Access Administration Guide and ReferdS&N To be assigned
at the end of DCE Release 1.2.2

The OSF DCE/File-Access Administration Guide and Referemmscribes
concepts and procedures that enable you to manage DCE File-Access software.
OSF DCE/File-Access User's GuidSBN To be assigned at the end of DCE
Release 1.2.2

The OSF DCE/File-Access User's Guiddescribes concepts and procedures
necessary for using DCE File-Access software.

AES/Distributed Computing (RPC Volum&BN 0-13-043688-7

The AES/DC— Remote Procedure Calblume is the first volume of the
Application Environment Specification/Distributed ComputinAES/DQ,

Overview of DCE Documentation

published by OSF. It specifies RPC services, interfaces, protocols, encoding
rules, and IDL. Further volumes will specify other distributed services, including
DTS, directory services, security services, threads services, and DFS. Together,
the volumes of theAES/DC will provide a comprehensive portability and
interoperability specification for distributed computing.

A.l.2 Other Documents

The following OSF DCE documents are not published by Prentice-Hall:
» OSF DCE Problem Determination Guide

The OSF DCE Problem Determination Guigovides a compilation of all DCE

error messages and status codes along with explanations and recovery actions.
This guide is written for DCE application programmers and system and network
administrators.

* OSF DCE Testing Guide

The OSF DCE Testing Guiddescribes how to use the functional tests to verify
that a DCE component has been successfully ported. This manual is available
through DCE licensees and OSF Educational Services.

» OSF DCE/File-Access FVT User's Guide

The OSF DCE/File-Access FVT User’s Guidescribes the use of functional tests
for verifying that the DCE/File-Access software has been successfully ported.

» OSF DCE Technical Supplement

The OSF DCE Technical Supplemendescribes internal DCE interfaces and
protocols. It also contains architectural specifications to provide the interested
reader with conceptual information about the DCE components. This manual is
of interest primarily to developers who are extending DCE, and is available only
to DCE licensees; it may not be redistributed.

* OSF DCE Release Notes

The OSF DCE Release Notégscribe a given version of DCE software from OSF.
They include information on building the code and documentation, and known

Introduction to OSF® DCE

A.2

defects and restrictions. This manual is available through DCE licensees and
OSF Educational Services.

 Application Environment Specification/Distributed Computing (Directory Service
Volume)

The AES/DC — Directory Servicevolume specifies the directory service
model, services, interfaces, and protocols. This includeihectory Service
Information Model the Global and Cell Directory Servicesand Protocol
specifications, and theX/Open Directory Services Application Programming
Interface

Application Environment Specification/Distributed Computing (Time Services
Volume)

The AES/DC Time Services Volumapecifies DTS, time representations, the RPC
interfaces to the DTS, and the application programmer’s interfaces to DTS.

Application Environment Specification/Distributed Computing (Security Volume)

The AES/DC — Securitwolume specifies the DCE security model, services,
interfaces, and protocols.

Reading Paths

This section suggests reading paths through the DCE documentation for various
audiences, including the following:

» People interested in a high-level overview of DCE
* End users

* Application programmers

» System administrators

» DCE developers

* DCE implementors

Overview of DCE Documentation

A21

A.2.2

A.2.3

Note that theOSF DCE Release Notetescribe a given version of DCE and are
therefore potentially of interest to all DCE audiences, in addition to the documents
listed for each audience as follows.

High-Level Overview of DCE

For a high-level overview of DCE, including its architecture, components, and
potential use, read this manual, tieroduction to OSF DCE

End Users

The curious user might begin by reading the High-Level Overview path to get
an idea of DCE as a whole. Thimtroduction to OSF DCEhas subsections

for each component that are entitled “End User’s Perspective.” However, these
subsections usually point out that DCE is an applications technology, with most of
the DCE components operating beyond the user’s view. End users should familiarize
themselves with the application documentation. T~ DCE Command Reference
describes commands available to the user. @&& DCE DFS Administration Guide

and Referencéescribes file handling activities that a user does directly.

Application Programmers

Application programmers may wish to begin with the High-Level Overview in
order to understand the system as a whole. Alternatively, they can begin directly
with information on programming DCE, starting with th@SF DCE Application
Development Guide For detailed information on a specific API, see th8F DCE
Application Development Reference

A.2.3.1 System-Specific Applications

Applications for a specific DCE implementation, such as a reference implementation
provided by OSF, or a DCE implementation provided by a vendor for a specific

Introduction to OSF® DCE

platform, can be written by following the documentation mentioned in the previous
section.

A.2.3.2 Portable Applications

A2.4

Applications written to be portable across multiple DCE implementations, such as
applications written by independent software vendors, should be limited to using only
the interfaces contained in tAES/DC Those interfaces are a subset of the interfaces
contained in the DCE documentation, and #RES/DCinterfaces are the ones that
every DCE-conformant implementation supports.

System Administrators

We divide the audience of system administrators into two categories: those who
are planning, configuring, and installing DCE; and those who are responsible for
maintaining DCE once it is up and running.

People in the first category should begin with finéroduction to OSF DCHo gain

an understanding of the whole system. Next, @®&F DCE Administration Guide—
Introduction describes issues and conventions concerning DCE as a whole system,
and provides guidance for planning and configuring a DCE system. Administrators
may then want to read th@SF DCE Release Notés learn how to build and install

the various components of a DCE system. Finally, specific sections on a given
component to be installed (for example, the directory service or time service) should
be reviewed in th®©SF DCE Administration Guide—Core Componeatsd for even

more detailed information, th®@ SF DCE Command Reference

Administrators in the second category, DCE system maintainers, should refer first to
the OSF DCE Administration Guidend then th©SF DCE Command Referender
information on the particular DCE component they are administering. O3 DCE

DFS Administration Guide and Referenaad OSF DCE GDS Administration Guide
and Referencgive information on managing the DFS and GDS components.

Overview of DCE Documentation

A.2.5 DCE Developers

Some of the audience for DCE documentation are system developers, such as system
vendors who are taking the DCE source code and extending it or modifying it to suit
the specific requirements of their customers. This audience should begin by reading
the OSF DCE Release Not¢s determine the state of DCE software in the specific
release they are working with. They may also want to readrntreduction to OSF

DCE for an overview of the system.

The OSF DCE Application Development Guidand OSF DCE Application
Development Refereneeay be helpful in understanding the use of the other DCE
components by the component being developed. FinallyQB8& DCE Technical
Supplemenhas been included in the DCE documentation set particularly for the DCE
developer. It contains information on DCE internals, architectures, and concepts.
This information is not needed by most DCE end users or programmers, but it may
be very helpful to a DCE developer.

A.2.6 DCE Implementors

Finally, one expected audience for DCE documentation consists of people who
are developing their own implementation of part or all of DCE. They should
begin by reading théntroduction to OSF DCEThese readers should then consult
the appropriate sections of th®ES/DCto determine which interfaces need to be
implemented to have a conformant DCE implementation. If the implementor is
also a DCE licensee, the documentation listed previously for the DCE developer will
probably also be helpful in the implementation project.

Appendix B
List of Acronyms and Abbreviations

This appendix consists of a table that lists the acronyms and abbreviations used in
DCE.

Table B-1. DCE Acronyms and Abbreviations

Acronym/Abbreviation Definition

ACF Attribute Configuration File

ACL Access Control List

ACSE Association Control Service Element
AES Application Environment Specification
API Application Programming Interface
ASN.1 Abstract Syntax Notation One

AVA Attribute Value Assertion

BER Basic Encoding Rules

Introduction to OSF® DCE

Acronym/Abbreviation

Definition

BOS

C
C-ISAM
CAE
CCITT

CDS
CDSPI
CPU
DAP
DB
DCE
DFS
DIB
DIT
DN
DNS
DSA
DSP
DTS
DUA
EPAC
FIFO
GDA
GDS
GSS

Basic OverSeer Server

Country

C-language Indexed Sequential Access Method
Common Application Environment
International Telegraph & Telephone
Consultative Committee

Cell Directory Service

Cell Directory Service Portable Interface
Central Processing Unit

Directory Access Protocol

Database

Distributed Computing Environment
Distributed File Service

Directory Information Base

Directory Information Tree
Distinguished Name

Domain Name Service

Directory System Agent

Directory System Protocol

Distributed Time Service

Directory User Agent

Extended Privilege Attribute Certificate
First In, First Out

Global Directory Agent

Global Directory Service

Generic Security Service

List of Acronyms and Abbreviations

Acronym/Abbreviation

Definition

IDL

P

ISO

LAN

LFS

LRU
MAVROS
MS-DOS
NA
NetBIOS
NSAP
NSI

NTP

0]

(O

0S/2
OSF

oSl
0SS

ou

PCS
RDN
ROM
ROS
ROSE
RPC

Interface Definition Language
Internet Protocol

International Organization for Standardization
Local Area Network

Local File System

Least Recently Used

Not an acronym

Microsoft Disk Operating System
Not Applicable

Network Version of Basic Input/Output System
Network Service Access Point (OSI)
Name Service Independent

Network Time Protocol

Organization

Operating System

Operating System/2

Open Software Foundation

Open Systems Interconnection

OSI Session Service

Organizational Unit

Portable Character Set

Relative Distinguished Name
Read-Only Memory

Remote Operation Service

Remote Operation Service Elements

Remote Procedure Call

Introduction to OSF® DCE

Acronym/Abbreviation

Definition

RR
RR
TCP/IP
TDF
TFTP
TLI

TPI
UDP/IP
UFS
uTC
uuID
VFS
WAN
XOM
XDS
XTI

Resource Record (DNS)

Round Robin (scheduling)

Transmission Control Protocol/Internet Protocol
Time Differential Factor

Trivial File Transfer Protocol

Transport Layer Interface

Time Provider Interface

User Datagram Protocol/Internet Protocol
UNIX File System

Coordinated Universal Time

Universal Unique Identifier

Virtual File System

Wide Area Network

X/Open OSI-Abstract-Data Manipulation
X/Open Directory Service

X/Open Transport Interface

Glossary

absolute time
A point on a time scale. For DTS, absolute time refers to the UTC standard.

abstract class
GDS: An OM class of OM object of which instances are forbidden. An abstract

class typically serves to document the similarities between instances of two or more
concrete classes.

Abstract Syntax Notation One (ASN.1)
A notation that both enables complicated types to be defined and also enables values

of these types to be specified.

access control list (ACL)

1. Security: Data that controls access to a protected object. An ACL specifies
the privilege attribute(s) needed to access the object and the permissions that can
be granted, with respect to the protected object, to principals that possess such
privilege attribute(s).

2. DFS: The following ACL permissions are defined for file system objects: (1)
read (abbreviated): allows you to read a file or, with, list a directory and
the ACLs of its objects; (2) write (abbreviated: allows you to modify a file

GL-1

Glossary

or, with i, add a new object to a directory or, with remove an object from a
directory; (3) execute (abbreviate)t allows you to execute a file or, with list
a directory and the ACLs of its objects; (4) control (abbreviated allows you
to modify a file’s ACLs or a directory’s ACLs; (5) insert (abbreviatgd with
w, allows you to add a new object to a directory or, withand d, rename an
object in a directory; (6) delete (abbreviatdld with w, allows you to remove
an object from a directory or, wittv andi, rename an object in a directory.

3. CDS: The following ACL permissions are defined for CDS: (1) read (abbreviated
r): allows a principal to look up a hame and view the attribute values associated
with it; (2) write (abbreviatedv): allows a principal to change the modifiable
attributes associated with a name, except its ACLs; (3) insert (abbreviated
(for use with directory entries only) allows a principal to create new names in a
directory; (4) delete (abbreviatet): allows a principal to delete a name from the
namespace; (5) test (abbreviatgd allows a principal to test whether an attribute
of a hame has a particular value without being able to actually see any of the values
(that is, without having read permission to the name). Test permission provides
application programs with a more efficient way to verify a CDS attribute value.
Rather than reading an entire set of values, an application can test for the presence
of a particular value; (6) control (abbreviateyl allows a principal to modify
the ACL entries associated with a name. Control permission is automatically
granted to the creator of a CDS name; (7) administer (abbreva@gtedfor use
with directory entries only) allows a principal to issedscp commands that
control the replication of directories.

4. GDS: A recurring attribute of an entry for specifying the access authorization for
an object. The following ACL permissions are defined for GDS:NIDDIFY
PUBLIC: specifies the user, or subtree of users, that can modify attributes
classified as public attributes; (BEAD STANDARD: specifies the user, or
subtree of users, that can read attributes classified as standard attributes; (3)
MODIFY STANDARD : specifies the user, or subtree of users, that can modify
attributes classified as standard attributes;READ SENSITIVE : specifies the
user, or subtree of users, that can read attributes classified as sensitive attributes;
(5) MODIFY SENSITIVE : specifies the user, or subtree of users, that can modify
attributes classified as sensitive attributes.

access control list entry
Data in an ACL that specifies a set of permissions. In the case of a principal or
group entry, the permission set is that which can be granted to a principal having the
privilege attribute specified in the entry; in the case of a mask entry, the permission
set is that which masks the permission set in a principal or group entry.

GL-2

Glossary

access control list facility
A DCE security facility that enables a principal’s access to an object to be determined
by a comparison of the principal’s privileges to entries in an object’'s ACL.

access right
Seepermission

accessible
Said of an object for which the client possesses a valid designator or handle.
account
An entry in the registry database that defines a principal’'s network identity by
associating the principal with a group and optional organization, and with related
account information such as the password used to authenticate a principal’s identity.
ACF
Seeattribute configuration file .
ACL

Seeaccess control list

active context handle
RPC: In RPC applications, a context handle that the remote procedure has set to a
nonnull value and passed back to the calling program; the calling program supplies
the active context handle in any future calls to procedures that share the same client
context. See alscclient context, context handle

address
An unambiguous name, label, or number that identifies the location of a particular
entity or service. See als@resentation address

administration domain
GDS: A collection of several DSAs that share the same schema object (mastered by
one of these DSAs and shadowed by all the others).

administrative domain

1. DFS: A collection of machines configured as the server machines necessary to be
administered as a single unit. The administration is typically handled by groups
of administrative users.

GL-3

Glossary

2. GDS: A collection of several DSAs that share the same schema object (mastered
by one of these DSAs and shadowed by all the others).

administrative list
DFS: A file used to determine who can issue commands that affect filesets or DFS
server processes. Administrative lists allow system administrators to control the
security of the administrative domains in a celSee alscadministrative domain,
privilege required.

aggregate

DFS: A logical unit of disk storage that can contain multiple DCE LFS filesets or

a single UFS fileset. An aggregate is physically equivalent to a standard UNIX
disk partition, but a DCE LFS aggregate supports an optimized metadata structure
and a number of specialized fileset-level operations not available on standard UNIX
partitions. A UFS partition exported into the global namespace is referred to as an
aggregate even though it does not support the optimizations and features of a DCE
LFS aggregate.

aggregate identifier
DFS: The part of the fileset representation that identifies the aggregate on the file
server machine on which the fileset is stored.

alias
1. GDS: A name for a (directory) object, provided by the use of one or more alias
entries in the DIT.
2. Security: An optional alternate name for a primary name in the registry database.
Aliases and the primary name for which they are an alternate share the same UUID
and UNIX ID.
alias entry

GDS: A directory entry, of object clasdias, containing information used to provide
an alternative name for an object.

aliased object
The object to which an alias entry refers.

aliasing
RPC: Occurs when two pointers of the same operation point at the same storage.

GL-4

Glossary

anode
DFS: An abstraction for referring to an open-ended address space of stoGege.
alsovnode

anonymous user
A user who is not entered in the directory as an object and who logs into the directory
service without giving a name and password.

API
Seeapplication programming interface.

application programming interface (API)
A set of runtime routines or system calls that allows an application program to use
a particular service provided by either the operating system or another application
program.

application thread
RPC: A thread of execution created and managed by application cdéee also
client application thread, local application thread, RPC thread, server application
thread.

ASN.1
SeeAbstract Syntax Notation One

asynchronous operation
An operation that does not of itself cause the process requesting the operation to be
blocked from further use of the CPU. This implies that the process and the operation
are running concurrently.

AT
Seeattribute table.

at-most-once semantics
RPC: A characteristic of a procedure that restricts it to executing once, partially, or not
at all—never more than onceSee alsadempotent semanticsbroadcast semantics
maybe semantics

atomic transaction

DFS: A transaction that happens entirely or not at all; used when partial completion
of a transaction is undesirable.

GL-5

Glossary

attention threshold
DFS: In thescoutprogram, the value at which the program highlights a statistic in its
graphical display. Separate attention thresholds can be set forstmst statistics.
See alsascout

attribute

1. Threads: The individual components of the attributes object. Attributes specify
detailed properties about the objects to be created.

2. RPC: (1) An IDL or ACF syntax element, occurring within [] (brackets), and
conveying information about an interface, type, field, parameter, or operation.
(2) An attribute of an entry in a name service database that stores binding, group,
object, or profile information for an RPC application and identifies the entry as
an RPC server entry; an NSI attribute.

3. DTS: A piece of information associated with a DTS entity or command. DTS
has four attribute categories: characteristics, counters, identifiers, and status.

4. XDS: Information of a particular type concerning an object and appearing in an
entry that describes the object in the DIB.

5. XOM: A component of an object, comprising an integer that denotes the attribute’s
type and an ordered sequence of one or more attribute values, each accompanied
by an integer denoting the value’s syntax.

attribute configuration file (ACF)
RPC: A .acf file. An optional companion to an interface definition file.{@d file)
that modifies how the DCE IDL compiler locally interprets the interface definition.
See alsdnterface definition, Interface Definition Language

attribute configuration language
RPC: A high-level declarative language that provides syntax for attribute configuration
files. See alsattribute configuration file .

attribute encoding type
A specifier of the data format (for example, integer, string, UUID) of an attribute
value.

attribute instance

An attribute type UUID and value created according to the attribute type’s semantics
and attached to a registry object. (Also calkgtiibute or ERA.)

GL-6

Glossary

attribute schema
A collection of attribute type definitions or schema entries. (Also calldtema)

attribute schema object
Seeschema object

attribute set
An attribute instance with encoding tyjadtr _set. Its value is a list of attribute type
UUIDs that identify member attributes of this set. Attribute sets are created for the
purpose of efficient queries for related attributes.

attribute syntax
GDS: A definition of the set of values that an attribute can assume. It includes the
data type, in ASN.1, and usually one or more matching rules by which values can be
compared.

attribute table (AT)
GDS: A recurring attribute of the directory schema with the description of the attribute
types that are permitted.

attribute type

1. XDS: The component of an attribute that indicates the class of information given
by that attribute. It is an object identifier, so it is completely unique.

2. XOM: Any of the various categories into which the client dynamically groups
values on the basis of their semantics. It is an integer unique only within the
package.

3. Security: The description of the identifiers (such as name and UUID) and
semantics (such as encoding type and access control parameters) of instances
of this type.

attribute value

1. XDS: A particular instance of the class of information indicated by an attribute
type.
2. XOM: An atomic information object.

3. Security: The data in an attribute instance.

GL-7

Glossary

attribute value assertion (AVA)
GDS: A proposition, which may be true, false, or undefined, concerning the values
(or perhaps only the distinguished values) of an entry.

attribute value syntax
Seeattribute syntax, syntax.

audit action
A component of the filter directive that specifies where the audit record is to be
written: to the console or to an audit trail file.

audit client
Users of the DCE Audit Service. All DCE servers and user-written distributed
applications can be audit clients.

audit condition
A component of the filter directive that specifies the required outcome of the event
before an audit record is written to the audit trail file.

audit daemon
A DCE component. It maintains the audit filters and the central audit trail file.

audit event
An occurrence in the use of the application that requires logging of audit records.
Generally, audit events involve the integrity of the system.

audit filter
Used to narrow down the conditions by which audit records are logged. A filter
provides a means to specify these conditions.

audit record
Contains information pertaining to an audit event.

audit trail file
A set of audit records that provide evidence of the sequence of events that occurred
on the system.

authentication
The verification of a principal’'s network identity.

GL-8

Glossary

authentication header
A record containing a ticket and an authenticator to be presented to a server as part
of the authentication process.

authentication level
See protection level

authentication path
The sequence of cells transited when a principal in one cell communicates with one
in another cell. Also known as taust path.

authentication protocol
A formal procedure for verifying a principal’s network identity; Kerberos is an instance
of a shared-secret authentication protocol.

authentication service
One of the services provided by DCE Security: the authentication service
authenticates principals according to a specified authentication protoSeke also
authentication protocol.

authentication surrogate
A type of principal represented by an entry in a cell's registry that specifies the same
secret key as a corresponding entry in another cell's registry. The authentication
services of the two cells use the secret key for the purpose of exchanging data about
principals without either authentication service having to share its private key with
the other. Authentication surrogates are necessary for intercell authenticsties.
also peer trust.

authenticator
A record containing information that can be shown to have been recently generated
via a conversation key known only by two principals that are participating in an
authenticated network exchange.
authorization
1. The determination of a principal’s permission(s) with respect to a protected object.

2. The approval of a permission sought by a principal with respect to a protected
object.

GL-9

Glossary

authorization data
That portion of a Kerberos ticket that contains data necessary for authorization
decisions. Sometimes abbreviated Auth_Data or A_D.

authorization protocol
A formal procedure for establishing the authorization of principals with respect to
protected objects. Authorization protocols supported by DCE Security include one
based on PACs and EPACs (DCE authorization) and one based on names (name-based
authorization)See alsd®AC, EPAC, name-based authorization

automatic binding method
RPC: A method of managing the binding for a remote procedure call. The automatic
method completely hides binding management from client application code. If the
client makes a series of remote procedure calls, the stub passes the same binding
handle with each call.See alsdinding handle, implicit binding method, explicit
binding method.

AVA
Seeattribute value assertion

background skulk time
An automatic timer that guarantees a maximum lapse of time between skulks of a
CDS directory, regardless of other factors, such as namespace management activities
and user-initiated skulks. Every 24 hours, a CDS server checks each master replica
in its clearinghouse and initiates a skulk if changes were made in a replica since the
last time a skulk of that replica completed successfully.

backup
DFS: The dump of a fileset to a permanent medium such as tape. To back up also
means to clone a read/write fileset, which results in a backup fileset.

backup database
DFS: A database that records the dump schedule for backups, the backup system’s
tape coordinators, the fileset families that can be dumped, and other administrative
information.

backup database machine

DFS: A server machine in a cell that houses the backup datab&se. alscserver
machine

GL-10

Glossary

backup fileset
DFS: A fileset created by cloning (copying) a read/write fileset (referred to as the
source fileset). The backup version always resides on the same aggregate as its
source and usually requires little disk space. It preserves the state of the read/write
fileset at the time of the cloningSee alsalone, read-only fileset read/write fileset

backup fileset ID
DFS: A unique fileset identification number (fileset ID) assigned to the backup version
of a fileset.

backup server
DFS: A server process that runs on backup database machines (which house the backup
database). It communicates with the backup database to back up and restore filesets
and aggregates.

backup system
DFS: A system that allows you to copy fileset data to tape and restore it from tape
if necessary. The DFS backup system consists of the backup server, the backup
database, and one or more tape coordinator machie alsalump, restore.

basename
DFS: In thescout program, the DCE pathname prefix common to the file server
machines to be monitored. If specified on the command line, the basename is
displayed in the program’s banner liné&See alsascout

Basic Encoding Rules (BER)
A set of rules used to encode ASN.1 values as strings of octets.

basic overseer server (BOS server)
DFS: A server process that runs on all DFS server machines. It monitors the other
DFS server processes running on its machine; it can usually restart those that fail
without requiring intervention from a human operator.

BER
SeeBasic Encoding Rules

big endian
An attribute of data representation that reflects how multioctet data is stored in
memory. In big endian representation, the lowest addressed octet of a multioctet
data item is the most significantSee alseendian, little endian.

GL-11

Glossary

binary distribution machine
DFS: A server machine that distributes DFS binaries to other file server machines
of its machine type (same CPU/operating system). It runs the server portion of the
update server for this purpose. There is one binary distribution machine of each
machine type that the cell uses as a DFS server machee alscserver machine
update server, upserver.

binary timestamp
An opaque 128-bit (16-octet) binary number that represents a DTS time value.

binding
RPC: A relationship between a client and a server involved in a remote procedure
call.

binding handle
RPC: A reference to binding information that defines one possible binding (a client/
server relationship). See alsobinding, customized binding handle primitive
binding handle.

binding handle vector
RPC: A data structure that contains an array of binding handles and the size of the
array. See alsdinding handle.

binding information
RPC: Information about one or more potential bindings, including an RPC protocol
sequence, a network address, an endpoint, at least one transfer syntax, and an RPC
protocol version number. See alsobinding, endpoint, network address RPC
protocol sequenceRPC protocol, transfer syntax.

binding management method
RPC: Any of the methods for managing the binding for a remote procedure Salkk
alsoautomatic binding method, implicit binding method , explicit binding method.

blocking call
A call in which a caller is suspended until a called procedure completes.

bnode
DFS: A structure that describes common characteristics of the BOS server process.
There are two types:simple andcron. Processes are created through bnodgse
also basic overseer server

GL-12

Glossary

BOS server
Seebasic overseer server

broadcast
Threads: To wake all threads waiting on a condition variabfiee alsasignal.

broadcast semantics
RPC: A form of idempotent semantics that indicates that the operation is always
broadcast to all host systems on the local network, rather than delivered to a specific
system. An operation with broadcast semantics is implicitly idempotent. Broadcast
semantics are supported only by connectionless protoc@ee alsoat-most-once
semantics idempotent semantics maybe semantics

browser
A Motif-based program that lets users view the contents and structure of a cell
namespace.

butc process
DFS: A process that runs on a tape coordinator machine to monitor the activity of a
tape drive. Ondutc process must run for each tape drive on the machiSee also
tape coordinator.

C interface
The interface, defined at a level that depends on the variant of C standardized by
ANSI.

C-stub
The part of the DUA that implements the connection with the communications
network.

cache

1. CDS: The information that a CDS clerk stores locally to optimize name lookups.
The cache contains attribute values resulting from previous lookups, as well as
information about other clearinghouses and namespaces. The cache is written to
disk periodically so that it can survive a system rebo8ee alsacopy.

2. DFS: A reserved amount of disk or memory space on a DFS client machine.
The DFS cache manager uses the cache to temporarily store files or parts of files
retrieved from DFS file server machines so that future access time and network

GL-13

Glossary

load are reduced. DFS uses a cache-consistency mechanism (token-passing) to
guarantee that the source and cached data are consisestalsaaching

cache manager

caching

DFS: The portion of a DFS client machine’s kernel that communicates with DFS
server processes by translating local file requests into RPCs (if needed). It stores
the requested files in a local disk or memory cache, from which it makes the files
available to users on that machine.

DFS: The technique of copying a file from a file server machine (its central storage
place) to a client machine’s local disk or memory; users then access the copy locally.
Caching reduces network load because a file does not have to be fetched across the
network more than once (unless the central copy changes).

caching layer

call chain

call queue

call thread

callback

GL-14

DFS: The part of the DFS cache manager that manages the cached data, performing
fetches and stores and answering status requests.

The chain of operations (RPC calls) leading from the delegation initiator to the final
target.

RPC: A first-in, first-out queue used by an RPC server to hold incoming calls when
the server is already executing its maximum number of concurrent calls.

RPC: A thread created by a server's RPC runtime to execute remote procedures.
When engaged by a remote procedure call, a call thread temporarily forms part of the
RPC thread of the call.See alsapplication thread, RPC thread.

DFS: A procedure that is registered with a token to be called automatically if the
token is revoked. The act of revoking a token is also referred to as a callback.

Glossary

cancel
1. Threads: A mechanism by which a thread informs either itself or another thread
to terminate as soon as possible. If a cancel arrives during an important operation,
the canceled thread may continue until it can terminate in a controlled manner.
2. RPC: A mechanism by which a client thread notifies a server thread (the canceled
thread) to terminate as soon as possibfee alsahread.
CDS

SeeDCE Cell Directory Service.

CDS control program (cdscp)
A command interface that CDS managers use to control CDS servers and clerks and
manage the namespace and its contents.

CDS-defined attribute
A standard attribute that CDS associates with names. A specific CDS-defined attribute
has the same meaning no matter what type of entry (clearinghouse, directory, object)
it is associated with. However, different types of entries can have different CDS-
defined attributes. For example, every CDS name has the CDS-defined attributes
of Creation TimestampQDS_CTS, Update TimestampGDS_UTS, and Access
Control Set CDS_ACS. In addition to those attributes, a soft link has unique CDS-
defined attributes containing its expiration time and the name it points to.

cdscp
SeeCDS control program.

cell

1. The basic unit of operation in DCE. A cell is a group of users, systems, and
resources that are typically centered around a common purpose and that share
common DCE services. At a minimum, a cell configuration includes one cell
directory server, one security server, and one distributed time server. A cell can
consist of from one system to as many as several thousand systems. Systems in
the cell can be in the same geographic area (for example, on the same LAN), but
geography does not necessarily determine a cell's boundaries. The boundaries of
a cell are typically influenced by its purpose, as well as by security, administrative,
and performance considerations. With respect to individual DCE technologies,
a cell represents the following definitions.

2. CDS: A unified naming environment consisting of CDS clerks and servers.

GL-15

Glossary

3. DFS: An administratively independent installation of server and client machines.

4. Security: The set of principals that share their secret keys with the same
authentication service.

cell alias
DFS: An additional global name given to a cell.

cell module
DFS: The part of the DFS cache manager that maintains a list of cells that have been
contacted.

cell-relative name
Seelocal name

central audit trail file
The audit trail file that is maintained by the audit daemon. This is created and used
if the user does not specify an audit trail file when starting the audit daemon.

chaining
A mode of interaction optionally used by a DSA that cannot perform an operation
itself. The DSA chains by invoking an operation of another DSA and then relaying
the outcome to the original requester.

character set
A group of characters, such as the English alphabet, Japanese Kanji, and the European
character set.

characteristic attribute
A type of attribute that reflects or affects the behavior of a software entity. You
generally can set or change characteristic attributes.

child cell
A cell whose name is stored in the CDS server of another cell (its parent cell) and
includes its parent cell's name as a prefix to its own name.

child directory

A CDS directory that has a directory above it is considered a child of the directory
immediately above it.

GL-16

Glossary

child pointer

ciphertext

class

class-id

A pointer that connects a directory to a directory immediately below it in a namespace.
You do not explicitly create child pointers; CDS creates them for you when you create
a new directory. CDS stores the child pointer in the directory that is the parent of
the new directory.

The output of an encryption function. Encryption transforms plaintext into ciphertext.

A category into which objects are placed on the basis of both their purpose and their
internal structure. See alsmbject class OM class

A component of the event class number, which identifies the event class within the
set of event classes.

class-specific attribute

CDS: An attribute that has meaning only to a particular class of object and to the
application using that object class. A CDS object’s class can be defined in an
attribute namedDS_Class Programmers who write applications that use CDS can
define their own object classes and class-specific attributes.

clearinghouse

A collection of directory replicas on one CDS server. A clearinghouse takes the form
of a database file. It can exist only on a CDS server node; it cannot exist on a node
running only CDS clerk software. Usually only one clearinghouse exists on a server
node, but there may be special cases when more than one exists.

clearinghouse object entry

A special class of object entry that describes a clearinghouse. The clearinghouse
object entry is a pointer to the network address of an actual clearinghouse. This
pointer enables CDS to find a clearinghouse and use and manage its contents. A
clearinghouse modifies and manages its own object entry when necessary; normally
CDS managers do not need to maintain it. The clearinghouse object entry has the
same name as the clearinghouse.

GL-17

Glossary

clerk

client

. CDS: The software that provides an interface between client applications and
CDS servers. The clerk receives a request from an application, sends the request
to a CDS server, and returns any resulting information to the application. The
clerk saves (caches) the results of lookups so that it does not have to repeatedly
go to a CDS server for the same information.

. DTS: A software component that synchronizes the clock for its client system by
requesting time values from servers, computing a new time from the values, and
supplying the computed time to client applications.

. CDS: Any application that interacts with a CDS server through the CDS clerk.
. DTS: Any application that interacts with a DTS server through the DTS clerk.

. RPC: The party that initiates a remote procedure call. Some applications act as
both an RPC client and an RPC serveBee alscserver.

. DFS: A consumer of resources or serviceSee alscserver.

. GDS: Consists of an application that links the DUA library, the C-stub that handles
the connection over the communications network for accessing a remote server,
and the DUA cache.

client application thread

RPC: A thread which is executing client application code that makes one or more
remote procedure calls. See alsoapplication thread, local application thread,
RPC thread, server application thread.

client binding information

client context
RPC: The state in an RPC server's address space generated by a set of remote
procedures (manager) and maintained across a series of calls for a particular client.
See alsananager, context handle

GL-18

RPC: Information about a calling client provided by the client runtime to the server
runtime, including the address where the call originated, the RPC protocol used for
the call, the requested object UUID, and any client authentication informati®ee

also binding information , server binding information.

Glossary

client machine
DFS: A machine whose kernel includes the DFS cache manager. A client machine
is capable of requesting data from remote file exporters and caching the data locally.
See alscserver machine

client portion of update server

Seeupclient.

client stub
RPC: The surrogate code for an RPC interface that is linked with and called by the
client application code. In addition to general operations such as marshalling data, a
client stub calls the RPC runtime to perform remote procedure calls and, optionally,
manages bindings.See alsaserver stub, stub.

clock

The combined hardware interrupt timer and software register that maintain the system
time. In many systems, the hardware timer sends interrupts to the operating system;
at each interrupt, the operating system adds an increment to a software register that
contains the time value.

clock adjustment
DTS: Process of changing the system clock time by modifying the incremental value
that is added to the clock’s software register for a specified duration.

clone
DFS: A backup or read-only copy of a fileset created by copying only the read/write
(source) fileset’'s header rather than the data it contains. The clone preserves pointers
to fileset data that existed when the clone was made; it therefore must exist on the
same aggregate as the source. Cloning a fileset also refers to making a copy of it
with the properfts commands for later use with the DFS backup syste8ee also
replica.

clone ID number
DFES: The fileset ID number of the last clone made from the fileset's read/write source
for the purpose of replication.

code point
Location in the distributed application code that designates the operations in the
application where logging of audit records may be required. The DCE audit APIs
are called in the application’s code points.

GL-19

Glossary

code set
The mapping of the members of a character set to specific humeric code values.
Examples of code sets include ASCII, JIS X0208, and ISO 8859-1.

code set registry
A per-host file that contains, for each code set supported on the host, a mapping
between a string name for the code set (which is the name used on the host to refer
to the code set) and the unique identifier that has been assigned (by OSF or by the
site) to the code set.

collapse
To remove the contents of a directory from the display (close it) via the CDS browser.
To collapse an open directory, you double-click on its icon. Double-clicking on a
closed directory expands it.

command suite
DFS: The DFS command suites drak, bos cm, dfsgw, dfstrace, andfts.

commit
DFS: An indication that all of the actions associated with a specific transaction have
been written to the log. Once a transaction has committed, its actions are permanent.
In the event of system problems, those actions are repeated when the system'’s recovery
mechanism replays the log.

communications link
RPC: A network pathway between an RPC client and server that uses a valid
combination of transport and network protocols that are available to both the client
and server RPC runtimes.

compatible server
RPC: A server that offers the requested RPC interface and RPC object and that
is available over a valid combination of network and transport protocols that are
supported by both the client and server RPC runtimes.

computed time
The result of the synchronization process—the time value that the clerk or server
process computes according to the values it receives from several servers.

concrete class
An OM class of which instances are permitted.

GL-20

Glossary

condition variable
A synchronization object used in conjunction with a mutex. A condition variable
allows a thread to block until some event happens.

configuration of directory service
GDS can be configured as a client system or a client/server system. In a client
system, a DUA either accesses the local DUA cache or a remote server over the
communications network. In a client/server system, a DUA either accesses a local
server or a remote server over the communications network. The local server is also
accessible from a remote client or server.

conformant array
RPC: An array whose size is determined at runtime. A structure containing a
conformant array as a field is a conformant structure.

connection-oriented protocol
A connection-based, reliable, virtual-circuit transport protocol, such as TCP; an RPC
protocol that runs over a connection-based transport protocol.

container
Containers are objects that hold other objects. The objects they hold can themselves
be either simple objects or container objects. Simple objects do not hold other
objects. Files are simple objects, and directories are containers. The directories can
hold simple objects (files) and other containers (subdirectori&ge alsacontainer
object, simple object

container object
An object that can hold another object. For example, a directory is a container object
since it can hold files.See alssimple object

context handle

RPC: A reference to the state (client context) maintained across remote procedure
calls by a server on behalf of a clienSee alsalient context

continuation reference

Describes how the performance of all or part of an operation can be continued at a
different DSA or DSAs. See alsaeferral .

GL-21

Glossary

control access
CDS: An access right that grants users the ability to change the access control on a
name and do other powerful management tasks, such as replicate a directory or move
a clearinghouse.

convergence
The degree to which CDS attempts to keep all replicas of a directory consistent. Two
factors control the persistence and speed at which CDS keeps directory replicas up
to date: the setting of a directoryGDS_Convergenceattribute and the background
skulk time. You can set th€DS_Convergenceattribute to high, medium, or low.
By default, every directory inherits the convergence setting of its par&Sge also
background skulk time.

conversation key
A short-lived encryption key provided by the authentication service to two principals
for the purpose of ensuring secure communications between them.

Coordinated Universal Time (UTC)
An international time standard that DTS uses. The zero hour of Coordinated Universal
Time is based on the zero hour of Greenwich (England) Mean Time.

copy
GDS: Either a copy of an entry stored in other DSAs or a locally and dynamically
stored copy of an entry resulting from a request (a cache copy).

core leak
DFS: A situation that can develop as a process allocates virtual memory but does not
free it again. When memory is completely exhausted, the machine crashes. The
BOS server can be configured to restart all processes on a file server machine once a
week to reduce the likelihood of core leaks.

courier

DTS: A local server that requests a time value from a randomly selected global server
each time it synchronizes.

Creation Timestamp (CTS)
An attribute of all CDS clearinghouses, directories, soft links, child pointers, and
object entries that contains a unique value reflecting the date and time the name was
created. The timestamp actually consists of two parts: a time portion, and a portion

GL-22

Glossary

credentials

cron bnode

containing the system identifier of the node on which the name was created. This
guarantees unigueness among timestamps generated on different nodes.

A general term for privilege attribute data that has been certified by a trusted privilege
certification authority. The DCE authorization protocol implements credentials as
Privilege Attribute Certificates (PACS).

DFS: A bnode that manages a single process that is to be run either exactly once or
periodically. See alsdasic overseer serverbnode

cron process

CTS

DFS: A type of process defined in a server machir@sConfigfile. It executes
weekly or daily at a defined time rather than running continuousBee alsocron
bnode, simple process

SeeCreation Timestamp.

customized binding handle

DAP

RPC: A user-defined data structure from which a primitive binding handle can be
derived by user-defined routines in application cod8ee alsoprimitive binding
handle.

SeeDirectory Access Protocol

Data Encryption Standard (DES)

data limit

data token

A data encryption algorithm widely used in the United States.

RPC: A value that specifies which elements of an array are transmitted during a remote
procedure call.

DFS: A token that grants access to a range of bytes in a file. Read and write data
tokens are available See alsdoken.

GL-23

Glossary

datagram
An unreliable network data packet that is independent of all other packets and lacks
any guarantees of delivery or sequentiality.

datagram protocol
A connectionless, datagram-based transport protocol, such as UDP; an RPC protocol
that runs over a connectionless transport protocol.

date-specific restore
DFS: In the DFS backup system, a restore that returns a fileset to its state when it
was last dumped before a specified date. A date-specific restore differs from a full
restore. See alsdull restore, restore.

DCE
SeeDistributed Computing Environment.

DCE Audit Service
That part of the DCE Security Service which detects and records the execution of
DCE server operations that are relevant to the maintenance of a secure distributed
computing environment.See alsdCE Security Service

DCE authorization
Provides a server with the client's PAC and EPA®ke alsoPAC, EPAC, name-
based authorization authorization protocol.

DCE Cell Directory Service (CDS)
The DCE Cell Directory Service stores names and attributes of resources located in
a DCE cell. It is optimized for local access, since most directory service queries are
for information about resources within the same cell as the originator of the query.
It is replicated, in order to make it highly available. There must be at least one cell
directory server in each DCE cell.

DCE control program (dcecp)
An administrative interface that provides consistent and uniform access to DCE
administration functions, wherever they reside, from any and every point in the cell.

DCE daemon (dced)

A continuously running program on each host that provides access to the host services
either locally on that host, or remotely from another host.

GL-24

Glossary

DCE Directory Service
The DCE Directory Service is a distributed, replicated database service consisting
of a hierarchical set of names which have associated attributes. Given a name, its
associated attributes can be looked up in the directory service.

DCE Distributed File Service (DFS)
In DCE, a file service that joins the local file systems of several file server machines,
making the file systems equally available to all DFS client machines.

DCE Distributed Time Service (DTS)
The Distributed Time Service synchronizes the clocks in networked systems.

DCE Global Directory Service (GDS)
The DCE GDS component is a distributed, replicated directory service based on the
CCITT X.500/1ISO 9594 international standard. It provides a global namespace that
connects the local DCE cells into one worldwide hierarchy.

DCE remote procedure call (RPC)
A call to a procedure in a different address space. In a traditional procedure call,
the calling procedure and the called procedure are in the same address space on one
machine. In a remote procedure call, the calling procedure invokes a procedure in a
different address space, and usually on a different machine. See other glossary terms
beginning withbinding, interface, andRPC.

DCE Security Service
The DCE Security Service comprises several parts, including the authentication
service, the privilege service, the registry service, the access control list facility, the
login facility, and the audit service.

DCE Threads
A user-level (nonkernel) threads library based on the pthreads interface specified by
POSIX in the 1003.4a standard (Draft 4). It consists of an API that gives programmers
the ability to create and manipulate threads.

dcecp
SeeDCE control program.

dced
SeeDCE daemon

GL-25

Glossary

default cell
Security: With thesec_adminandrgy_edit commands, the cell in which the replica
being acted on by theec_admincommand is registered.

default DSA
The DSA generally used when the user does not specify any particular DSA when
connecting to the directory system.

default element
RPC: An optional profile element that contains a nil interface identifier and object
UUID and that specifies a default profile. Each profile can contain only one default
element. See alsalefault profile, profile, profile element

default profile
RPC: A backup profile, referred to by the default element in another profile. The NSI
import and lookup operations use the default profile, if present, whenever a search
based on the current profile fails to find any useful binding informatiddee also
default element profile.

delegate restrictions
Restrictions that limit who can act as an intermediary for a particular identity in a call
chain.

delegation token
A checksum over EPAC data, encrypted in the privilege server’'s key and placed in
the A_D field of a PTGT. The token is placed in the D field by the privilege
server when it enables delegation and when it generates a new delegation chain or
impersonated identity.

DES
SeeData Encryption Standard.
descriptor

1. XOM: The means by which the client and service exchange an attribute value
and the integers that denote its representation, type, and syntax.

2. XDS: A defined data structure that is used to represent an OM attribute type and
a single value.

GL-26

Glossary

descriptor list
GDS: An ordered sequence of descriptors that is used to represent several OM attribute
types and values.

destructor
A user-supplied routine that is expected to finalize and then deallocate a per-thread
context value.

DFS
SeeDistributed File Service.

DFS/NFS secure gateway
DFS: The DFS/NFS secure gateway provides authenticated access to DFS from
NFS clients. Users who have DCE accounts can authenticate to DCE via a DFS
client configured as a gateway server and access DFS data according to their DCE
identities. Administrators can allow users to authenticate to DCE from NFS clients,
or administrators can reserve the ability to grant authenticated access from a gateway

server only.

dfsd
DFS: A program that initializes the cache manager and several daemons on a DFS
client machine. It must run each time the client machine reboots for the machine to
function as a DFS client.

DIB
SeeDirectory Information Base.

directory

1. CDS: A logical unit for storing entries under one name (the directory name) in
a CDS namespace. In addition to object entries, a directory can contain soft
links and child pointers. You can copy, delete, and control access to a directory.
Each physical instance of a directory is called a replica.

2. GDS: A collection of open systems that cooperate to hold a logical database of
information about a set of objects in the real world.

Directory Access Protocol (DAP)
GDS: The protocol used by a DUA to access a remote DSA.

GL-27

Glossary

directory ID
Seedirectory identifier .

directory identifier (directory ID)
An identifier for distinguishing several configurations of the directory service within
an installation.

Directory Information Base (DIB)
GDS: The complete set of information to which the directory provides access, which
includes all of the pieces of information that can be read or manipulated using the
operations of the directory. It consists of entries.

Directory Information Tree (DIT)
GDS: The DIB considered as a tree, whose vertices (other than the root) are the
directory entries.

directory package
DFS: The part of the DFS cache manager that stores directory (rather than file) caching
information.

directory schema
Seeschema

directory service
GDS: A system using a directory. The directory service consists of the DUA and
the directory system. The components of the directory service are connected by a
communications network.

directory system
GDS: A system for managing a directory, consisting of one or more DSAs. Each
DSA manages part of the DIB.

Directory System Agent (DSA)
GDS: An Open Systems Interconnection (OSI) application process that is part of the
directory.

Directory System Protocol (DSP)
GDS: The protocol by a DSA to access another DSA.

GL-28

Glossary

Directory User Agent (DUA)
GDS: An OSI application process that represents a user accessing the directory.

discriminator
RPC: The data item that determines which union case is currently used.

disk usage
DFS: A statistic reported by thecout program that indicates space usage on a
file server machine’s aggregates and partitions. An administrator cascosgto
highlight disk usage statistics that exceed specified vali=se alscscout

dispatcher

XOM: The software that implements the service interface functions using workspace
interface functions.

distinguished encoding
The restrictions to the Basic Encoding Rules designed to ensure a unique encoding of
each ASN.1 value, defined in the X.500 Directory Standards (CCITT X.509).

Distinguished Name (DN)
GDS: One of the names of an object, formed from the sequence of RDNSs of its object
entry and each of its superior entries.

distinguished value
GDS: An entry’s attribute value that has been designated to appear in the RDN of the
entry.

Distributed Computing Environment (DCE)
Services and tools that support the creation, use, and maintenance of distributed
applications in a heterogeneous computing environment.

DIT
SeeDirectory Information Tree .

DN
SeeDistinguished Name

Domain Name Service (DNS)

A hierarchical, distributed naming service which, like the GDS, can act a a higher
level connector of DCE cells.See alsdCE Global Directory Service.

GL-29

Glossary

drift

DSA

DSP

DTS

DTS entity

DUA

DUA cache

dump

DTS: The change in a clock’s error rate over a specified period of time.

SeeDirectory System Agent

SeeDirectory System Protocol

SeeDCE Distributed Time Service.

DTS: The server or clerk software on a system.

SeeDirectory User Agent.

GDS: The part of the DUA that stores frequently required information.

DFS: Generally, the conversion of a fileset’s contents into a format suitable for storage
on a backup tape and the data object that results from this action. However, the
operation need not involve dumping to other media such as tafiee alsofull

dump, incremental dump, restore.

dump hierarchy

DFS: A logical structure in the DFS backup system that defines the parent/child
relationship between full and incremental dump levelsSee alsofull dump,
incremental dump.

dump ID number

GL-30

DFS: A unique identification number that the DFS backup system assigns to a dump
set. It is distinct from the job ID number assigned to an operation in interactive
mode. See alsgob ID number.

Glossary

dump level
DFS: An entry in the dump hierarchy recorded in the DFS backup system’s backup
database. There are two types of dump levels: full and incremei@ak alsdull
dump, incremental dump.

dump set
In the DFS backup system, the fileset data that results from dumping a particular
fileset family at a given dump level. By implication, all of the data in a dump set
was dumped at the same time and in the same manner (fully or incrementally).

dynamic endpoint
RPC: An endpoint that is generated by the RPC runtime for an RPC server when the
server registers its protocol sequences and that expires when the server stops running.
See alsowvell-known endpoint, endpoint.

effective permissions
The permissions granted to a principal as a result of a masking operation.

element
Any of the bits of a bit string, the octets of an octet string, or the octets by means of
which the characters of a character string are represented.

encryption key
A secret value shared between two parties that enables them to communicate securely
by using the key to encrypt and decrypt messages. Some servers store encryption
keys in a keytab file. See alsdkeytab file, password

endian
An attribute of data representation that reflects how certain multioctet data is stored
in memory. See alsdig endian, little endian.

endpoint
RPC: An address of a specific server instance on a h8ste alsalynamic endpoint,
well-known endpoint.

endpoint map
RPC: A system-wide database where local RPC servers register binding information
associated with their interface identifiers and object UUIDs. The endpoint map is
maintained by the endpoint map service of the RPC daenteee alse@ndpoint map
service RPC daemon

GL-31

Glossary

endpoint map service
RPC: A service provided by the RPC daemon that maintains a system’s endpoint map
for local RPC servers. When an RPC client makes a remote procedure call by using
a partially bound binding handle, the endpoint map service looks up the endpoint of a
compatible local server.See alsendpoint map, partially bound binding handle,
RPC daemon

entity

1. CDS: A component of CDS software that you can manage independently of any
other component. The CDS control program commands are based on directives
targeted for specific entities.

2. DTS: A specific software implementation on a system.

entity type
DTS: An identifier of an entity that determines its relationship to other components:
clerk or server.

entry
GDS: The part of the DIB that contains information relating to a single directory
object. Each entry consists of directory attributes.

entry point vector (EPV)
RPC: A list of addresses for the entry points of a set of remote procedures that
implements the operations declared in an interface definition. The addresses are
listed in the same order as the corresponding operation declarations.

EPAC
Seeextended privilege attribute certificate

epoch
A timestamp that identifies directory replicas as being part of the same set. CDS uses
the epoch timestamp when it skulks a directory: it finds all replicas of the directory
that are in the same epoch and makes their contents consistent. If not all replicas
share the same epoch, the skulk aborts. 3étedirectory to new epochcommand
updates the value of theDS_Epochattribute.

epoch number

DTS: An identifier that a server appends to the time values it sends to other servers.
Servers only use time values from other servers with whom they share epoch numbers.

GL-32

Glossary

EPV

Seeentry point vector.
ERA

Seeextended registry attribute.
error

DTS: The difference between a system’s clock value and the computed time.

error tolerance
DTS: The amount of system clock error to which DCE Distributed Time Service

responds by abruptly setting the system clock to the computed time, rather than
gradually adjusting the clock.

event class
Logical grouping of audit events, designated by a name that can be any character
string up to 256 characters. Generally, an event class comprises audit events that

have some form of commonality.

event class file
A file that contains the declaration of events that constitute an event class. The name

of the event class is the same as the name of the event class file.

event name
Symbolic name assigned to an audit event, consisting of any character string up to

256 characters. It is used for documentation only, and is not used for any other
administrative purpose.

event number
A 32-bit integer assigned to an audit event. An event number is a tuple made up of

a set-id and the event-id. It is used in grouping audit events into event classes.

event-id
Component of the event number that identifies the audit event.

execution semantics
RPC: The rules of execution for a remote procedure call, including the effect of

multiple invocations on the outcome of a procedure’s operati@ee alsaat-most-
once semanticsbroadcast semanticsmaybe semanticsidempotent semantics

GL-33

Glossary

expand
To display the contents of (open) a directory by using the CDS browser. You
expand a directory that is closed by double-clicking on its icon. Double-clicking on
an expanded directory collapses it.

expiration age
RPC: The amount of time that a local copy of name service data from an NSI attribute
remains unchanged before a request from an RPC application for the attribute requires
updating it. See alsa\SI attribute .

explicit binding method
RPC: The explicit method of managing the binding for a remote procedure call in
which a remote procedure call passes a binding handle as its first parameter. The
binding handle is initialized in the application codeSee alscautomatic binding
method, binding handle, implicit binding method .

export

1. RPC: (1) To place the server binding information associated with an RPC interface
or a list of object UUIDs or both into an entry in a hame service database. (2)
To provide access to an RPC interface.

2. DFS: Offering data or making data available to another system. For example,
hosts must export a local DCE LFS or non-LFS aggregate to make it available
in the DCE namespace.

extended privilege attribute certificate (EPAC)
Contains authorization information specific to the user, such as groups to which the
user belongs. EPACs are used to authorize users; that is, to help a server decide
whether users should be granted access to resources that the server manages.

extended registry attribute (ERA)
An attribute attached to a registry object, created using the ERA API interfaces.

fault
RPC: An exception condition, occurring on a server, that is transmitted to a client.

file exporter
DFS: The part of a file server machine’s kernel that responds to file or directory
information requests from the client's cache manager.

GL-34

Glossary

file server machine
DFS: A system that maintains one or more local file systems on disk and makes them
available (exports them) to other nodes through the file exporteee alsoserver
machine

file system
DFS: A mountable subtree of the directory hierarchy.

fileset
DFS: A hierarchical grouping of files managed as a single unit. DCE LFS supports
multiple filesets within a single aggregate; in other file systems used with DFS, filesets
are equivalent in size to a partition.

fileset database machine
DFS: A server machine in a cell that houses the FLBBe alscserver machine

fileset family
DFS: In the DFS backup system, a collection of one or more fileset entries. It defines
a group of filesets to be backed up together (at the same time and in the same manner).

fileset family entry
DFS: A single definition in a DFS backup system fileset family. It defines a collection
of filesets in terms of their common site, their prefix, or botBee alscsite.

fileset header
DFS: Part of the data structure that records information about a fileset. The fileset
header records status information such as the the current size of the fileset, the quota
of the fileset, and the ID number of the fileset. Information such as the fileset ID is
also stored in the entry for the fileset in the FLDB.

fileset ID number
DFS: A number that uniquely identifies each fileset. The read/write and backup
versions of a fileset each have their own fileset ID; all copies of the read-only version
share the same fileset ID.

fileset label

DFS: A file containing information about a fileset, such as its name, fileset ID, unique
identifier, type, and status.

GL-35

Glossary

fileset location database (FLDB)
DFS: A database that records the location and other status information about available
DCE LFS and non-LFS filesets, allowing transparent data access. To be available, a
fileset must be exported, registered in the FLDB, and mounted in DFS. The FLDB is
maintained by the FL server.

fileset location server (FL server)
DFS: A server process that runs on fileset database machines and maintains the FLDB,
which tracks the locations of all DCE LFS and non-LFS filesets.

fileset module
DFS: The part of the cache manager that maintains a list of accessed filesets, their
mounted positions in the global file system tree, and their physical locations.

fileset name
DFS: A name that uniquely identifies each fileset. All versions of a fileset have
the same name; the read-only and backup versions ha@aelonly and .backup
extensions.

fileset quota
DFS: A disk space limit that a system administrator imposes on each read/write fileset.

fileset registry
DFS: The part of the file exporter that stores information about filesets residing on
the local machine.

fileset server
DFS: A server process that runs on all file server machines. It provides the interface
for system administrators to perform all tasks that treat a fileset as a unit, including
creating, deleting, backing up, cloning, and moving.

filespace
DFS: The global file system made available to all cells in DCE by DFS. Every entry
for a file or directory in DFS resides in the DFS filespacgee alsdDistributed File
Service, DCE

filter

An assertion about the presence or value of certain attributes of an entry in order to
limit the scope of a search.

GL-36

Glossary

filter directives

filter rules

filter subject

Specifies the conditions that must be satisfied before audit records are written, and

where to write these records: the audit trail file or the console.

The prescribed procedure used to resolve overlapping directives from different filters.

Denotes the principal, group, or cell to which the filter applies. The filter subject is
the client of the distributed application program that caused the event to occur. A
filter is always associated with one and only one filter subject.

first-level DSA

GDS: A DSA that holds the master entry of a first-level obje&ee alsdirst-level
object.

first-level object

FL server

FLDB

flush

foreign cell

GDS: A directory object that is an immediate subordinate to the root.

Seefileset location server

Seefileset location database

DFS: To force the cache manager to discard data from the local cache, so that the next
time an application requests the data, the data must be fetched from the file exporter.

A cell other than the one to which the local machine belon§ge alsdocal cell.

foreign cell surrogate

Principals (whose names are in the foknbtgt/ cell_namé that are maintained in the
registry database for the purpose of intercell authentication. To accomplish intercell
authentication, the foreign cell surrogates in each cell's registry share a secret key.
This secret key is known to both the local and foreign cell’'s authentication service.
It is through their surrogates that two instances of the authentication service are able
to convey information about their respective principals to one another, thus enabling

GL-37

Glossary

a principal from one cell to acquire a ticket to a principal in another c&ke also

trust peer.

full dump
DFS: A dump set in the DFS backup system that includes all of the data from a fileset.
A full dump is different from an incremental dumpSee alsadump, incremental
dump.

full name
CDS: The complete specification of a CDS name, including all parent directories in
the path from the cell root to the entry being named.

full pointer
RPC: A pointer without the restrictions of a reference pointer.

full restore

DFS: In the DFS backup system, a full restore returns a fileset to its state when last
dumped. The resultant fileset includes data from the last full dump and all subsequent
incremental dumps, if any. A full restore is different from a date-specific restore.
See alsalate-specific restore restore.

fully bound binding handle
RPC: A server binding handle that contains a complete server address including an
endpoint. See alsgartially bound binding handle.

function
A programming language construct, modeled after the mathematical concept. A
function encapsulates some behavior. It is given some arguments as input, performs
some processing, and returns some results. Also known as procedures, subprograms
or subroutines. See alsmperation.

GDA
SeeGlobal Directory Agent.

GDS

SeeDCE Global Directory Service.
generic interface

The interface, defined at a level that is independent of any particular programming
language.

GL-38

Glossary

gigabyte (GB)
A unit of measurement for storage capacity equal to 1,073,741, kigtes.

Global Directory Agent (GDA)
A DCE component that makes it possible for the local CDS to access nhames in foreign
cells. The GDA provides a connection to foreign cells through either GDS or DNS.

global name
A name that is universally meaningful and usable from anywhere in the DCE naming
environment. The prefik.. indicates that a name is global.

global server
DTS: A server that frequently provides its clock value to courier servers on other
LANSs, or infrequently provides its clock value to systems that have failed to obtain
the specified number of servers locally.

global set
DTS: The group of global servers in a network.
glue layer
DFS: The VFS+ functions that integrate the token and authentication requirements of
the DCE environment with the standard VFS functions available to a file system.
group

1. RPC: A name service entry that corresponds to one or more RPC servers that
offer common RPC interface(s), RPC object(s), or both. A group contains the
names of the server entries, other groups, or both that are members of the group.
See alsd\SI group attribute .

2. Security: Data that associates a named set of principals who can be granted
common access rights. Also, the second field of a subject identifier.

group member
RPC: A name service entry whose name occurs in the grdsge alsayroup.

handle

RPC: An opaque reference to informatioisee alsdinding handle, context handle
interface handle, name service handlethread handle.

GL-39

Glossary

hierarchical cell

A cell that is either a parent or a child of another cell.

high convergence

home cell

host ID

host module

A setting that controls the degree to which CDS attempts to keep all replicas
of a directory consistent. High convergence means CDS makes one attempt to
immediately propagate an update to all replicas. If that attempt fails (for example, if
one of the replicas is unavailable), the software schedules a skulk for within 1 hour.
Under normal circumstances, a skulk occurs at least once every 12 hours on a directory
with high convergence. High convergence is expensive, so constant use of it is not
advisable. To control convergence, you modify a directo@BS_Convergence
attribute. See alsdow convergence medium convergence

Seelocal cell.

Seenetwork address

DFS: The part of the file exporter that associates information with each cache
manager’'s request. This information includes the state of the client that made the
call and authentication information about the user who made the request.

idempotent semantics

IDL

RPC: A characteristic of a procedure in which executing it more than once with
identical input always produces the same result, without any undesirable side effects;
for example, a procedure that reads a particular block of an immutable file is
idempotent. DCE RPC supports maybe and broadcast semantics as special forms
of idempotent operations.See alsaat-most-once semantigsbroadcast semantics

maybe semantics

Seelnterface Definition Language

IDL compiler, DCE

GL—-40

RPC: A compiler that processes an RPC interface definition and optional ACF to
generate client and server stubs, header files, and auxiliary fe® alsdnterface
Definition Language, stub.

Glossary

illegal
A violation of an architecture rule that an implementation is required to repBge
also unpredictable.

immediate delegation target
An object on which a client directly performed an operation.

immediate subclass
A subclass, of a class C, having no superclasses that are themselves subclasses of C.

immediate subobject
One object that is a value of an attribute of another.

immediate subordinate
In the DIT, an entry is an immediate subordinate of another if its DN is formed by
appending its RDN to the DN of the other entry.

immediate superclass
The superclass, of a class C, having no subclasses that are themselves superclasses of
C.

immediate superior
In the DIT, an entry is the immediate superior of another if its DN, followed by the
RDN of the other, forms the DN of the other entry.

immediate superobject
One object that contains another among its attribute values.

impersonation
Transmission of a delegation initiator's identity in a manner than does not preserve
the identities of participants in the call chain.

implicit binding method
RPC: The implicit method of managing the binding for a remote procedure call in
which a global variable in the client application holds a binding handle that the client
stub passes to the RPC runtimeSee alsocautomatic binding method, binding
handle, explicit binding method.

GL-41

Glossary

import

1. RPC: To obtain binding information from a name service database about a server
that offers a given RPC interface by calling the RPC NSI import operation.

2. RPC: To incorporate constant, type, and import declarations from one RPC
interface definition into another RPC interface definition by means of the IDL
import statement.

inaccessible
XOM: Said of an object for which the client does not possess a valid designator or
handle.

inaccuracy
DTS: The bounded uncertainty of a clock value as compared to a standard reference.

incremental dump
DFS: A dump set in the DFS backup system that includes only data from a fileset
that changed since the previous dump. An incremental dump is different from a full
dump. See alsaump, full dump.

index priority
Priority of an attribute type in search queries.

index window
A navigation aid in the CDS browser. When the namespace is in the display window,
dragging the slider up and down the vertical scroll bar produces a rectangular box
called the index window. The index window displays the name where the slider
is currently positioned; releasing mouse button 1 causes the browser to position that
name at the top of the window.

information architecture
GDS: Describes the representation of the information stored in OM objects and the
hierarchical relationships between different classes of OM objects.

initial DSA
GDS: The master DSA of the directory schema.

initiator
The initial client in a delegation call chain.

GL—42

Glossary

instance
XOM: An object in the category represented by a class.

instance UUID
RPC: An object UUID that is associated with a single server instance and is provided
to clients to unambiguously identify that instanceSee alsoobject UUID, server

instance
integrity
A protection level that can be specified in secure RPC communications that ensures
that data transferred between two principals has not been modified in transit.
interface

See alsAPIl, RPC interface, SPI.

interface definition
RPC: A description of an RPC interface written in the DCE Interface Definition
Language (IDL).See alsdRPC interface.

Interface Definition Language (IDL)
RPC: A high-level declarative language that provides the syntax for interface
definitions. The file syntax of the IDL interface definition is part of the NGee
alsoIDL compiler, DCE.

interface handle
RPC: A reference in code to an interface specificationSee alsointerface
specification

interface identifier
RPC: A string containing the interface’s UUID and major and minor version numbers
of a given RPC interface.See alsdRPC interface.

interface specification
RPC: An opaque data structure, generated by the DCE IDL compiler from an
interface definition, that contains identifying and descriptive information about an
RPC interface. See alsdnterface definition, interface handle, RPC interface.

GL-43

Glossary

interface UUID
RPC: The UUID generated for an RPC interface definition via the UUID generator,
uuidgen. See alsanterface definition, RPC interface, Universal Unique Identifier
(UUID).

intermediary
A server acting on behalf of an initiator, via delegation or impersonation, making
requests to another target server.

intermediate data type
Any of the basic data types in terms of which the other, substantive data types of the
interface are defined.

international character
A character that is not a member of the DCE PCS character set and so is not guaranteed
to be supported in a DCE environment. Programmers writing RPC applications that
use international characters build support for them into their applications by using
user-provided or DCE RPC features for international character support.

interval
DTS: The combination of a time value and the inaccuracy associated with it; the range
of values represented by a combined time and inaccuracy notation. As an example,
the interval 08:00.00100:05:00 (8 o’clock, plus or minus 5 minutes) contains the time
07:57.00.

invoke ID
An integer used to distinguish one (directory) operation from all other outstanding
ones.

IP

Seelnternet Protocol.

job ID number
DFS: A number assigned to each operation by the DFS backup system when the
backup system is used in interactive mode. It is distinct from the dump ID number
assigned to a dump setSee alsadump ID number.

junction

A specialized entry in the DCE namespace containing binding information to enable
communications between different implementations of the directory service.

GL-44

Glossary

Kerberos
The authentication protocol implemented by DCE shared-secret authentication.
Kerberos was developed at the Massachusetts Institute of Technology. In classical
mythology, Kerberos was the three-headed dog that guarded the entrance to the
underworld.

key

A value used to encrypt and decrypt dat&ee alsceencryption key.

key management facility
A DCE security facility that enables noninteractive principals to manage their secret
keys.

keytab file
A security file that contains the encryption keys for server processes (for example,
DFS processes) that run on the host machine. Typically, encryption keys for human
principals are not stored in a keytab fil&See alseencryption key.

kilobyte (KB)
A unit of measurement for storage capacity equal to 10212) (2ytes.

knowledge reference
Knowledge that associates, either directly or indirectly, a DIT entry with the DSA in
which it is located.

LAN
Seelocal area network.

leaf entry
A directory entry that has no subordinates. It can be an alias entry or an object entry.

leap seconds
An infrequent adjustment to UTC to account for the irregularity of the earth’s rotation.

LFS, DCE
Seelocal file system, DCE

GL-45

Glossary

little endian
An attribute of data representation that reflects how multioctet data is stored in
memory. In little endian representation, the lowest addressed octet of a multioctet
data item is the least significantSee alsdig endian.

load balancing
DFS: Distributing system load evenly across file server machines by placing frequently
accessed DCE LFS filesets among available file server machines.

local application thread
RPC: An application thread that executes within the confines of one address space
on a local system and passes control exclusively among local code segnee¢s.
alsoapplication thread, RPC thread, client application thread, server application
thread.

local area network (LAN)
A set of computers sharing a network that does not include bridges or WAN links.

local audit trail file
The audit trail file that is specified by the user, using any convenient pathname. This
is specified when the audit daemon is started. If the file name is not an absolute
pathname, the file is created in tkdcelocal>/var/audit/adm directory.

local cell
The cell to which the local machine belong&ee alsdoreign cell.

local DSA
GDS: A DSA that is resident on the same computer as the DUA.

local file system, DCE (DCE LFS)
DFS: The high-performance, log-based file system provided by DCE. DCE LFS
supports multiple filesets within a single aggregate, fileset replication, fast system
restarts, and DCE ACLs.

local name
A name that is meaningful and usable only from within the cell where the entry exists.
The local name is a shortened form of a global name. Local names begin with the
prefix/.: (or the prefix/: for names in the DFS filespace) and do not contain a cell
name.

GL-46

Glossary

local server

local set

local type

lock token

DTS: A server that synchronizes with its peers and provides its clock value to other
servers and clerks on the same LAN.

DTS: All of the servers in a particular LAN.

RPC: A type named in grepresent_as] clause and used by application code to
manipulate data that is passed in a remote procedure call as a network3geealso
network type.

DFS: A token that allows a client to place a lock on a range of bytes in a file. Read
and write lock tokens are available.

DFS: A record of the actions of a program or system and any changes to data associated
with those actions. DCE LFS also maintains a log of changes to metadata on each
LFS aggregate.

log-based file system

login facility

DFS: A file system in which changes to metadata are recorded in a log associated
with the aggregate on which that file system is located. DCE LFS is a log-based file
system. See alsdog.

A DCE security facility that enables a principal to establish its identity and assume
other identities.

low convergence

A setting that controls the degree to which CDS attempts to keep all replicas of a
directory consistent. Low convergence means CDS does not immediately propagate
an update; it simply waits for the next skulk to distribute all updates that occurred
since the last skulk. Skulks occur at least once every 24 hours on directories
with low convergence. Low convergence helps conserve resources by avoiding
update propagations between skulks. To control convergence, you set a directory’s
CDS_Convergenceattribute. See alschigh convergence medium convergence

GL-47

Glossary

manager

RPC: A set of remote procedures that implement the operations of an RPC interface
and that can be dedicated to a given type of objesee alsmbject, RPC interface.

manager entry point vector (manager EPV)

RPC: The runtime code on the server side uses this EPV to dispatch incoming remote
procedure calls. See alscentry point vector, manager.

marshalling

RPC: The process by which a stub converts local arguments into network data and
packages the network data for transmissid®ee alsmetwork data, unmarshalling.

mask

1. With respect to DCE ACLs, a set of permissions that may be intersected (logically
ANDed) with another set of permissions associated with a specified privilege

attribute in order to yield the effective permissions for principals that possess that
privilege attribute.

2. To apply a mask.

3. DFS: A pattern of bits or characters used to control the retention or elimination

of portions of another pattern of bits or characters, usually through an AND or
OR operation.

4. GDS: Refers to the administration screen interface menus.

mask_obj mask

When supported by an ACL manager type, thask_objmask represents the greatest
set of security: an optional alternate name for a primary name in the registry database.
Aliases and the primary name for which they are an alternate share the same UUID and

UNIX ID permissions granted to principals other than those that matcligbe obj
or other_obj.

master DSA
GDS: The DSA that contains the master entry of an object.

master entry

GDS: The original entry of an object. This is the entry in the DSA that is specified
in the master knowledge attribute of the entry.

GL-48

Glossary

master information
GDS: The information from the master entries.

master knowledge attribute
GDS: An attribute that designates the master DSA of an entry.

master replica

1. The first instance of a specific directory in the namespace. Once copies of the
directory have been made, it is possible to designate a different replica as the
master if necessary, but only one master replica of a directory can exist at a time.
CDS can create, update, and delete object entries and soft links in a master replica.

2. Security: An instance of a security server that accepts queries and updates to
its associated registry database. The master replica dynamically propagates its
updates to slave replicas. Each cell has only one master repliea. alscslave
replica.

maybe semantics
RPC: A form of idempotent semantics that indicates that the caller neither requires
nor receives any response or fault indication for an operation, even though there is
no guarantee that the operation completed. An operation with maybe semantics is

implicitly idempotent and lacks output parameterSee als@t-most-once semantics
broadcast semanticsidempotent semantics

medium convergence

A setting that controls the degree to which CDS attempts to keep all replicas of

a directory consistent. Medium convergence means CDS makes one attempt to
immediately propagate an update to all replicas of the directory in which a change

was just made. If the attempt fails, the software lets the next scheduled skulk take
care of making the replicas consistent. Skulks occur at least once every 12 hours on
a directory with medium convergence. When you create a namespace, the default
setting on the root directory is medium. To control convergence, you set a directory’s

CDS_Convergenceattribute. See alschigh convergence low convergence

megabyte (MB)
A unit of measurement for storage capacity equal to 1,048,5% t¥tes.

GL-49

Glossary

metadata
The structural data associated with the file system, such as the organization of
directories, inode tables, and links. Metadata is not data supplied by a user; it is
information about the structure of user data.

minimally consistent
Said of an object that satisfies various conditions set forth in the definition of its class.

monitoring window
DFS: A separate terminal session dedicated to tracking the activities of a tape
coordinator on a tape coordinator machine. A monitoring window must run on the
same machine as the tape coordinator and tape drive it is monitoring.

mount point
DFS: An access point to a fileset in the DFS file tree. Once a fileset has been
mounted, the resulting mount point looks and acts like a directory in the file tree.

mount-level directory
DFS: The top-level directory of a mounted fileset. It becomes transparently equivalent
to the mount point for that fileset after the fileset is mount&ke alsanount point.

multihomed servers
multivalued attribute

A collection of attribute instances of the same attribute type attached to a single
registry object.

mutex
A synchronization object that provides mutual exclusion among threads. A mutex
is often used to ensure that shared variables are always seen by other threads in a
consistent state.

name

GDS: A construct that singles out a particular directory object from all other objects.
A name must be unambiguous (that is, denote just one object); however it need not
be unique (that is, be the only name that unambiguously denotes the object).

GL-50

Glossary

name service handle
RPC: An opaque reference to the context used by the series of next operations called
during a specific NSI search or inquiry.

Name Service Interface (NSI)
RPC: A part of the application programming interface of the RPC runtime. NSI
routines access a name service, such as CDS, for RPC applications.

name-based authorization
Provides a server with the client’s principal nam8ee alsdCE authorization.

namespace

A complete set of CDS names (these can include directories, object entries, and soft
links) that one or more CDS servers look up, manage, and share. CDS names are
stored in directory replicas in clearinghouses at each server. The logical picture of
a namespace is a hierarchical tree of all of those directories, with the root directory
at the top, and one or more levels of directories beneath the root directory. The
physical implementation of the namespace consists of directories replicated in one or
more clearinghouses in the network.

naming attribute
An attribute used to form the RDN of an entry.

NCA
SeeNetwork Computing Architecture .

NDR
SeeNetwork Data Representation

network address
RPC: An address that identifies a specific host on a network.

Network Computing Architecture (NCA)
RPC: An architecture for distributing software applications across heterogeneous
collections of networks, computers, and programming environments. NCA specifies
the DCE RPC architecture.

network data

RPC: Data represented in a format defined by a transfer synfsee alsaransfer
syntax.

GL-51

Glossary

Network Data Representation (NDR)

RPC: The transfer syntax defined by the NE3ee alsdransfer syntax.

network descriptor

RPC: The identifier of a potential network channel, such as a UNIX socket.

network protocol

A communications protocol from the Network Layer of the OSI network architecture,
such as the IP.

Network Time Protocol (NTP)

Internet-recommended time standard.

network type

node

RPC: A type defined in an interface definition and referenced [represent_as]
clause that is converted into a local type for manipulation by application c&®ke
alsolocal type.

A computer connected to a network.

nonspecific subordinate reference

NSI

NSI attribute

A knowledge reference that holds information about the DSA that holds one or more
unspecified subordinate entries.

SeeName Service Interface

RPC: An RPC-defined attribute of a name service entry used by the DCE RPC name
service interface. An NSI attribute stores one of the following: binding information,
object UUIDs, a group, or a profile.See alsoNSI binding attribute , NSI group
attribute, NSI object attribute, NSI profile attribute .

NSI binding attribute

GL-52

RPC: An RPC-defined attribute (NSI attribute) of a name service entry; the binding
attribute stores binding information for one or more interface identifiers offered by
an RPC server and identifies the entry as an RPC server erge alsabinding
information, NSI object attribute, server entry.

Glossary

NSI group attribute
RPC: An RPC-defined attribute (NSI attribute) of a name service entry that stores
the entry names of the members of an RPC group and identifies the entry as an RPC
group. See alsaroup.

NSI object attribute
RPC: An RPC-defined attribute (NSI attribute) of a name service entry that stores the
object UUIDs of a set of RPC objectsSee alsmbject.

NSI profile attribute
RPC: An RPC-defined attribute (NSI attribute) of a hame service entry that stores a
collection of RPC profile elements and identifies the entry as an RPC proSke
also profile.

NTP
SeeNetwork Time Protocol.

NULL
The value of a pointer that indicates that the pointer does not point to data.

null binding handle
RPC: A binding handle containing the NULL valueSee alsdinding handle.

object

1. A data structure that implements some feature and has an associated set of
operations.

2. RPC: For RPC applications, an object can be anything that an RPC server defines
and identifies to its clients (using an object UUID). Often, an RPC object is a
physical computing resource such as a database, directory, device, or processor.
Alternatively, an RPC object can be an abstraction that is meaningful to an
application, such as a service or the location of a sen&ee alsmbject UUID.

3. XDS: Anything in some “world,” generally the world of telecommunications and
information processing or some part thereof, that is identifiable (can be named)
and for which the DIB contains some information.

4. XOM: Any of the complex information objects created, examined, modified, or
destroyed by means of the interface.

GL-53

Glossary

5. DFS: A file or directory in a file system. Directories can be further classified as
container objects.

object class
CDS, GDsS: An identified family of objects that share certain characteristics. An
object class can be specific to one application or shared among a group of applications.
An application interprets and uses an entry’s class-specific attributes based on the class
of the object that the entry describes.

Object Class Table (OCT)
A recurring attribute of the directory schema with the description of the object classes
permitted.

object entry
CDS: The name of a resource (such as a node, disk, or application) and its associated
attributes, as stored by CDS. CDS managers, client application users, or the client
applications themselves can give a resource an object name. CDS supplies some
attribute information (such as a creation timestamp) to become part of the object, and
the client application can supply more information for CDS to store as other attributes.
See alse@entry.

object identifier
A value (distinguishable from all other such values) that is associated with an
information object. (X.208)

object management
The creation, examination, modification, and deletion of potentially complex
information objects.

object name
A CDS name for a network resource.

object UUID
RPC: The universal unique identifier that identifies a particular RPC object. A server
specifies a distinct object UUID for each of its RPC objects; to access a particular
RPC object, a client uses the object UUID to find the server that offers the object.
See alsmbject, Universal Unique Identifier.

OCT
SeeObject Class Table

GL-54

Glossary

octet
An 8-bit quantity of data.

oM
SeeXOM.

OM attribute
An OM attribute comprises one or more values of a particular type (and therefore

syntax).

OM class
A static grouping of OM objects, within a specification, based on both their semantics
and their form.

opaque

A piece of data or a data type whose contents are not visible to the application routines
that use it.

opague structure
A data item or data type whose structure is hidden from the code that is handling it.

Open Systems Interconnection (OSI)
The interconnection of open systems in accordance with ISO standards.

open token
DFS: A token that grants the right to open a file. The types of tokens available are
as follows: normal reading, normal writing, executing, shared reading, and exclusive
writing. See alsdoken.

operation

1. A set of step-by-step actions specified by a procedure, function, or routine.
2. RPC: The task performed by a given routine or procedure.

3. GDS: Processing performed within the directory to provide a service, such as a
read operation. It is given some arguments as input, performs some processing,
and returns some results. An application process invokes an operation by calling
an interface function.

GL-55

Glossary

organization
Data that associates a named set of users who can be granted common access rights
that are usually associated with administrative policy. Also, the third field of a subject
identifier.

orphaned call
RPC: A call executing in an RPC server after the client that started the call fails or
loses communications with the server.

oSl

SeeOpen Systems Interconnection
PAC

Seeprivilege attribute certificate .
package

A specified group of related OM classes, denoted by an object identifier.

package closure
The set of classes that need to be supported in order to be able to create all possible
instances of all classes defined in the package.

PAG
Seeprocess activation group

parent cell
DFS: A cell that has an entry for a child cell in its CDS namespace. The child cell
is represented as a child pointer in the root directory of the CDS namespace. The
name of the parent cell becomes a prefix in the name of another cell. A parent cell
can also be the child of another parent ceBee alscierarchical cell.

parent directory
Any directory that has one or more levels of directories beneath it in a cell namespace.
A directory is the parent of any directory immediately beneath it in the hierarchy.

parent dump level
DFS: An entry in the dump hierarchy that is used as the reference point for dumps
made at an incremental dump level. Both a full dump level and another incremental
dump level can serve as a parenSee alsodump, dump hierarchy, full dump,
incremental dump.

GL-56

Glossary

parent ID number
DFS: A fileset ID number stored in a fileset header. If the fileset being examined is
a read/write fileset, the parent ID is its fileset ID. If the fileset being examined is a
read-only or backup copy of a read/write fileset, the parent ID is the fileset ID of the
read/write fileset. See alsdileset ID number.

partially bound binding handle
RPC: A server binding handle that contains an incomplete server address lacking an
endpoint. See alsdully bound binding handle.

password
A string presented by a principal to prove its identity. The login facility transforms
this string to generate an encryption key that is used by the authentication service
to authenticate the principal. Server principals usually bypass the string-to-key
transformation and present an encryption key to the authentication service for
authentication. See alseencryption key.

PCS
SeePortable Character Set

peer trust
A type of trust relationship established between two cells by means of a secret key
shared by mutual authentication surrogates maintained by the two cells. A peer trust
relationship enables principals in the one cell to communicate securely with principals
in the other.

permission

1. The modes of access to a protected object. In DCE security, the number and
meaning of permissions with respect to the object are defined by the ACL manager
of the object. See alsaccess control list

2. GDS: One of five groups that assigns modes of access to usei®DIFY
PUBLIC, READ STANDARD, MODIFY STANDARD , READ SENSITIVE,
or MODIFY SENSITIVE . See alsaccess control list

person
The name assigned to a DCE principal. The registry database contains the person
objects with which accounts can be associated. Also, the first field of a subject
identifier.

GL-57

Glossary

pickle
An encoding of a typed value in a byte stream. Pickles are useful for storing or
transmitting typed values in typeless media. The type of value contained in a pickle
may be understood from context or represented in the pickle itself.
pipe
1. RPC: A mechanism for passing large amounts of data in a remote procedure call.
2. RPC: The data structure that represents this mechanism.
PKSS
Seeprivate key storage server
plaintext

The input to an encryption function or the output of a decryption function. Decryption
transforms ciphertext into plaintext.

Portable Character Set (PCS)
The DCE PCS is the group of characters for which DCE guarantees support. The
DCE RPC runtime requires that all DCE RPC clients and servers support the DCE
PCS. The IDL base type specifierbar andidl_char identify DCE PCS characters.

position (within a string)
The ordinal position of one element of a string relative to another.

position (within an attribute)
The ordinal position of one value relative to another.

potential binding
RPC: A specific combination of an RPC protocol sequence, RPC protocol major
version, network address, endpoint, and transfer syntax that an RPC client can use
to establish a binding with an RPC serveiSee alsobinding, endpoint, network
address RPC protocol sequenceRPC protocol, transfer syntax.

predicate

1. A Boolean logic term denoting a logical expression that determines the state of
some variable(s). For example, a predicate can be an expression stating that
"variable A must have the value 3." The control expression used in conjunction
with condition variables is based upon a predicate. Use a condition variable to

GL-58

Glossary

wait for some predicate to become true; for example, to wait for something to be
in a queue.

2. Audit Service: The criteria used to select audit records in an audit trail file.
This is used in creating audit trail analysis and examination programs that read a
select number of records from the audit trail file.

presentation address
An unambiguous name that is used to identify a set of presentation service access
points. Loosely, it is the network address of an OSI serviGee alsaaddress

Presentation Service Access Point (PSAP)
Address of an OSI communications partner. It addresses an application in a computer.

presented type
RPC: For data types with the IDiransmit_as attribute, the data type that clients and
servers manipulate. Stubs invoke conversion routines to convert the presented type
to a transmitted type, which is passed over the netwdslee alsdransmitted type.

primary alias
The default name for a cell that has multiple cell aliases. This is the name of the
cell that the system will return when aske&ee alsalias.

primary name
The string name of an object to which any aliases for that object refer. DCE refers
to objects by their primary names, although DCE users can refer to them by their
aliases.

primary representation
The form in which the service supplies an attribute value to the client.

primitive binding handle
RPC: A binding handle whose data type in IDLHandle_t and in application code
is rpc_binding_handle_t See alsacustomized binding handle

principal
An entity that is capable of believing that it can communicate securely with another
entity. In DCE, principals are represented as entries in the registry database and
include users, servers, computers, and authentication surrogates.

GL-59

Glossary

principal identifier
The name used to identify a principal uniquely. In DCE, principal identifiers are
implemented as UUIDs.

privacy
A protection level that may be specified in secure RPC communications and that
encrypts RPC argument values.

private key
The key needed by a principal in public key authentication. It is half of the key pair
used in public key authentication. The other half is the public key. This method of
public and private key pair usage constitutes the public key protocol.

private key storage server
A server that stores private keys in such a way that only their true owners can retrieve
them.

private object

1. XDS: An OM object created in a workspace by using the object management
functions. The term is simply used for contrast with a public object.

2. XOM: An object that is represented in an unspecified fashion.

privilege attribute
An attribute of a principal that can be associated with a set of permissions. DCE
privilege attributes are identity based and include the principal’'s name, group
memberships, and native cell.

privilege attribute certificate (PAC)
Data, describing a principal's privilege attributes, that has been certified by an
authority. In DCE, the privilege service is the certifying authority and seals the
privilege attribute data in a ticket. The authorization protocol, DCE authorization,
determines the permissions granted to principals by comparing the privilege attributes
in PACs with entries in an ACL.

privilege required
DFS: The administrative privilege required to issue a DFS command that affects
filesets or DFS server processes. Administrative privilege for a DFS server process
is granted to a user who is listed in the administrative list for that server process.
also administrative list.

GL-60

Glossary

privilege service
One of the services provided by DCE security; the privilege service certifies a
principal’s privileges.

procedure declaration
RPC: The syntax for an operation, including its name, the data type of the value it
returns (if any), and the number, order, and data types of its parameters (if any).

process activation group (PAG)
DFS: A unique identifier that the DFS cache manager associates with a user's DCE
credentials. The cache manager identifies the user’s credentials by the associated
PAG to allow the user authenticated access to DFS. Processes forked from the user’s
login process inherit the PAG to allow for authenticated access to DFS. The cache
manager stores the PAG in the kernel of the DFS client.

process entry
DFS: A definition in theBosConfigfile that determines a server process to run, the
process’s type, and any command parameters used by the process.

profile
RPC: An entry in a name service database that contains a collection of elements
from which NSI search operations construct search paths for the database. Each
search path is composed of one or more elements that refer to name service entries
corresponding to a given RPC interface and, optionally, a given objSee alsd\SI
profile attribute , profile element

profile element
RPC: A record in an RPC profile that maps an RPC interface identifier to a profile
member (a server entry, group, or profile in a name service databaSef also
group, interface identifier, profile, server entry.

profile member
RPC: A name service entry whose name occupies the member field of an element of
the profile. See alsrofile.

project list

A list of all the groups in which a principal is a member. The project list is used to
determine the principal’s access rights to objec&ee alsqrincipal .

GL-61

Glossary

protection level
The degree to which secure network communications are protected.

protocol sequence
SeeRPC protocol sequence

protocol sequence vector
RPC: A data structure that contains an array-size count and an array of pointers to
RPC protocol-sequence stringSee alsdRPC protocol sequence

PSAP
SeePresentation Service Access Point

public key
An authentication protocol that works via public and private key pairs. The protocol
is used by security clients and servers to obtain TGTs for users during login, and
which is the first part of user-authentication process. This method of public and
private key pair usage constitutes the public key protocol.

public object

1. XOM: An object that is represented by a data structure whose format is part of
the service’s specification.

2. XDS: A descriptor list that contains all of the OM attributes of an OM object.

purported name
A construct that is syntactically a name but that has not yet been shown to be a valid
name.

RDN
SeeRelative Distinguished Name

read access
An access right that grants the ability to view CDS data.

read-only fileset
DFS: A fileset created by replicating a read/write fileset. A read-only fileset is also
referred to as a read-only replica or a read-only verSiea alsdackup fileset read/
write fileset.

GL-62

Glossary

read-only replica
A copy of a CDS directory in which applications cannot make changes. Although
applications can look up information (read) from it, they cannot create, modify, or
delete entries in a read-only replica. Read-only replicas become consistent with
other, modifiable replicas of the same directory during skulks and routine propagation
of updates.

read/write fileset
DFS: The single version of a fileset that houses the modifiable versions of files and
directories. The read/write fileset is the original version for which an FLDB entry
is allocated. It serves as the source fileset for its associated read-only and backup
filesets. Itis also referred to as the read/write source or read/write ver8en.also
backup fileset read-only fileset

read/write mount point
DFS: A type of mount point that instructs the cache manager to access only the exact
fileset specified in the mount point, not its read-only versi@ee alsanount point,
regular mount point.

realm
A cell, considered exclusively from the point of view of security; this term is used
in Kerberos specifications. In DCE documentation, the term “cell” designates the
basic unit of DCE configuration and administration, and incorporates the notion of a
realm.

recurring attribute
An attribute with several attribute values.

reentrant service
A service that is safe to call from multiple threads in parallel. If a service is reentrant,
there is no burden placed on calling routines to serialize their access or take other
explicit precautions. See alsdhread-serial service thread-synchronous service

reference monitor
Code that controls access to an object. In DCE, servers control access to the objects
they maintain; and for a given object, the ACL manager associated with that object
makes authorization decisions concerning the object.

GL-63

Glossary

reference pointer
RPC: A non-null pointer whose value is invariant during a remote procedure call and
cannot point at aliased storage.

referral
An outcome that can be returned by a DSA that cannot perform an operation itself.
The referral identifies one or more other DSAs more able to perform the operation.

register
1. RPC: To list an RPC interface with the RPC runtime.
2. RPC: To place server-addressing information into the endpoint map.

3. RPC: To insert authorization and authentication information into binding
information. See alsendpoint map, RPC interface.

registry database
A database of information about persons, groups, organizations, and accounts.

registry object
A data node in the registry database. Registry objects are of the following
object types: principal, group, org, directory, policy, replist (replica list), and
xattrschema There are many nodes of thgincipal, group, org and directory
types. There is only one node each for fiadicy, replist and xattrschema types.

registry replica
A read-only instance of a registry database.

registry service
One of three services provided by DCE security; the registry service manages account
information for principals. The other services are the privilege service and the
authentication service.

regular mount point
DFS: The most common type of mount point. If the fileset it names is a read/write
fileset, the cache manager is free to access a read-only version of the fileset (if one
exists). See alsanount point, read/write mount point.

GL-64

Glossary

Relative Distinguished Name (RDN)
A set of Attribute Value Assertions (AVAS), each of which is true, concerning the
distinguished values of a particular entry.

relative time
A discrete time interval that is usually added to or subtracted from an absolute time.

release replication
DFS: A method of updating read-only copies of filesets. Release replication is not
automatic like scheduled replication; each update must be initiated by an administrator.
See alsaeplication, scheduled replication

remote procedure
RPC: An application procedure located in a separate address space from the calling
code. See alsaemote procedure call

remote procedure call (RPC)
RPC: A procedure call executed by an application procedure located in a separate
address space from the calling cod8ee alsaemote procedure

replica

1. CDS: a copy of a directory in the CDS namespace. The first instance of a
directory in the namespace is the master replica. When CDS managers make
copies of the master replica to store in other clearinghouses, all of the copies,
including the master replica, become part of the directory’s replica Seke also
read-only replica.

2. DFS: A read-only copy of a fileset that contains all the data of the source fileset.
As a full copy of a fileset, a replica can exist on any aggregate. A replica is
different from a clone, which can reside only on the same aggregate as the source
fileset. See alsaclone

3. Security: An instance of the security server and its database. One replica, the
master replica, can accept updates and queries to its database. The slave replica
can accept only queries.

replica set
The set of all copies of a CDS directory. Information about a directory’s replica set is
contained in an attribute of directories and child pointers callexs_Replicas The
attribute contains the type of each replica (master or read-only) and the clearinghouse

GL-65

Glossary

where it is located. When skulking a directory, CDS refers to the directory’s replica
set to ensure that it finds all copies of that directory. During a lookup, CDS can
refer to the replica set in a child pointer when trying to locate a directory that does
not exist in the local clearinghouse.

replication

1. CDS: Making a copy of a CDS directory in another clearinghouse. Replication
can improve availability and load sharingSee alsaeplica.

2. GDS: The process by which copies of objects are created and maintained.

3. DFS: The process of creating read-only copies of a fileset. In DFS, there are two
types of replication: release replication and scheduled replication. Replication
is supported only for DCE LFS filesetsSee alsaelease replication scheduled
replication.

replication server
DFS: A server process used in release replication and scheduled replication. The
replication server tracks the currency of read-only replicas of filesets. It updates each
replica to match its read/write source fileset as appropri@ee alsaeplication.

request buffer
RPC: A first-in, first-out queue where an RPC system temporarily stores call requests
that arrive at an endpoint of an RPC server, until the server can process them.

restore
DFS: The translation of a previously dumped fileset back into fileset format and its
eventual replacement in the file system. The DFS Backup System allows several
different types of restores, including full restores and date-specific restores. The
operation need not involve recovery from other media such as tafes. alsalate-
specific restore dump, full restore.

return value
A function result that is returned in addition to the values of any output or input/
output arguments.

RPC
See alsaemote procedure call DCE remote procedure call

GL-66

Glossary

RPC control program
RPC: An interactive management facility for managing name service entries and
endpoint maps for RPC applications. The program is started bsptiep command.

RPC daemon (rpcd)
RPC: The process that provides the endpoint map service for a system. The RPC
daemon is started by thgpcd command. See alscendpoint map, endpoint map
service

RPC interface
RPC: A logical grouping of operation, data type, and constant declarations that serves
as a network contract for calling a set of remote procedur&ee alsointerface
definition.

RPC protocol
RPC: An RPC-specific communications protocol that supports the semantics of
the DCE RPC API and runs over either connectionless or connection-oriented
communications protocols.

RPC protocol sequence
RPC: A valid combination of communications protocols represented by a character
string. Each protocol sequence typically includes three protocols: a network
protocol, a transport protocol, and an RPC protocol that works with those network and
transport protocols.See alsametwork protocol, RPC protocol, transport protocol.

RPC runtime
RPC: A set of operations that manages communications, provides access to the name
service database, and performs other tasks, such as managing servers and accessing
security information, for RPC applicationsSee alsdRPC runtime library .

RPC runtime library
RPC: Routines of the RPC runtime that support the RPC applications on a system.
The runtime library provides a public interface to application programmers, the
application programming interface (API), and a private interface to stubs, the stub
programming interface (SPIfee alsdRPC runtime.

RPC thread

RPC: A logical thread within which a remote procedure call execut&ee also
thread.

GL-67

Glossary

rpcd
SeeRPC daemon

rundown procedure
RPC: A procedure, typically used with a context handle, that is called following a
communications failure to recover resources reserved by a server for servicing requests
by a particular client. See alsaontext handle

S-stub
The part of the DSA that establishes the connection to the communications network.

salvager
DFS: A program that finds and attempts to repair inconsistencies in DCE LFS
aggregates. The salvager is similar tofsek program in other, non-LFS file systems.

scheduled replication
DFS: A method of updating read-only copies of filesets. Scheduled replication is
automatically performed by the replication server at specified intervabee also
release replication replication.

schema
The directory schema is the set of rules and constraints concerning the DIT structure,
object class definitions, attribute types, and syntaxes that characterize th&S&dB.
also attribute schema

schema entry
A record containing the identifiers and characteristics of an attribute type. A schema
entry is essentially an attribute type definition.

schema object
The registry data node, with the well-known namedtrschema (under the security
junction point, typically/.:/seq, containing the attribute schema information. (Also
called attribute schema object)

scout
DFS: A program that can be run on any machine configured as a DFS client. It
monitors the file exporter running on designated file server machines by periodically
collecting statistics and displaying them in a graphical form&ee alsaattention
threshold, basename disk usage

GL-68

Glossary

seal
To encrypt a record containing several fields in such a way that the fields cannot
be modified without either knowledge of the encryption key or leaving evidence of
tampering.

secondary representation
A second form, an alternative to the primary representation, in which the client can
supply an attribute value to the service.

secondary site
DFS: A read-only site that receives updates to its copy of a DFS administrative
database from the Ubik synchronization site. There can be more than one
secondary site. If necessary, a secondary site can be elected to assume the role
of synchronization site.See alsesynchronization site Ubik.

secret key
A long-lived encryption key known to more than one principal, usually two. In DCE,
each secret key is known to the Authentication Service and one other principal.

segment
Zero or more contiguous elements of a string.

self-pointing type
RPC: A data type containing a pointer member that can point directly or indirectly to
another item of the same type.

SEP line
In an event class file, an entry that specifies the prefixes of the event numbers in the
file. This is an optional entry and is used to speed up the search for events in event
class files.

server

1. RPC: The party that receives remote procedure calls. A given application can
act as both an RPC server and an RPC clieBee alsalient.

2. CDS: A node running CDS server software. A CDS server handles name-lookup
requests and maintains the contents of the clearinghouse or clearinghouses at its
node.

GL-69

Glossary

3. DTS: A system or process that synchronizes with its peers and provides its clock
value to clerks and their client applications.

4. DFS: A provider of resources or serviceSee alscclient.

5. GDS: The server consists of a DSA, which accesses the database, and an S-stub,
which handles the connection over the communications network for responding
to remote clients and accessing remote servers.

server addressing information
RPC: An RPC protocol sequence, network address, and endpoint that represent one
way to access an RPC server over a network; a part of server binding information.
See alsdinding information , endpoint, network address RPC protocol sequence

server application thread
RPC: A thread executing the server application code that initializes the server and

listens for incoming calls. See alsaapplication thread, client application thread,
local application thread, RPC thread.

server binding information
RPC: Binding information for a particular RPC serveBee alsdinding information ,

client binding information .

server entry

1. RPC: A name service entry that stores the binding information associated with
the RPC interfaces of a particular RPC server and also the object UUIDs for
any objects offered by the serveiSee alsdinding information, NSI binding
attribute , object, NSI object attribute, RPC interface.

2. DFS: A unique identifier for a server machine in the FLDB.

server instance
RPC: A server executing in a specific address space; multiple server instances can

coexist on a single systemSee alscserver.

server machine
DFS: A machine that runs one or more DFS server processes. Depending on the

process it runs, a server machine can be further classified as a file server machine, a
system control machine, a binary distribution machine, a fileset database machine, or
a backup database machin&ee alscclient machine

GL-70

Glossary

server module
DFS: The part of the DFS cache manager that provides information for tracking server
activity.

server portion of update server
Seeupserver.

server process
DFS: A process that runs on server machines, providing services such as storing and
transferring files or tracking fileset locations to clientSee alscserver machine

server stub
RPC: The surrogate calling code for an RPC interface that is linked with server
application code containing one or more sets of remote procedures (managers) that
implement the interface.See alscclient stub, manager, stub.

service
RPC: An integral set of RPC interfaces offered together by a server to meet a specific
goal. See alsdRPC interface.

service controls
A group of parameters, applied to all directory operations, that direct or constrain the
provision of the service.

session
A sequence of directory operations requested by a particular user of a particular DUA.
The operations use the same session OM object.

session key
Used in Kerberos specifications; acronym for ‘“conversation key."See also
conversation key

set-id

In event numbers, the component of the event number that identifies a set of events to
which the audit event belongs. In event class numbers, the component of the event
class number that identifies a set of event classes to which the event class belongs.

shadow entry

A copy entry of an object. This is an entry of an object in a DSA other than the
master DSA.

GL-71

Glossary

signal
Threads: To wake only one thread waiting on a condition variabl8ee also
broadcast

signed
Information is digitally signed by appending to it an enciphered summary of the
information. This is used to ensure the integrity of the data, the authenticity of the
originator, and the unambiguous relationship between the originator and the data.

simple bnode
DFS: A bnode that manages a single process that is to be kept running at all times.
See alsdnode basic overseer server

simple name
One element in a CDS full name. Simple names are separatédsikashes).

simple object
An object that does not hold other objects. For example, a file is a simple object.
See alsaontainer object

simple process
DFS: A type of process defined in a server machingtsConfig file. It runs
continuously and can be stopped and restarted independently of any other process
on its machine. See alsacron process simple bnode

site
DFS: The location of a fileset expressed as a specific file server machine and aggregate.
site count
DFS: A count of the number of sites where the read/write and read-only versions of
a fileset reside.
site flags
DFS: A term for the flags associated with each site definition in an FLDB entry. The
flags can indicate the fileset type (read/write or read-only) and other administrative
information.
skew

The time difference between two clocks or clock values.

GL-72

Glossary

skulk

A process by which CDS makes the data consistent in all replicas of a particular
directory. CDS collects all changes made to the master replica since the last skulk
completed, and disseminates the changes from the up-to-date replica to all other
existing replicas of the directory. All replicas of a directory must be available for a
skulk to be considered successful. If a skulk fails, CDS informs you of the replicas
that it could not reach.

slave replica

soft link

An instance of a security server that accepts only queries to its associated registry
database. Slave replicas are updated by the master replica. Each cell can have
many slave replicas.See alsanaster replica

A pointer that provides an alternate name for an object entry, directory, or other soft
link in the namespace. A soft link can be permanent or it can expire after a period
of time that you specify. The CDS server also can delete it automatically after the
name that the link points to is deleted.

source fileset

specific

SPI

SRT

status flag

Seeread/write fileset

The attribute types that can appear in an instance of a given class, but not in an
instance of its superclasses.

Seestub programming interface.

SeeStructure Rule Table.

DFS: In aBosConfigfile, the flag that tells the BOS server whether a server process
should be running. In an FLDB entry, the flag that indicates whether a fileset of each
possible type (read/write, read-only, and backup) actually exists at a site. In a fileset
header, a flag that indicates whether the contents of the fileset are accessible via the
file server machine.

GL-73

Glossary

status token
DFS: A token that grants access to the status information associated with a file or
directory. Read and write status tokens are available.

string
An ordered sequence of bits, octets, or characters, accompanied by the string’s length.

Structure Rule Table (SRT)
A recurring attribute of the directory schema with the description of the permitted
structures of distinguished names.

stub
RPC: A code module specific to an RPC interface that is generated by the DCE IDL
compiler to support remote procedure calls for the interface. RPC stubs are linked
with client and server application and hide the intricacies of remote procedure calls
from the application code.See alscclient stub, server stub.

stub programming interface (SPI)
A private RPC runtime interface whose routines are unavailable to application code.

subclass
One of the classes, designated as such, whose attribute types are a superset of those
of another class.

subobject
An object that is in a subordinate relationship to a given object.

subordinate
In the DIT, an entry is subordinate to another if its distinguished name includes that
of the other as a prefix.

superclass
One of the classes, designated as such, whose attribute types are a subset of those of
another class.

superior
In the DIT, an entry is superior to another if its distinguished name is included as a
prefix of the distinguished name of the other. Each entry has exactly one immediate
superior.

GL-74

Glossary

superobject
An object that is in a superior relationship to a given object.

synchronization
DTS: The process by which a DTS entity requests clock values from other systems,
computes a new time from the values, and adjusts its system clock to the new time.

synchronization list
DTS: The list of servers that a DTS entity has discovered; the entity sends requests
for clock values to the servers on the list.

synchronization site
DFS: The one Ubik site that accepts changes to its copy of a DFS administrative
database and distributes them to the secondary sites. The synchronization site can
change as necessantee alscsecondary site Ubik.

syntax
XOM: (1) An OM syntax is any of various categories into which the object
management specification statically groups values on the basis of their form. These
categories are additional to the OM type of the value. (2) A category into which an
attribute value is placed on the basis of its forrBee alsattribute syntax.

syntax template
A lexical construct containing an asterisk from which several attribute syntaxes can
be derived by substituting text for the asterisk.

system control machine
DFS: The machine that distributes common configuration files to other server machines
in the cell or administrative domain. The system control machine runs the server
portion of the update server for this purposeSee alscserver machine update
server, upserver.

system time
The time value that the operating system maintains according to its reading of the
system’s hardware clock.

tape coordinator
DFS: A process that runs on a tape coordinator machine and controls the behavior of
one tape drive. There must be one tape coordinator running for each tape drive in
use.

GL-75

Glossary

tape coordinator ID (TCID)
DFS: A number, assigned when a tape coordinator machine is configured, that uniquely
identifies each tape coordinator and the associated tape drive. Backup operators use
it to specify the tape coordinator that is to execute a command.

tape coordinator machine
DFS: A client machine on which backup and restore operations are performed with
the DFS backup system. Each tape coordinator machine must have one tape drive
attached and must run one instance of bliéc process for each drive.

target restrictions
Restrictions on the targets to whom a client’'s delegated identity can be projected.

TCID

Seetape coordinator ID.
TCP

SeeTransmission Control Protocol.
TDF

SeeTime Differential Factor.
thread

A single sequential flow of control within a process.

thread handle
RPC: A data item that enables threads to share a memory management environment.

thread-serial service
A reentrant system service is thread-serial if it blocks the current thread and all other
threads that attempt to call the same service or other related services until the first
call returns.

thread-synchronous service
A reentrant system service is thread-synchronous if it blocks only the current thread
and allows other threads to execute the same operation during the block.

tick

DTS: The clock timer interrupt that causes the operating system to increment the
system time.

GL-76

Glossary

ticket
An application-transparent mechanism that transmits the identity of an initiating
principal to its target. A simple ticket contains the principal’s identity, a session
key, a timestamp, and other information, sealed using the target's secret key. A
privilege ticket contains the same information as a simple ticket, and also includes a
privilege attribute certificate. A ticket-granting ticket is ticket to the ticket-granting
service; a service ticket is a ticket for a specified service other than the ticket-granting
service.

Time Differential Factor (TDF)
DTS: The difference between UTC and the time in a particular time zone.

time-provider
DTS: A hardware device that monitors UTC time and forwards it to a DTS server.

Time-Provider Interface (TPI)
A software intermediary between the DTS server and external time-provider processes.
The DTS server uses the interface to obtain UTC time values and to determine the
associated inaccuracy of each value.

time-provider program
DTS: Software that enables a time-provider device to call the time-provider interface
and supply time values to a DTS server.

timeslicing
A mechanism by which running threads are preempted at fixed intervals. This ensures
that every thread is allowed time to execute.

token
DFS: A device sent along with requested data from a file server machine to a client
machine to indicate the types of operations (for example, read or write) the client can
perform on the data. It prevents simultaneous access while permitting cooperative
access; for example, only one client can possess a write token for a single piece of
data at any given time. A client must have the appropriate tokens to operate on a
file exporter. See alsalata token.

token management layer

DFS: The part of the DFS cache manager that handles file and directory toksames.
also token manager.

GL-77

Glossary

token manager
DFS: A component that maintains the set of file and directory tokens that have been
granted to existing clients of a file server machin&ee alsaoken management
layer.

top-level pointer
RPC: A pointer parameter that, in a chain of pointers, is the only member that is not
the referent of any other pointer.

tower
Physical address and protocol information for a particular server. CDS uses this
information to locate the system on which a server resides and to determine which
protocols are available at the server. Tower values are contained @X8e Towers
attribute associated with the object entry that represents the server in the cell
namespace.

TP server
DTS: A server system connected to a time-provider.

TPI

SeeTime-Provider Interface.

traced delegation
Transmission of a delegation initiator's identity in a manner that preserves the
identities of each participant in a call chain.

transaction
A related set or unit of changes to metadata. The events in a transaction are atomic.
No change takes effect unless all the changes that make up that transaction are
performed. See alsdog.

transfer syntax
RPC: A set of encoding rules used for transmitting data over a network and for
converting application data to and from different local data representatiSes. also
Network Data Representation

Transmission Control Protocol (TCP)
A protocol of the Internet Protocol (IP) family.

GL-78

Glossary

transmitted type
RPC: For data types with the IDiransmit_as attribute, the data type that stubs pass
over the network. Stubs invoke conversion routines to convert the transmitted type
to a presented type, which is manipulated by clients and serv@ee alsgresented
type.

transparent access
DFS: A feature that allows users to access files without needing to know which
machine stores the files. The FLDB keeps track of fileset locations, so the user needs
to know only a file’'s pathname.See alsdileset location database

transport independence
RPC: The capability, without changing application code, to use any transport protocol
that both the client and server systems support, while guaranteeing the same call
semantics. See alsdransport layer, transport protocol.

transport layer
A network service that provides end-to-end communications between two parties,
while hiding the details of the communications network. @~ The TCP and ISO
TP4 transport protocols provide full-duplex virtual circuits on which delivery is
reliable, error free, sequenced, and duplicate free. UDP provides no guarantees (the
connectionless RPC protocol provides some guarantees on top of UDP).

transport protocol
A communications protocol from the transport layer of the OSI network architecture,
such as the TCP or the UDP.

trigger
A remote operation, associated with an attribute type, that is executed when attributes
of that type are either queried or updated.

trigger type
A classification, eithequery or update, on a trigger that identifies on which attribute
operation the trigger will be invoked.

trust path
Seeauthentication path.

GL-79

Glossary

trust peer

type

type UUID

Ubik

UFS

A characterization of one cell with respect to another with which the cell maintains a
mutual authentication surrogate.

XOM: A category into which attribute values are placed on the basis of their purpose.
See alsattribute type.

RPC: The universal unique identifier that identifies a particular type of object and an
associated managerSee alsananager, object, Universal Unique Identifier.

DFS: A library of utilities that the DFS FL server and the DFS backup server use to
keep individual copies of the FLDB and the backup databaSee alscsecondary
site, synchronization site

SeeUNIX File System.

unauthenticated mask

unexport

uniquifier

The maximum set of permissions granted when access to the object is not
authenticated. Unauthenticated access is granted only if the caller matches some
ACL entry (frequently theany other entry) and if the required permission is granted

by both the entry and the mask.

RPC: To remove binding information from a server entry in a name service database.
See als@xport.

DFS: A piece of data that, in combination with a fileset ID, produces a globally unique
identifier.

Universal Unique Identifier (UUID)

GL-80

RPC: An identifier that is immutable and unique across time and space. A UUID can
uniquely identify an entity such as an RPC interface or objeBee alsanterface
UUID, object UUID, type UUID.

Glossary

UNIX File System (UFS)
A section of the UNIX file tree that is physically contained on a single device or disk
partition and that can be separately mounted, dismounted, and administered.

unmarshalling
RPC: The process by which a stub disassembles incoming network data and converts
it into local data in the appropriate local data representatiSee alsanarshalling,
network data.

unpredictable
A violation of an architecture rule that an implementation is not required to report.
Results can include an error report from a threads call, the operating system, or the
hardware; a hang or deadlock of the program; or an incorrect operation of the program
without indication of error.

upclient
DFS: A process that runs on DFS server machines, taking copies of common
configuration files and new DFS server process binary files from central sources.
See alsaipdate server, upserver.

update propagation
An immediate attempt to apply a change to all replicas of the CDS directory in which
the change was just made. An update propagation delivers changes in a more efficient
and timely way than a skulk, which is the periodic distribution of a whole collection
of changes.

update server
DFS: A process that guarantees that all DFS server machines in a cell have the same
versions of common configuration files and the same versions of DFS binary files
appropriate for their machine types. It has a server portion calledfkerver and
a client portion called thepclient. See alsaipclient, upserver.

Update Timestamp (UTS)
An attribute that identifies the time at which the most recent change was made to any
attribute of a particular CDS name. For directories, the UTS reflects changes made
only to attributes that apply to the directory as a whole (not one of its replicas).

GL-81

Glossary

upserver

user

user data

DFS: A process that runs on DFS server machines, making local copies of common
configuration files and new DFS server process binary files available to other DFS
server machines.See alsaipclient, update server

GDS: The end user of the directory; the entity or person that accesses the directory.
A user can be an application program that is calling the directory interface on behalf
of a human user.

DFS: Data such as ASCIl and binary files that resides in a fileset. The data is
manipulated and accessed by users of the file system.

User Datagram Protocol (UDP)

user-to-user

uTC

UTS

uuID

V file

value

GL-82

A protocol of the Internet Protocol (IP) family.

A protocol used in the ticket-granting process of security authentication of an
application.

SeeCoordinated Universal Time.

SeeUpdate Timestamp

SeeUniversal Unique Identifier.

DFS: With disk caches, a file on the disk that, by default, can hold up to 64 kilobytes
of cached data. A maximum of 32,000 V files can be used for one disk cache.

XOM: An arbitrarily complex information item that can be viewed as a characteristic
or property of an object.See alsattribute value.

Glossary

varying array

vector

VFS

VFS+

RPC: An array whose elements do not all need to be transmitted during a remote
procedure call.

RPC: An array of other structures and the number of array items.

SeeVirtual File System.

DFS: Extensions to the standard UNIX Virtual File System (VFS9e alsoVirtual
File System

Virtual File System (VFS)

vnhode

WAN

WAN links

DFS: A level of abstraction above the specific interfaces to various types of file
systems. It is used to avoid having to change kernel code to handle low-level,
system-specific differences.

DFS: The structure used to access the inode or anode structure associated with a
specific file through a virtual file system interface. The term vnode stands for virtual
node. See alsaanode

Seewide area network.

Communications connections between groups of computers that are spread across a
large geographical distance. Modem connections, T1 lines, and satellite hookups are
some common examplesSee alsavide area network.

well-known endpoint

RPC: A preassigned, stable endpoint that a server can use every time it runs. Well-
known endpoints typically are assigned by a central authority responsible for a

transport protocol. An application declares a well-known endpoint either as an

attribute in an RPC interface header or as a variable in the server application code.
See alsalynamic endpoint, endpoint.

GL-83

Glossary

wide area network (WAN)
A network that includes computers spread across a large geographical distance, usually
involving several cities, states, or countries.

workspace
XDS: A space in which OM objects of certain OM classes can be created, together
with an implementation of the object management functions that supports those OM
classes.

workspace interface
The interface as realized, for the dispatcher’s benefit, by each workspace individually.

XDS
X/Open Common Application Environment specification for Directory Services API.

XOM

X/Open Common Applicatoin Environment specification for OSI-Abstract-Data
Manipulation API.

GL-84

Index

A

ACLs

example (figure) 3-59

nGbs 339

in security service 3-53, 3-58
administration

cent. 25

server 25
Agent program, DFA 3-75
aggregate 3-63
application message service . . 3-77
audit service 354
authentication 3-39
authentication service . . 3-52, 3-57
authorization service 3-57
backing store databases 3-77
backup server 3-67
basic overseer server 3-66
binding. 315

C

cache manager 3-65
caching
inCbhs 332
inGDA. 343
inGbs33
cbs. 1-15,3-22, 3-29
additional information . . 3-33
administration 3-33
components 3-29
control program 3-30
database 3-30
end user’s perspective . . 3-32
programming with . . . 3-32
cdscp program 3-30
cell
definiton 1-17
Cell Directory Service 1-15
chaining
inGDS 339
clearinghouse .. 329, 331
Client utility, DFA 3-74
client/server
asnodes 18
asroles 17
model 17
model (figure) 1-7
condition variable 3-7
configuration 2-1

Index—1

Index

basic components . . 2-4 and related software (f|gure)1 13
cells 2 9 4-6 architecture 1-12
connected DCE ceII ... 2-12 architecture (figure) . . . 1-14
DCE cellwith DFS . . . 2-11 control program 3-11
DFs 371 cross-component faC|I|t|es 3-76
machines 2-2,2-6 directory service 3-21
overview 1-17,2-2 host daemon 3-11
simple DCEcell 29 host services 3-76
configuration components . . . 24 motivation. 1-3
consistency overview 11
inCbhs 332 potential users 1-5
inDFS 3-66 server machines 2-2
nGbs335 user machine 2-2
Coordinated Universal Time . . 3-45 user software 2-3
cross-component facilites . . . 3-76 DCE/File-Access 1-16
dcecp 3-11, 3-30, 3-78
dced daemon . 3-11, 3-17, 3-28, 3-76
DFA. 1-16,3-74
D administration 3-75
Agent program 3-75
Client utility 3-74
data sharing end user’s perspective . . 3-75
in DCE/File-Access . . . 3-74 Gateway software 375
in DES 1-11 DFS 1-16,3-62
o o additional information . . 3-73
in directory service . . . 1-11 administration 3.73
databan;é)del I components 3-64
backing store 3.77 configuration 3-71
CDS 9 o '3_30 configuration (figure) 3-71, 3-72
GDS e 3.37 data organization 3-63
Lo end user’s perspecﬁve .. 372
security 3-53 features . . 368
DCE - o programming Wlth ... 373
administrative interface . 3-78
L . DFS/NFS gateway 3-68
administrator machine . . 2-2 o
- dfstrace utility 3-68
administrator software . . 2-3 DIB 3.38
and related software 1-12, 1-19, Lo
directories
3-19, 3-60 CDS 3-31
network . . 1-19, 3-40 DES e 3-63
operating system . 1-20 directory entfy 3430

Index—2

Index

Directory Information Base . . . 3-38
Directory Information Tree . . . 3-38
directory service 1-15, 3-21
administration 3-27
architecture 3-21
components (figure) . . . 3-43
components overview . . 3-22
end user’s perspective . . 3-27
lookup 328
programming with . . . 3-27
Directory System Agent 3-34
Directory User Agent 3-34
Distinguished Name 3-38
distributed computing 1-1
models 16
motivation for 1-1
Distributed Computing Environment 1-
12
Distributed File Service 1-16
distributed object model 1-6
Distributed Time Service 1-15
oir............338
DN338
DSA. 334
DrTs. 115,345
additional information . . 3-52
administration 3-51
components 3-46
end user’s perspective . . 3-50
programming with . . . 3-50
DUA33

E

endpoint mapper service 3-77
extended registry attribute . . . 3-53
external time-provider 3-49

F

file exporter . . 3-65
File-Access . . . 1-16
files . Co . 3-63
available to PCs .. 374
fileset Co . 3-63
location server . . . 3-67
server . 3-66
Gateway software, DFA . . 3-75
GDA 1-15,3-23, 342
additional information . 3-43
Gbs. 1-15,3-23, 3-33
additional information . 3-42
and network services . 3-40
and standards . 341
components . 3-34
configuration . . 3-36
how it works . 3-39
Generic Security Service . . 3-61
global
names . 3-26
root (/...) 3-25, 3-26
Global Directory Agent . 1-15
Global Directory Service . . 1-15
greet
application example . . 3-79
greet application example . 3-79
GSSAPI . 3-61

Index—3

Index

IDL files 313
implementation dependencies . . 1-20
inaccuracy

time G . 3-46
information architecture . . 3-44
initialization, cell . 4-5
integration

overview . 1-18
interface

definition . 3-13
join routine 3-6
Kerberos 360
key table management service . . 3-77
LFS . . 1-16, 3-65
Local File System 1-16, 3-66
login facility . 3-53

Index—4

M

management .
mutex object

N

namespace
naming

. 1-16
3-7

3-21, 3-25, 3-28
. 3-28

specialized naming services 3-28

Network Time Protocol
Novell NetWare
NTP .

O

object entry
in GDS .

object model and DCE

object-operation syntax

P

PC networks
porting .
principals .
privilege service
profiles .
protection level

. 351
.. 374
. 351

. 3-37
. 16
. 3-79

. 3-74
. 4-6
. 3-53
. . 3-53
. 3-28
. 3-57

Index

public key certificaton 3-61
public key login 3-54

R

RDN 338
referral
inGDS 339
registraton 3-28
registry service 3-53
related documents -xi, A-1
reading paths through . . A-6
Relative Distinguished Name . . 3-38
remote procedure call 1-10
replication
inChs33l
inDFS 367
inGDS 341
replication server 3-66
rogin 361
RPC. 115, 38
additional information . . 3-20
administration 3-16
and system independence . 3-19
authenticated 3-57
end user’s perspective . . 3-11
how itworks 3-17
model 1-10, 3-9
programming 3-12
rsh361

S

schema. 339
Scout 368
secd daemon 3-77
security service 1-15, 3-52
additional information . . 3-62
administration 3-59
components 3-52
end user’s perspective . . 3-56
how itworks 3-54
programming with . . . 3-57
public key certification . . 3-61
security validation service . . . 3-76
serviceability 377
skulking 332
standards
andDFS 3-70
and DTS 3-46
andGDS34
and Threads 34
and XDS 344
stub
cent. 314
server 314
Tel378
TDF 350
technology components 3-1
integration. 4-1
implications . . . 4-5
matrix (table) . . . 4-2
overview 1-14
testng 46

Index-5

Index

Threads 1-14, 3-3
additional information 3-8
administration 3-8
communications 3-6
end user’'s perspective . 34
exceptions . 3-8
management . 3-5
programming with 3-5
scheduling . 3-5
synchronization . 3-6

time
correctness . 3-45
DTS format . 3-50
synchronization . 3-45, 3-47

Time Differential Factor . . 3-50

token manager . . 3-65

tokens Coe . 3-65

Tool Command Language . 3-78

upclient process . 3-67

Index—6

update server 3-67
upserver process 3-67
user

cent. 25

server 25
utc. 345
utilities

secure remote 3-61
uuidgen program 3-11

X

X/Open Directory Service . . . 1-15
XDS . 1-15, 3-24, 3-44
XOM344

