OSF® DCE Application Development Guide — Directory
Services

Release 1.2.2

Open Software Foundation
11 Cambridge Center
Cambridge, MA 02142

The information contained within this document is subject to change without notice.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein, or for any direct or indirect, incidental, special or consequential damages in connection
with the furnishing, performance, or use of this material.

Copyright © 1995, 1996 Open Software Foundation, Inc.

This documentation and the software to which it relates are derived in part from materials supplied by the following:

Copyright © 1990, 1991, 1992, 1993, 1994, 1995, 1996 Digital Equipment Corporation

Copyright © 1990, 1991, 1992, 1993, 1994, 1995, 1996 Hewlett-Packard Company

Copyright © 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996 Transarc Corporation

Copyright © 1990, 1991 Siemens Nixdorf Informationssysteme AG

Copyright © 1990, 1991, 1992, 1993, 1994, 1995, 1996 International Business Machines

Copyright © 1988, 1989, 1995 Massachusetts Institute of Technology

Copyright © 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994 The Regents of the University of California

Copyright © 1995, 1996 Hitachi, Ltd.

All Rights Reserved

Printed in the U.S.A.

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A LICENSE, AND MAY BE USED
AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE ABOVE
COPYRIGHT NOTICE. TITLE TO AND OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN WITH OSF OR ITS
LICENSORS.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are registered trademarks of the Open Software Foundation,
Inc.

X/Open is a registered trademark, and the X device is a trademark, of X/Open Company Limited.

The Open Group is a trademark of the Open Software Foundation, Inc. and X/Open Company Limited.
UNIX is a registered trademark in the US and other countries, licensed exclusively through X/Open Company Limited.
DEC, DIGITAL, and ULTRIX are registered trademarks of Digital Equipment Corporation.

DECstation 3100 and DECnet are trademarks of Digital Equipment Corporation.

HP, Hewlett-Packard, and LaserJet are trademarks of Hewlett-Packard Company.

Network Computing System and PasswdEtc are registered trademarks of Hewlett-Packard Company.
AFS, Episode, and Transarc are registered trademarks of the Transarc Corporation.

DFS is a trademark of the Transarc Corporation.

Episode is a registered trademark of the Transarc Corporation.

Ethernet is a registered trademark of Xerox Corporation.

AIX and RISC System/6000 are registered trademarks of International Business Machines Corporation.
IBM is a registered trademark of International Business Machines Corporation.

DIR-X is a trademark of Siemens Nixdorf Informationssysteme AG.

MX300i is a trademark of Siemens Nixdorf Informationssysteme AG.

NFS, Network File System, SunOS and Sun Microsystems are trademarks of Sun Microsystems, Inc.

PostScript is a trademark of Adobe Systems Incorporated.

Microsoft, MS-DOS, and Windows are registered trademarks of Microsoft Corp.

NetWare is a registered trademark of Novell, Inc.

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED SOFTWARE
These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE:Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this computer software, the rights of
the Government regarding its use, reproduction and disclosure are as set forth in Section 52.227-19 of the FARS Computer Software-Restricted
Rights clause.

RESTRICTED RIGHTS NOTICE:Use, duplication, or disclosure by the Government is subject to the restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND:Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B)
of the rights in Technical Data and Computer Software clause in DAR 7-104.9(a). This computer software is submitted with "restricted
rights." Use, duplication or disclosure is subject to the restrictions as set forth in NASA FAR SUP 18-52.227-79 (April 1985) "Commercial

Computer Software-Restricted Rights (April 1985)." If the contract contains the Clause at 18-52.227-74 "Rights in Data General" then the
"Alternate 111" clause applies.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract.
Unpublished - All rights reserved under the Copyright Laws of the United States.

This notice shall be marked on any reproduction of this data, in whole or in part.

Contents

Preface

Audience

Applicability

Purpose

Document Usage .

Related Documents .
Typographic and Keying Conventions.
Problem Reporting.

Pathnames of Directories and Files in DCE Documentation .

Part 1. DCE Directory Service

Chapter 1. DCE Directory Service Overview.

1.1

1.2
1.3
1.4

15

Introduction to This Guide.
1.1.1 Use of This Guide
1.1.2 Directory Service Tools .

Using the DCE Directory Service .
DCE Directory Service Concepts .

Structure of DCE Names .

1.4.1 DCE Name Prefixes .
1.4.2 Names of Cells

1.4.3 CDS Names .

1.4.4 GDS Names . .
1.45 Junctions in DCE Names
1.4.6 Application Names

The Federated DCE Namespace .
1.5.1 The GDS Namespace

OSF® DCE Application Development Guide — Directory Services

Xix
Xix
Xix
XX
XX
XX
XXi
XXii
XXii

| (.
W WNE P

|
N

i

|
|
AW WNNPFP OOO®

B
PR RRRR R

Contents

1.6

1.5.2 The CDS Namespace
153 Other Namespaces .

Programming Interfaces to the DCE Directory Service
1.6.1 The XDS Interface .

1.6.2 The RPC Name Service Interface

1.6.3 Namespace Junction Interfaces .

Part 2. CDS Application Programming

Chapter 2. Programming in the CDS Namespace

Chapter 3.

2.1

2.2

2.3

2.4

Initial Cell Namespace Organization .
2.1.1 The Cell Profile

2.1.2 The LAN Profile .

2.1.3 The CDS Clearinghouse.
2.1.4 The Hosts Directory .

2.1.5 The Subsystems Directoty
2.1.6 The/: DFS Alias

2.1.7 The DFS and DCE Security Servrce Junctmns .

Recommended Use of the CDS Namespace.
221 Storing Data in CDS Entries.
2.2.2 Access Control for CDS Entries.

Valid Characters and Naming Rules for CDS
2.3.1 Metacharacters .
2.3.2 Additional Rules .

2.3.3 Maximum Name Sizes

Use of OIDs

XDS and the DCE Cell Namespace .

3.1

3.2

Introduction to Accessing CDS with XDS.

3.1.1 Using the Reference Material in This Chapter .

3.1.2 What You Cannot Do with XDS.
3.13 Registering A Nonlocal Cell .

XDS Objects

3.2.1 Object Attrlbutes

3.2.2 Interface Objects and Dlrectory Objects
3.2.3 Directory Objects and Namespace Entries .
3.2.4 Values That an Object Can Contain.

3.25 Building a Name Object .

3.2.6 A Complete Object

3.2.7 Class Hierarchy . .

3.2.8 Class Hierarchy and Object Structure

NN l\)l\)l\)ll\)l\)l\)l\)l\) N

|
ooo~Nd ONN OO DBDME

N NDNNDN DN

|
N NP R PR
NG

QOAOPRRPRPPOOOOTW WWNE -

00 0 0 0w
(e el NS

OSF® DCE Application Development Guide — Directory Services

Contents

3.3

3.4

3.5

3.6

3.2.9 Public and Private Objects and XOM
3.2.10 XOM Objects and XDS Library Functions

Accessing CDS Using the XDS Step-by-Step Procedure.

3.3.1 Reading and Writing Existing CDS Entry
Attributes With XDS . .
3.3.2 Creating New CDS Entry Attnbutes

Object-Handling Techniques . .
3.4.1 Using XOM to Access CDS
3.4.2 Dynamic Creation of Objects

XDS/CDS Object Recipes. .
3.5.1 Input XDS/CDS Object ReC|pes

3.5.2 Input Object Classes for XDS/CDS Operatlons .

Attribute and Data Type Translation .

Part 3. GDS Application Programming

Chapter 4. GDS API: Concepts and Overview .

4.1
4.2

4.3

4.4

4.5

4.6

Directory Service Interfaces

The X.500 Directory Information Model
42.1 Directory Objects. .
4.2.2 Attribute Types

4.2.3 Object Identifiers .

4.2.4 Object Entries

X.500 Naming Concepts .

43.1 Distinguished Names. .

4.3.2 Relative Distinguished Names and Attrlbute
Value Assertions . .

4.3.3 Multiple AVAs

4.3.4 Aliases

4.3.5 Name Venflcat|on

Schemas .

441 The GDS Standard Schema
4.4.2 The Structure Rule Table
4.4.3 The Object Class Table .
4.4.4 The Attribute Table .

4.4.5 Defining Subclasses .

Abstract Syntax Notation 1
45.1 ASN.1 Types. . .
45.2 Basic Encoding Rules

GDS as a Distributed Service.

OSF® DCE Application Development Guide — Directory Services

3-16
3-17

3-17

3-17
3-35

3-39
3-39
3-42

3-44
3-44
3-45

3-60

4-1
4-2
4-3
4-3
4-5
4-5
4-7
4-9
4-9

4-11
4-11
4-12
4-14
4-14
4-14
4-15
4-17
4-22
4-24

4-25
4-26
4-27

4-28

Contents

4.6.1 The Directory Access Protocol
4.6.2 The Directory System Protocol .
4.6.3 Referral e e
4.6.4 Chaining . .
4.6.5 The Directory User Agent Cache
4.6.6 GDS Configurations . .
4.6.7 GDS Security.

4.6.8 GDS API Logging

Chapter 5. XOM Programming

5.1

5.2

5.3
5.4
55

5.6

5.7

5.8

OM Objects . .

5.1.1 OM Object Attrlbutes
5.1.2 Object Identifiers .

5.1.3 C Naming Conventions .
5.14 Public Objects

5.15 Private Objects

5.1.6 Object Classes

Packages . . .
521 The Dlrectory Serwce Packa.ge .

5.2.2 The Basic Directory Contents Package .

5.2.3 The Strong Authentication Package.
5.2.4 The GDS Package . . .
5.2.5 The MHS Directory User Package .
5.2.6 Package Closure.

Workspaces
Storage Management .

OM Syntaxes for Attribute Values.
5.5.1 Enumerated Types

5.5.2 Object Types.

5.5.3 Strings . .

5.5.4 Other Syntaxes .

Service Interface Data Types. . .

5.6.1 The OM_descriptor Data Type . .
5.6.2 Data Types for XDS API Function Calls.
5.6.3 Data Types for XOM API Calls .

OM Function Calls.
5.7.1 Summary of OM Functlon CaIIs
5.7.2 Using the OM Function Calls

XOM API Header Files

5.8.1 XOM Type Definitions and Symbohc Constant

Definitions.

4-29
4-30
4-30
4-31
4-33
4-39
4-40
4-41

U‘IU‘ILIJ'IU'I (€3]

OSF® DCE Application Development Guide — Directory Services

Contents

5.8.2

XOM API Macros.

Chapter 6. XDS Programming

6.1

6.2

6.3

6.4
6.5

6.6
6.7

6.8

XDS Interface Management Functions

6.1.1
6.1.2
6.1.3

The ds_initialize() Function Call.
The ds_version() Function Call .
The ds_shutdown() Function Call

Directory Connection Management Functions

6.2.1
6.2.2
6.2.3
6.2.4

A Directory Session . .

The ds_bind() Function CaII .
The ds_unbind() Function Call .
Automatic Connection Management.

XDS Interface Class Definitions

6.3.1
6.3.2

Example: The DS_C _FILTER Class
The DS_C_CONTEXT Parameter

Directory Class Definitions
The GDS Package.

6.5.1
6.5.2
6.5.3
6.5.4

Authentication
Access Control
DUA Cache . .
Advanced Adm|n|strat|on Operatlons

Directory Operation Functions
Directory Read Operations

6.7.1
6.7.2

6.7.3
6.7.4
6.7.5

6.7.6

Reading an Entry from the D|rect0ry

Step 1: Export Object Identifiers for Required

Directory Classes and Attributes.
Step 2: Declare Local Variables
Step 3: Build Public Objects

Step 4: Create an Entry-Information- Select|on

Parameter. .
Step 5: Perform the Read Operatlon

Directory Search Operations .

6.8.1
6.8.2
6.8.3
6.8.4

6.8.5

6.8.6

Searching the Directory . .

Step 1: Export Object Ident|f|ers

Step 2: Declare Local Variables .

Step 3: Build Public Objects for the name
Parameter to ds_search() .

Step 4: Specify the Portion of the DIT To Be
Searched . . v e e
Step 5: Create a Fllter .

OSF® DCE Application Development Guide — Directory Services

T
(]
()]

» O)O)O)O)CID (e)Ne>NerNe)INe)]

|
OOV CO~NOO OPWN -

P PPPPP > o>
B RRRRR P R

C7’CI”I |
=
O~N O OUTWWW

Contents

6.9

6.8.7

6.8.8

Step 6: Create an Entry-lnformation-SeIection

Parameter.
Step 7: Perform the Search Operatlon

Directory Modify Operations .

6.9.1
6.9.2

6.9.3
6.9.4
6.9.5
6.9.6

Modifying Directory Entries .

Step 1: Export Object Identifiers for Requwed

Directory Classes and Attributes.
Step 2: Declare Local Variables
Step 3: Build Public Objects

Step 4: Create Descriptor Lists for Attrlbutes .

Step 5: Perform the Operations

6.10 Return Codes .

Chapter 7. Sample Application Programs .
General Programming Guidelines.
The example.c Program

7.1
7.2

7.3

7.4

7.2.1
7.2.2

The example.c Code.
Error Handling

The acl.c Program.

7.3.1
7.3.2
7.3.3

The acl.c Code
The acl.h Header File
The acl.h Code

The teldir.c Program

7.4.1
7.4.2
7.4.3
7.4.4
7.4.5

Predefined Static Publ|c Objects. .
Partially Defined Static Public Objects .
Dynamically Defined Public Objects.
Main Program Procedural Steps.

The teldir.c Code.

Chapter 8. Using Threads With The XDS/XOM API.
Overview of Sample Threads Program

8.1

8.2
8.3
8.4
8.5

Vi

8.1.1
8.1.2
8.1.3
8.14

User Interface
Input File Format.
Program Output .
Prerequisites .

Description of Sample Program

Detailed Description of Thread Specifics .
The thradd.c Code.

The thradd.h Header File .

6-39
6-39
640
642
644

6-47

7-1
7-2

7-5
7-12
7-14
7-18
7-35
7-36

7-45
7-46
7-47
7-49

OSF® DCE Application Development Guide — Directory Services

Contents

Chapter 9. XDS/XOM Convenience Routines
9.1 String Handling

9.1.1
9.1.2

9.1.3

9.14
9.15

Strings Representlng GDS Attrlbute Informatlon.
Strings Representing Structured GDS Attribute
Information

Strings Representlng a Structured GDS Attrlbute

Value .
Strings Representlng a Dlstmgwshed Name
Strings Representing Expressions

9.2 The acl2.c Program

9.2.1
9.2.2
9.2.3

The acl2.c Code . .
The acl2.h Header File
Example Strings .

Part 4. XDS/XOM Supplementary Information

Chapter 10. XDS Interface Description . .
10.1 XDS Conformance to Standards .
10.2 The XDS Functions . .
10.3 The XDS Negotiation Sequence .
10.4 The session Parameter
10.5 The context Parameter

10.6 The XDS Function Arguments . .
10.6.1 Attribute and Attribute Value Assert|on .
10.6.2 The selection Parameter. .
10.6.3 The name Parametet

10.7 XDS Function Call Results

10.7.1

The invoke_id Parametet

10.7.2 The result Parameter
10.7.3 The DS_status Return Value

10.8 Synchronous Operations .
10.9 Security and XDS.

10.10 Other Features of the XDS Interface .
10.10.1 Automatic Connection Management.

10.10.2 Automatic Continuation and Referral Handling .

10.10.3 Abandoning Operations .

Chapter 11. XDS Class Definitions

OSF® DCE Application Development Guide — Directory Services

10-1
10-2
10-4
10-6
10-6
10-7

10-8
10-8
. 10-10
. 10-10

. 10-11
. 10-11
. 10-11
. 10-12
. 10-12
. 10-13
10-13
10-14
10-14
10-15

111

Vi

Contents

111

11.2

11.3

11.4

115

11.6

11.7

11.8

11.9

11.10
11.11
11.12
11.13
11.14
11.15
11.16
11.17
11.18
11.19
11.20
11.21
11.22
11.23
11.24
11.25
11.26
11.27
11.28
11.29
11.30
11.31
11.32

viii

Introduction to OM Classes

XDS Errors

OM Class Hierarchy

DS _C_ABANDON_FAILED

DS _C_ACCESS POINT .

DS C_ADDRESS.

DS C_ATTRIBUTE

DS C _ATTRIBUTE_ERROR.
DS C ATTRIBUTE_LIST.

DS _C _ATTRIBUTE_PROBLEM .
DS CAVA
DS C_ COMMON_RESULTS.
DS_C_COMMUNICATIONS _ERROR
DS C COMPARE_RESULT .
DS _C_CONTEXT.
DS_C_CONTINUATION_RER
DS _C_DS_DN.

DS _C DS RDN

DS_C _ENTRY_INFO.

DS_C_ENTRY_INFO_SELECTION .

DS_C_ENTRY_MOD .
DS_C_ENTRY_MOD_LIST
DS_C_ERROR
DS_C_EXT.
DS_C_FILTER
DS_C_FILTER_ITEM.
DS_C_LIBRARY_ERROR
DS_C_LIST_INFO.
DS_C_LIST_INFO_ITEM.
DS_C_LIST_RESULT.
DS_C_NAME .
DS_C_NAME_ERROR

111
11-2
11-4
11-6
11-7
11-7
11-8
11-9

. 11-10

11-10

. 11-11
. 11-12

11-13

. 11-13
. 11-14
. 11-19
. 11-20
. 11-21
. 11-22

11-23

. 11-24
. 11-25
. 11-25
. 11-28
. 11-29
. 11-31
. 11-33
. 11-34
. 11-35
. 11-36
. 11-37
. 11-38

OSF® DCE Application Development Guide — Directory Services

Contents

11.33
11.34
11.35
11.36
11.37
11.38
11.39
11.40
11.41
11.42
11.43
11.44
11.45

DS_C_OPERATION_PROGRESS
DS_C_PARTIAL_OUTCOME_QUAL.
DS_C_PRESENTATION_ADDRESS.
DS_C_READ_RESULT
DS_C_REFERRAL
DS_C_RELATIVE_NAME.
DS_C_SEARCH_INFQ
DS_C_SEARCH_RESULT
DS_C_SECURITY_ERROR .
DS_C_SERVICE_ERROR
DS_C_SESSION .
DS_C_SYSTEM_ERROR.
DS_C_UPDATE_ERROR.

Chapter 12. Basic Directory Contents Package .

121
12.2
12.3
12.4
125
12.6
12.7
12.8
12.9

Selected Attribute Types .
Selected Object Classes .

OM Class Hierarchy
DS_C_FACSIMILE_PHONE_NBR
DS_C_POSTAL_ADDRESS .
DS_C_SEARCH_CRITERION
DS_C_SEARCH_GUIDE .
DS_C_TELETEX_TERM_IDENT.
DS_C_TELEX_NBR

Chapter 13. Strong Authentication Package .

131
13.2
13.3
13.4
135
13.6
13.7

SAP Attribute Types .

SAP Object Classes

OM Class Hierarchy
DS_C_ALGORITHM_IDENT .
DS_C_CERT .
DS_C_CERT_LIST
DS_C_CERT_PAIR

OSF® DCE Application Development Guide — Directory Services

11-39

11-40
. 11-41
. 11-42
. 11-43
. 11-43
. 11-44
. 11-45
. 11-46
. 11-46
. 11-47
. 11-49
. 11-50

12-1
. 122
. 12-13
. 12-15
. 12-16
. 12-17
. 12-17
. 12-19
. 12-20
. 12-21

13-1
13-2
13-4
13-5
13-5
13-6
13-8
13-9

Contents

Chapter 14.

Chapter 15.

Chapter 16.

Chapter 17.

13.8
13.9

DS_C_CERT_SUBLIST
DS_C_SIGNATURE

MHS Directory User Package

141
14.2
14.3
14.4
145
14.6

MDUP Attribute Types

MDUP Object Classes

MDUP OM Class Hierarchy
MH_C_OR_ADDRESS
MH_C_OR_NAME.
DS_C_DL_SUBMIT_PERMS.

GDS Package

151
15.2
153
15.4
155
15.6
15.7

GDSP Attribute Types.
GDSP Object Classes.
GDSP OM Class Hierarchy
DSX_C_GDS_ACL
DSX_C_GDS_ACL_ITEM.
DSX_C_GDS_CONTEXT.
DSX_C_GDS_SESSION .

Distributed Management Environment Support .

16.1
16.2

DME Attribute Types .
DME Object Classes .

Information Syntaxes.

171
17.2
17.3
17.4
175
17.6
17.7
17.8

Syntax Templates.

Syntaxes

Strings .

Representation of String Values .
Relationship to ASN.1 Simple Types.
Relationship to ASN.1 Useful Types .
Relationship to ASN.1 Character String Types
Relationship to ASN.1 Type Constructors

13-9

. 13-10

14-1
14-2
14-6
14-6
14-7

. 14-27
. 14-28

15-1
15-2
15-6
15-7
15-8
15-9

. 15-10
. 15-15

16-1
16-2
16-3

17-1
17-1
17-2
17-3
17-5
17-5
17-6
17-6
17-7

OSF® DCE Application Development Guide — Directory Services

Contents

Chapter 18. XOM Service Interface . .« .« « « « « « « « . . 1841
18.1 Standards Conformance+ .« .« .« . . 181
182 XOMDataTypes . . « + « &« = = « = « =« 182

18.2.1 OM _boolean.+ .« .« .+ . . . 184
18.2.2 OM_descriptar « « + « « « « « . . 185
18.2.3 OM_enumeration. . .+ .« « «+ & &« . . 18-7
18.24 OM_ exclusions . . + «+ + « « &« « . 18-8
1825 OM.nteger . .+ « +« « +« « « .« . . 18-8
18.2.6 OM_modification.+ .« .+ .+ . . 18-9
18.2.7 OM_object+ .« + « .+ .« . . 189
18.2.8 OM_object_identifier.+ . . . 18-9
18.2.9 OM_private object 18-12
18.2.10 OM_public_object 18-12
18.2.11 OM return code. . .+ . + + « « . . 18-13
18.2.12 OM_string« .« « .« « . . . 18-14
18.2.13 OM_syntax . .+ + « &« « &« « = . . 18-15
18.2.14 OM_type. . . .« « & « &« W« . . . 18-17
18.2.15 OM_type list. . . .+ .+ .+ .+ .+ .« . . 18-17
18.2.16 OM_valuve18-18
18.2.17 OM_value length 18-19
18.2.18 OM_value positon+ 18-19
18.2.19 OM_workspace 18-20
18.3 XOM Functions . . .+« « « « « « .« .« . .18-20
184 XOMReturnCodes« . . .18-23

Chapter 19. Object Management Package« « « « « .« . 1941
19.1 Class Hierarchy+ « .+ « + « .« . 1941
19.2 Class Definitons+ . . . 192

19221 OM_CENCODING. . +« « &« &« « « . 192
1922 OMCEXTERNAL+ « .+ « .« . 194
1923 OM_COBJECT.« « « « =« =« 195
Index « f e e e w e e e e s e w e w e ow e e Index-1

OSF® DCE Application Development Guide — Directory Services Xi

Contents

List of Figures

Figure 1-1.
Figure 1-2.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.
Figure 3-10.
Figure 3-11.
Figure 3-12.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.

Xii

A Federated DCE Namespace .

GDS Namespace Entries and Directory Objects.
The Cell Namespace After Configuration

A Possible Namespace Structure .
Valid Characters in CDS, GDS, and DNS Names
One Object Descriptor .

A Complete Object Represented.

A Three-Layer Compound Object

Directory Objects and XDS Interface Objects
Directory Objects and Namespace Entries .
The DS_C_READ_RESULT Object Structure
The DS_C_ENTRY_INFO Object Structure .
The DS_C_ATTRIBUTE Object Structure

The DS_C_ATTRIBUTE_LIST Object
DS_C_DS_DN Object Attributes.

The DS_C_ENTRY_MOD_LIST Object .

The DS_C_ENTRY_INFO_SELECTION Object.
XDS: Interface to GDS and CDS.

The Structure of the DIB.

Object Identifiers .

A Directory Entry Describing Organizational Person

A Distinguished Name in a Directory Information Tree .

An Alias in the Directory Information Tree
A Subtree Populated by Aliases .
SRT DIT Structure for the GDS Standard Schema .

1-14
1-15
2-3
2-9
2-16
3-4
3-5
3-6
3-8
3-10
3-28
3-31
3-34
3-48
3-51
3-55
3-58
4-3
4-4
4-6
4-8
4-10
4-13
4-13
4-17

OSF® DCE Application Development Guide — Directory Services

Contents

Figure 4-9. A Partial Representation of the Object Class Table. 4-20
Figure 4-10. The Relationship Between Schemas and the DIT 4-25
Figure 4-11. The Relationship Between the DSA andthe DUA 4-29
Figure 4-12. An Example of a Referral 431
Figure 4-13. An Example of Chaining.+ .« .+ .« . . 4-32
Figure 4-14. GDS Components . . f e x x a o w .. 434

Figure 5-1. The Internal Structure of an OM Object . . 5-3

Figure 5-2. Mapping the Class Definition of DS_C_ENTRY_INFO_SELECTION 5-6

Figure 5-3. A Representation of a Public Object By Using a Descriptor List . 5-12

Figure 5-4. A Descriptor List for the Public Object: country. 5-14

Figure 5-5. The Distinguished Name of “Peter Piper” inthe DIT 5-15

Figure 5-6. Building a Distinguished Name 5-18

Figure 5-7. A Simplified View of the Structure of a Distinguished Name . . 5-19

Figure 5-8. Client-Generated and Service-Generated Objects b5-21

Figure 5-9. The OM Class DS_C_ENTRY_INFO_SELECTION. 5-24

Figure 5-10. Comparison of Two Classes With/Without an Abstract OM Class . 5-26
Figure 5-11. Complete Description of Concrete OM Class DS_C_ATTRIBUTE . 5-29

Figure 5-12. Data Type OM_descriptor_struct. b-44
Figure 5-13. Initializing Descriptors b-45
Figure 5-14. An Object and a Subordinate Object 5-46
Figure 5-15. The Read Result.+ .+ .+ « .+ .« . . b-53
Figure 5-16. Extracting Information Usingom_get() 5-54
Figure 6-1. Output from ds_read(): DS_C READ _RESULT 6-25
Figure 6-2. Subtree for the acl.h Sample Program 6-28
Figure 6-3. OM Class DS_C_FILTER+ 6-33
Figure 6-4. OM Class DS_C_SEARCH_RESULT 6-36
Figure 6-5. A Sample Directory Tree.« . . . 6-38
Figure 6-6. OM Class DS_C_LIST_RESULT. 6-46
Figure 7-1. Entries With User Credentials Added to the Directory Tree. . . 7-16
Figure 8-1. Issuing XDS/XOM Calls from Within Different Threads. . . . 8-2
Figure 8-2. Program Flow for the thradd Sample Program 8-7
Figure 18-1. OM_String Elements.18-15

OSF® DCE Application Development Guide — Directory Services Xiii

Contents

List of Tables

Table 2-1.
Table 2-2.
Table 2-3.
Table 2—4.
Table 2-5.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3—4.
Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 4-5.
Table 4-6.
Table 4-7.
Table 4-8.
Table 4-9.
Table 4-10.
Table 4-11.
Table 4-12.
Table 4-13.
Table 5-1.
Table 5-2.
Table 5-3.

Xiv

Metacharacters and Their Meaning . .
Summary of CDS, GDS, and DNS Characteristics .
Maximum Sizes of Directory Service Names

T61 Syntax

Combinations of Diacritical Characters and Basic Letters .

Directory Service Functions With Their Required Input Objects.

CDS Attributes to OM Syntax Translation

OM Syntax to CDS Data Types Translation.
CDS Data Types to OM Syntax Translation.
Object Identifiers for Selected Attribute Types .
Structure Rule Table Entries.

Object Class Table Entries

Object Identifiers for Selected Directory Classes
Attribute Table Entries . .

Syntax for the Simple ASN.1 Types.

Cache Attributes: Read Cache First

Cache Attributes: Read DSA Fitst .

Cache Attributes: Read DSA Only .

Cache Attributes: DSX_USEDSA is OM_FALSE
Cache Attributes: DSX_DUA CACHE is OM_FALSE .
Cache Attributes: Error .

XDS_LOG Values

C Naming Conventions for XDS .

C Naming Conventions for XOM.

Comparison of Private and Public Objects .

2-17
2-18
2-21
2-22
2-23
3-44
3-60
3-61
3-62

4-7
4-15
4-18
4-21
4-23
4-27
4-36
4-36
4-36
4-37
4-37
4-37
4-42

5-9

5-9
5-22

OSF® DCE Application Development Guide — Directory Services

Contents

Table 5-4.
Table 5-5.
Table 6-1.

Table 6-2

Description of an OM Attribute By Using Syntax Enum¢*) .
) .

Description of an OM Attribute By Using Syntax Object(*
Representation of Values for Selected Attribute Types .

. Mapping of XDS API Functions to the Abstract Services
Table 10-1.
Table 11-1.
Table 11-2.
Table 11-3.
Table 11-4.
Table 11-5.
Table 11-6.
Table 11-7.
Table 11-8.
Table 11-9.

Table 11-10.

Table 11-11.

Table 11-12.

Table 11-13.

Table 11-14.

Table 11-15.

Table 11-16.

Table 11-17.

Table 11-18.

Table 11-19.

Table 11-20.

Table 11-21.

Table 11-22.

Table 11-23.

Table 11-24.

Table 11-25.

Table 11-26.

Table 11-27.

The XDS Interface Functions

OM Attributes of DS_C_ACCESS_POINT

OM Attributes of DS _C_ATTRIBUTE

OM Attributes of DS_C_ATTRIBUTE_ERROR .

OM Attribute of DS_C_ATTRIBUTE_LIST .

OM Attributes of DS_C_ATTRIBUTE_PROBLEM
OM Attributes of DS_C_COMMON_RESULTS .

OM Attributes of DS_C_COMPARE_RESULT .

OM Attributes of DS_C_CONTEXT . .

OM Attributes of DS_C_CONTINUATION_REF.

OM Attribute of DS_C_DS DN .

OM Attribute of DS_C_DS_RDN.

OM Attributes of DS _C_ENTRY_INFO .

OM Attributes of DS_C_ENTRY_INFO_SELECTION
OM Attribute of DS_C_ENTRY_MOD

OM Attribute of DS_C_ENTRY_MOD_LIST.

OM Attribute of DS_C_ERROR .

OM Attributes of DS_C_EXT.

OM Attributes of DS _C_FILTER.

OM Attributes of DS _C_FILTER_ITEM .

OM Attributes of DS_C_LIST_INFO.

OM Attributes of DS _C_LIST_INFO_ITEM .

OM Attributes of DS _C_LIST RESULT.

OM Attribute of DS_C_NAME_ERROR.

OM Attributes of DS_C_OPERATION_PROGRESS
OM Attributes of a DS_C_PARTIAL_ OUTCOME_QUAL
OM Attributes of DS_C_PRESENTATION_ADDRESS .
OM Attribute of DS_C_READ_RESULT.

OSF® DCE Application Development Guide — Directory Services

5-40
5-41
6-12
6-17
10-5
11-7
11-8
11-9
11-10
11-11
11-12
. 11-13
. 11-14
. 11-19
. 11-21
. 11-21
11-22
. 11-23
. 11-24
. 11-25
. 11-26
. 11-29
. 11-30
. 11-31
. 11-35
11-36
11-37
11-38
11-39
11-40
11-42
11-43

XV

Contents

Table 11-28.
Table 11-29.
Table 11-30.
Table 12-1.
Table 12-2.
Table 12-3.
Table 12—4.
Table 12-5.
Table 12-6.
Table 12-7.
Table 12-8.
Table 12-9.
Table 13-1.
Table 13-2.
Table 13-3.
Table 13-4.
Table 13-5.
Table 13-6.
Table 13-7.
Table 13-8.
Table 13-9.
Table 14-1.
Table 14-2.
Table 14-3.
Table 14-4.
Table 14-5.
Table 14-6.
Table 14-7.
Table 15-1.
Table 15-2.
Table 15-3.
Table 15-4.

XVi

OM Attributes of DS_C_SEARCH_INFQ

OM Attributes of DS_C_SEARCH_RESULT.
OM Attributes of DS_C_SESSION .
Object Identifiers for Selected Attribute Types .

Representation of Values for Selected Attribute Types .

Object Identifiers for Selected Object Classes .
OM Attributes of DS_C_FACSIMILE_PHONE_NBR
OM Attribute of DS_C_POSTAL_ADDRESS

OM Attributes of DS_C_SEARCH_CRITERION.
OM Attributes of DS_C_SEARCH_GUIRQE .

OM Attributes of DS_C_TELETEX_TERM_IDENT .
OM Attributes of DS_C_TELEX_NBR

Obiject Identifiers for SAP Attribute Types
Representation of Values for SAP Attribute Types .
Object Identifiers for SAP Object Classes

OM Attributes of DS_C_ALGORITHM_IDENT .
OM Attributes of DS _C_CERT

OM Attributes of DS_C_CERT_LIST.

OM Attributes of DS_C_CERT_PAIR

OM Attributes of DS_C_CERT_SUBLIST

OM Attributes of DS_C_SIGNATURE

Object Identifiers for MDUP Attribute Types.
Representation of Values for MDUP Attribute Types
Object Identifiers for MDUP Object Classes.
Attributes Specific to MH_C_OR_ADDRESS

Forms of Originator/Recipient Address .

Attribute Specific to MH_C_OR_NAME .

OM Attributes of DS_C_DL_SUBMIT_PERMS .
Object Identifiers for GDSP Attribute Types.
Representation of Values for GDSP Attribute Types
Object Identifier for GDSP Object Classes .

OM Attributes of DSX_C_GDS_ACL.

11-44
11-45

. 11-48

12-4

12-5
12-14
12-16
12-17
12-18
12-19
12-20

. 12-21

13-3
13-3
13-4
13-6
13-7
13-8
13-9
13-10

. 13-11

14-2
14-3
14-6
14-7

. 14-22

14-27
14-28
15-2
15-4
15-7
15-8

OSF® DCE Application Development Guide — Directory Services

Contents

Table 15-5.
Table 15-6.
Table 15-7.
Table 15-8.
Table 15-9.
Table 16-1.
Table 16-2.
Table 16-3.
Table 17-1.
Table 17-2.
Table 17-3.
Table 17-4.
Table 17-5.
Table 18-1.
Table 18-2.
Table 18-3.
Table 19-1.
Table 19-2.
Table 19-3.

OM Attributes of DSX_C_GDS_ACL_ITEM.
OM Attributes of DSX_C_GDS_CONTEXT .
Default DSX_C_GDS_CONTEXT

OM Attributes of DSX_C_GDS_SESSION .
Default DSX_C_GDS_SESSION.

Object Identifier for DME Attribute Type.

Representation of Values for DME Attribute Types .

Object Identifier for DME Object Class .
String Syntax ldentifiers .

Syntax for ASN.1 Simple Types.
Syntaxes for ASN.1 Useful Types
Syntaxes for ASN.1 Character String Types.
Syntaxes for ASN.1 Type Constructors .
XOM Service Interface Data Types .
Assigning Meanings to Values

XOM Service Interface Functions
Attributes Specific to OM_C_ENCODING
Attributes Specific to OM_C_EXTERNAL
Attribute Specific to OM_C_OBJECT

OSF® DCE Application Development Guide — Directory Services

15-9
. 15-10
. 15-14
. 15-15
. 15-17
16-2
16-3
16-4
17-4
17-5
17-6
17-6
17-7
. 18-2
. 18-17
. 18-20
19-2
19-4
19-6

XVil

Preface

The OSF DCE Application Development Guigeovides information about how to
program the application programming interfaces (APIs) provided for each® OSF
Distributed Computing Environment (DCE) component.

Audience

This guide is written for application programmers with UNIX operating system and
C language experience who want to develop and write applications to run on DCE.

Applicability

This revision applies to the OSHDCE Release 1.2.2 offering and related updates.
See your software license for detalils.

OSF® DCE Application Development Guide — Directory Services XixX

Preface

Purpose

The purpose of this guide is to assist programmers in developing applications that
use DCE. After reading this guide, you should be able to program the Application
Programming Interfaces provided for each DCE component.

Document Usage

The OSF DCE Application Development Guidensists of three books, as follows:
» OSF DCE Application Development Guide—Introduction and Style Guide
» OSF DCE Application Development Guide—Core Components

— Part 1. DCE Facilities
— Part 2. DCE Threads
— Part 3. DCE Remote Procedure Call
— Part 4. DCE Distributed Time Service
— Part 5. DCE Security Service
* OSF DCE Application Development Guide—Directory Services
— Part 1. DCE Directory Service
— Part 2. CDS Application Programming
— Part 3. GDS Application Programming
— Part 4. XDS/XOM Supplementary Information

Related Documents

For additional information about the Distributed Computing Environment, refer to the
following documents:

* Introduction to OSF DCE
» OSF DCE Command Reference

XX OSF® DCE Application Development Guide — Directory Services

Preface

» OSF DCE Application Development Reference

* OSF DCE Administration Guide

» OSF DCE DFS Administration Guide and Reference

* OSF DCE GDS Administration Guide and Reference

* OSF DCE/File-Access Administration Guide and Reference
* OSF DCE/File-Access User's Guide

» OSF DCE Problem Determination Guide

» OSF DCE Testing Guide

» OSF DCE/File-Access FVT User’s Guide

* Application Environment Specification/Distributed Computing
* OSF DCE Technical Supplement

* OSF DCE Release Notes

Typographic and Keying Conventions

This guide uses the following typographic conventions:

Bold Bold words or characters represent system elements that you must use
literally, such as commands, options, and pathnames.

Italic Italic words or characters represent variable values that you must supply.
Italic type is also used to introduce a new DCE term.

Constant width
Examples and information that the system displays appear in
constant width typeface.

[1 Brackets enclose optional items in format and syntax descriptions.

{} Braces enclose a list from which you must choose an item in format
and syntax descriptions.

| A vertical bar separates items in a list of choices.

<> Angle brackets enclose the name of a key on the keyboard.

OSF® DCE Application Development Guide — Directory Services XXi

Preface

Horizontal ellipsis points indicate that you can repeat the preceding item
one or more times.

This guide uses the following keying conventions:
<Ctrl- x> or ”x

The notation<Ctrl- x> or ”x followed by the name of a key indicates a

control character sequence. For examgl#|-C means that you hold
down the control key while pressingC>.
<Return> The notatiorkReturn> refers to the key on your terminal or workstation

that is labeled with the word Return or Enter, or with a left arrow.

Problem Reporting

If you have any problems with the software or documentation, please contact your
software vendor’s customer service department.

Pathnames of Directories and Files in DCE
Documentation

For a list of the pathnames for directories and files referred to in this guide, see the
OSF DCE Administration Guide—Introducti@md theOSF DCE Testing Guide

XXii OSF® DCE Application Development Guide — Directory Services

Part 1

DCE Directory Service

Chapter 1
DCE Directory Service Overview

This chapter provides an overview of the DCE Directory Service for application
programmers. The chapter begins with a description of this guide. It then introduces
DCE Directory Service concepts, following which the structure of DCE names and
the DCE namespace are described. The chapter then provides an overview of the
programming interfaces used to access the DCE Directory Service.

1.1 Introduction to This Guide

This guide describes how application developers can access the DCE Directory
Service. From the application programmer’'s perspective, the directory service
has three main parts: the DCE Cell Directory Service (CDS), the DCE Global
Directory Service (GDS), and the X/Open Directory Service (XDS) and X/Open OSI-
Abstract-Data Manipulation (XOM) programming interfaces. This is reflected in the
organization of the book, as follows:

» Part 1. DCE Directory Service
» Part 2. CDS Application Programming

OSF® DCE Application Development Guide — Directory Services 1-1

DCE Directory Service

1.11

1-2

» Part 3. GDS Application Programming
» Part 4. XDS/XOM Supplementary Information

Parts 2 and 3 contain conceptual material on CDS and GDS with descriptions of

programming tasks, including the use of programming interfaces. Chapters in each

of these parts (Chapter 3 of Part 2 and Chapter 7 of Part 3) contain annotated source
code for sample applications.

Part 4 consists mostly of tables of values for the data structures used by the XDS
and XOM application interfaces, which are the interfaces used to directly access the
directory service. These chapters supplement the reference pages for the XDS and
XOM function calls, which are located in th@SF DCE Application Development
Reference

Use of This Guide

Before reading this guide, you should read th&#zoduction to OSF DCEIt contains
overviews, along with illustrations, of all the DCE components and of DCE as a
whole. Many concepts and details are explained inlItiteoduction to OSF DCE

that are necessary to a full understanding of what is described here. Next, read this
chapter in its entirety.

Determine whether you will be programming primarily in the CDS namespace or the
GDS namespace and read Part 2 or Part 3 accordingly. At this point, you are ready
to begin programming and should proceed to Part 4. The main purpose of Part 4 is
to provide a convenient location to look up the details of object values and structures
needed when writing code.

If you do not find the information you need in either this guide or @8F DCE
Application Development Referencgee theOSF DCE Administration Guidand

the OSF DCE Command ReferenceFor example, information about the CDS as

a separate component is found in t®&F DCE Administration Guide Although

the DCE Security Service is documented in th8F DCE Application Development
Guide some information of interest to programmers (such as adding new principals
to the registry database) is also found in @8F DCE Administration Guide

OSF® DCE Application Development Guide — Directory Services

DCE Directory Service Overview

1.1.2 Directory Service Tools

Both CDS and GDS have commands that allow system administrators to inspect and
alter the contents of the directory. This can be useful when developing applications
that access the DCE namespace.

For information on the CDS control progracdéscp, see theOSF DCE Administration
Guide—Core Components For information on the CDS browsecdsbrowse,
which is a utility based on Motff that allows you to inspect the CDS namespace, see
the OSF DCE Administration Guide—Core Components

For information on the GDS system administration commaudsysadmgdsdirinfo,
gdsditadm, and gdscacheadm see theOSF DCE GDS Administration Guide and
Reference

1.2 Using the DCE Directory Service

The DCE Directory Service can be used in many ways. Itis used by the DCE services
themselves to support the DCE environment. For example, cells are registered in
the global part of the directory service, enabling users from different cells to share
information and resources.

The directory service is also useful to DCE applications. The client and server sides
of an application can use it to find each other’s locations. The directory service can
also be used to store information that must be made available in a globally accessible,
well-known place.

For example, one DCE application could be a print service consisting of a client side
application that makes requests for jobs to be printed, and a server-side application
that prints jobs on an available printer. The directory service could be used as a
central place where the print clients could look up the location of a print server. It
could also be used to store information about printers; for example, what type of jobs
a printer can accept and whether it is currently up or down and lightly or heavily
loaded.

In some ways, a directory service can be used in the same way that a file system
has traditionally been used; that is, for containing globally accessible information in

OSF® DCE Application Development Guide — Directory Services 1-3

DCE Directory Service

1.3

a well-known place. An example is the use of configuration information stored in
files in a UNIX /etc directory.

However, the directory service differs in important ways. It can be replicated so
that information is available even if one server goes down. Replicas can be kept
automatically up-to-date so that, unlike multiple copies of a file on different machines,
the information in the replicas of the directory service can be kept current without
manual intervention.

The directory service can also provide security for data that is kept in a globally
accessible place. It supports access control lists (ACLs) that provide fine-grained
control over who is able to read, modify, create, and perform other operations on its
data.

As you learn about the directory service and how to access it, think about the ways
in which your application can best take advantage of the services it provides.

DCE Directory Service Concepts

This section provides a description of DCE Directory Service concepts that are

important to application developers. Concepts that are specific to GDS are covered
in more detail in Part 3. The following concepts are intended to convey general

definitions that are applicable to the directory service as a whole rather than specific
to a particular directory service component. For more detailed definitions, see the
glossary in thdntroduction to OSF DCE

* DCE namespace

The DCE namespace is the collection of names in a DCE environment. It can be
made up of several domains, in which different types of servers own the names in
different parts of the namespace. Typically, there are two high-level, or global,
domains to a DCE namespace: the GDS namespace and the Domain Name
System (DNS) namespace. At the next level is the CDS namespace, with names
contained in the cell’'s CDS server. A DCE environment always contains a cell
namespace, which is implemented by CDS. Parts of the DCE namespace may not
be contained in any of the directory services; for example, the DFS (Directory
File Service) namespace, also called fitesspace contains the names of files and

OSF® DCE Application Development Guide — Directory Services

DCE Directory Service Overview

directories in DFS, and the security namespace contains principals and groups
contained in the security server.

The termDCE namespacis used when referring to names, but not the information
associated with them. For example, it would include the name of a printer in the
directory service, but not its associated location attribute, and it would include
the name of a DFS file, but not its contents.

 Cell namespace

All of the names found in a single DCE cell constitute the cell’'s namespace. This
includes names managed by the cell’'s CDS server and security server, names in
the cell's DFS if it has one, and any other names that reside within a particular
cell.

* Hierarchy

The DCE namespace is organized into a hierarchy; that is, each name except the
global root has a parent node and may itself have child nodes or leaves. The
leaves are calledbbjectsor entries and, in the CDS and DFS namespace, the
nodes are calledirectories

* Directory

The worddirectoryhas two meanings, which can be differentiated by their context.
The first is the node of a hierarchy as mentioned in the previous definition. The
second is a collection of objects managed by a directory service.

« Directory service

A directory service is software that manages names and their associated attributes.
A directory service can store information, be queried about information, and be
requested to change information. DCE contains two different directory services:
CDS and GDS. It also interacts with a third directory service, DNS, which is not
part of DCE.

* Junction
A junction is a point in the DCE namespace where two domains meet. For
example, the point where the DFS entries mr@untedinto a CDS namespace is

a junction. DCE also has junctions between the global directory services and
CDS, and between CDS and the DCE Security Service.

OSF® DCE Application Development Guide — Directory Services 1-5

DCE Directory Service

1-6

* Object

The wordobjectcan have two meanings, depending on the context. Sometimes
it means an entry in a directory service. Sometimes it means a real object that an
entry in a directory service describes, such as a printer. In the context of XDS/
XOM, the requested data is returned to the application in one or mtedace
objects which are data structures that the application can manipulate.

Entry

An entry is a unit of information in a directory service. It consists of a name
and associated attributes. For example, an entry could consist of the name of a
printer, its capabilities, and its network address.

— Class

In GDS, each entry has a class associated with it. The class determines what
type of entry it is and what attributes may be associated with it.

— Link

A link is one type of object class. This type of object is a pointer to another
object; it is similar to a soft link in a UNIX file system. A CDS link is
similar to a GDS alias.

Attribute

If an object is like a complex data structure, then its attributes are analogous to the
separate member fields within that structure. Some of an object’s attributes may
be of significance only to the directory service that manages it. With attributes
such as these, a directory service implements objects that contain various kinds
of data about the directory itself, thus enabling the service to organize the entries
into a meaningful structure. For example, directory objects can contain attributes
whose values are other directory objects (catleitd directoriesor subdirectorie}

in the directory. Or link objects can contain attributes whose values are the
names and internal identifiers of other directory entries, making a link object’s
entry name an alias of the other object to which its attributes indirectly refer.

— Type

OSF® DCE Application Development Guide — Directory Services

DCE Directory Service Overview

Every attribute is characterized as being of a certain type. The attribute is
used to hold a certain kind of data, such as a zip code or the name of a cat.
Entries can also be classified by type; for entries, the term useldds

— Value

An attribute can have one or more values.

» Obiject identifier

Directory attributes are uniquely identified by object identifiers (OIDs), which
are administered by the International Organization for Standardization (ISO). In
GDS, OIDs are also used to identify object classes. When it creates new attribute
types, an application is responsible for tagging them with new, properly allocated
OIDs (see your directory service administrator for OID assignments). In CDS,
attribute types are identified by strings, which can be representations of OIDs.

* Name

A DCE name corresponds to an entry in some service participating in the DCE
namespace, usually a directory service.

— Global name

A global name is a name that contains a path through one of the global
namespaces (GDS or DNS).

— Local name

A local name is a name that uses the cell préfix to indicate the cell name
and therefore does not have a specific path through a global namespace. The
entry for a local name is always contained in the local cell.

» Access control list

Access to DCE namespace entries is determined by lists of entities that are
attached through the DCE Security Service to both the entries and the objects
when they are created. The lists, callectess control list§ACLS), specify the
privileges that an entity or group of entities has for the entry the ACL is associated
with. The security service provides servers with authenticated identification of
every entity that contacts them; it is then the server’s responsibility to check the
ACL attached to the object that the potential client wants to access, and perform

OSF® DCE Application Development Guide — Directory Services 1-7

DCE Directory Service

or refuse to perform the requested operation on the basis of what it finds there.
The ACLs are checked using security service library routines.

Objects in the GDS namespace have ACLs associated with them, but they are not
security service ACLs.

Replication

The DCE Directory Service can keepplicas (copies) of its data on different
servers. This means that, if one server is unavailable, clients can still obtain
information from another server.

Caching

Both the CDS and GDS components of the directory service support caching
of data on the client machine. When a client requests a piece of data from
the directory service for the first time, the information must be obtained over
the network from a server. However, the data can thewdmhed(stored) on

the local machine, and subsequent requests for the same data can be satisfied
more quickly by looking in the local cache instead of sending a request over the
network. You need to be aware of caching because in some cases you will want
to bypass the cache to ensure that the data you obtain is as up-to-date as possible.

1.4 Structure of DCE Names

The following subsections describe the structure of the names found in a DCE
environment. DCE names can consist of several different parts, which reflect the
federated nature of the DCE namespace. A DCE name has some combination of the
following elements. They must occur in this order, but most elements are optional.

1-8

Prefix

GDS cell name or DNS cell name
GDS name or CDS name
Junction

Application name

OSF® DCE Application Development Guide — Directory Services

DCE Directory Service Overview

A DCE name can be represented by a string that is a readable description of a specific
entry in the DCE namespace. The name is a string consisting of a series of elements
separated by (slash). The elements are read from left to right. Each consecutive
element adds further specificity to the entry being described, until finally one arrives
at the rightmost element, which is the simple name of the entry itself. Thus, in
appearance, DCE names are similar to UNIX filenames.

In the discussion that follows, a DCE namkementis the single piece of a name
string enclosed between a consecutive pair of slashes. For example, consider the
following string:

/.../C=US/O=0SF/OU=DCE/hosts/abc/self

In it, the following two substrings are both elements:

O=0SF

abc

The entire name contains (counting the element) a total of seven elements.

In GDS, an element is calledrelative distinguished nam@&DN) and the entire name
is called adistinguished naméDN). In the preceding example, the attribute type
stands for the Organization type OID, which is 2.5.4.10.

1.4.1 DCE Name Prefixes

The leftmost element of any valid DCE name is a root prefix. The appearance and
meaning of each is as follows:

/... This is theglobal root It signifies that the immediately following
elements form the name of a global namespace entry. Usually, the
entry’s contents consist of binding information for a DCE cell (more
specifically, for some CDS server in the cell), and the name of the
global entry is the name of the cell.

/. This is thecell root It is an alias for the global prefix plus the name
of the local cell; that is, the cell in which the prefix is being used. It

OSF® DCE Application Development Guide — Directory Services 1-9

DCE Directory Service

1.4.2

1-10

signifies that the immediately following elements taken together form
the name of a cell namespace entry.

/: This is thefilespace roat It is an alias for the global prefix, the name
of the local cell, and the DFS junction.

DCE also supports a junction into the security service namespace, but there is no alias
for this junction.

A prefix by itself is a valid DCE name. For example, you can list the contents of
the/.: directory to see the top-level entries in the CDS namespace, and you can use
a file system command to list the contents of the directory to see the top-level
entries in the filespace.

Names of Cells

After the global root prefix, the next section of a DCE name contains the name of
the cell in which the object's name resides. The name of a cell can be expressed
as either a GDS name or a DNS name, depending on which global directory service
(GDS or DNS) the cell is registered in. The following subsections provide examples.

1.4.2.1 GDS Cell Names

GDS elements always consist of a substring in which an abbreviation or acronym in
capital letters is followed by a (equal sign), which is followed by a string value. As
you will learn in more detail in Chapter 2, these substrings represent pairs of attribute
types and attribute values.

For example, consider the following global DCE name:
/.../C=DE/O=SNI/OU=DCE/subsys/druecker/docs
In it, the attribute=valueform of the leftmost elements after tthe indicates that the

global part of the name is a GDS namespace entry, and that it ends af@Ut#eCE
element; therefore, the rest of the name is in kthéC=DE/O=SNI/OU=DCE cell.

OSF® DCE Application Development Guide — Directory Services

DCE Directory Service Overview

1.4.2.2 DNS Cell Names

If DNS is used as the global directory, a global name has a form like the following:
/...Ics.univ.edu/subsys/printers/docs

where the single element

cs.univ.edu

is the cell name; that is, the cell's name in the DNS namespace. The DNS name

consists of up to four domain names (depending on the name assigned to the cell),
separated by dots.

1.4.2.3 Discovering Your Local Cell's Name

A DCE cell consists of the machines that are configured into it; each DCE machine
belongs to one DCE cell. Your local cell is therefore the cell to which the machine
you are using belongs. Depending on the DCE name you are using, you can access
your own cell or other (foreign) cells. If the name you are accessing is global, then
its cell is explicitly named. If the name begins with the local cell prefix, then you
are accessing a name within your local cell. You can find out what cell you are in
by calling thedce_cf _get_cell_name(junction.

Using the global directory services, applications can access resources and services

in foreign cells; however, applications most frequently use resources from their local
cell. If this is not the case, the cell boundaries may not have been well chosen.

1.4.3 CDS Names

After the cell name or cell root prefix, the next part of a DCE name is often a CDS
name. For example, consider the following name:

/.../C=DE/O=SNI/OU=DCE/subsys/druecker/docs

The CDS part of this name is

OSF® DCE Application Development Guide — Directory Services 1-11

DCE Directory Service

144

145

1-12

/subsys/druecker/docs

Another example is the name

/...Ics.univ.edu/subsys/printers/docs

In this name, the CDS part is

/subsys/printers/docs

The following strings show equivalent names that use the cell root prefix, assuming
that the name is used from within the/C=DE/O=SNI/OU=DCE and/.../cs.univ.edu

cells, respectively:

/.:/subsys/druecker/docs
/.:/subsys/printers/docs

GDS Names

Some names fall entirely in the GDS namespace. These names are pure X.500 (and
therefore GDS) names, since each element consists of a type and an attribute. The
entries for these names are contained in a GDS server. The following is an example
of a pure GDS name:

/.../C=US/L=Cambridge/CN=Kilroy

Junctions in DCE Names

Some junctions are implied in a DCE name; others can be seen. There is an implied
junction between the global prefix and either GDS or DNS. It occurs after the global
prefix. The junction between either of the global namespaces and the local cell
namespace is also implied. It occurs after the cell name. The junction between
the local cell namespace and either the DFS namespace or the security namespace is
shown by the symbadffs or /seg respectively. The following are examples of visible
junctions in DCE names:

OSF® DCE Application Development Guide — Directory Services

DCE Directory Service Overview

/.:[fslusr/snowpaws
/...Idce.osf.org/sec/principal/ziggy

1.4.6 Application Names

The part of a DCE name that occurs after a junction into a DCE application is the

application name. DFS and security names are the currently supported examples;
in the future, application programmers may also be able to create junctions in the
namespace.

DFS names occur after the DFS junction. They are typeless and resemble UNIX file
system names. After the global and CDS parts of a DFS name have been resolved by
the appropriate directory services, the rest of the DFS name is handled within DFS.
In the equivalent examples that followysr/snowpawsis the DFS part of the DCE
name:

/...Idce.osf.org/fs/usr/snowpaws

/.:[fslusr/snowpaws

[:/usr/snowpaws

Security names are similar to DFS names; first the parts of the name within the DCE
Directory Service are resolved, then the rest of the name is handled by the security
service. The entry is contained in the security registry database. Consider the
following:

/.:Isec/principal/ziggy

In this example, the security part of the DCE namépigncipal/ziggy.

1.5 The Federated DCE Namespace

The DCE namespace is a single hierarchy of names, but the names can be contained
in many different services. Because several services cooperate to make the DCE
namespace, it is a federated namespace.

OSF® DCE Application Development Guide — Directory Services 1-13

DCE Directory Service

Figure 1-1.

151

1-14

Figure 1-1 shows a typical DCE namespace and the different services in which names
reside.

A Federated DCE Namespace

root
GDS DNS
CDS CDS
DFS Sec Sec

The following sections describe the different domains of the DCE namespace.

The GDS Namespace

This section provides a brief overview of the main characteristics of the GDS
namespace regarded apart from the XDS interface used to access it. More detailed
information about GDS and XDS can be found in Part 3 and Part 4, respectively.

In a GDS name such as

/.../C=US/O=0SF/OU=DCE

the C=USandO=0SFelements do not refer to directory entries that are fundamentally
different from the one represented YU=DCE, unlike in CDS or the UNIX file
system.

Thus, in the name string

/C=US/O=0SF/OU=DCE

OSF® DCE Application Development Guide — Directory Services

DCE Directory Service Overview

the elemenC=USrefers to a one-level-down country entry whose valud$sthen to

a two-levels-down organization entry whose valu®F, and then to a three-levels-
down organization unit entry whose value IXCE. Concatenating these elements
results in a valid path of entries from the directory root to I¥€E entry. The
entry itself is the namespace sign to a GDS directory object that contains binding
information for the/.../C=US/O=0SF/OU=DCEcell.

1511 An Example GDS Namespace

Figure 1-2 shows what a part of the DCE global namespace could look like. Levels
in the tree of entries are numbered; the global root is at Level 0. The GDS structure
rules as defined for DCE allow only country name entries at the next level under
the root; organization name and locality nhame entries can exist at the level below a
country name. An organizational unit name can be a child of an organizational name
entry, and a common name can be a child of a locality name. The details of the GDS
rules for the valid types and locations of entries in the directory tree can be found in
the OSF DCE Administration Guide

The object entryC=US/O=0SF/OU=DCEDbelongs to the Organizational Unit class.
One of the object’s values is the CDS server binding information that is used to reach
the cell from other DCE cells. The entire name is an attribute of the object that it
refers to, as is the CDS server binding information that it contains.

Figure 1-2. GDS Namespace Entries and Directory Objects

1.

- Level O
\
C=UsS - Level 1
P e
O=HP O=IBM O=0SF L=Cambridge - Level 2
OU=Apollo OU=West OU=Maotif OU=DCE CN=Kilroy Level 3

OSF® DCE Application Development Guide — Directory Services 1-15

DCE Directory Service

15.1.2 The GDS Schema

The schema defines the shape and format of entries in the GDS directory. It contains
four types of rules, which describe the following:

» The legal hierarchy of entries. What entries may be subordinate to other entries.
These rules are what prevents, for example, countries from being subordinate to
states.

» The allowable object classes, the mandatory and optional attributes of entries, and
which attributes are the naming attributes.

» The allowable attribute types, associating a unique OID and an attribute syntax
with each attribute type.

» The syntaxes of attributes that describe what attribute values look like, such as
strings, numbers, or OIDs.

By installing the proper schema, an entry of any particular object class can have the
two attributes needed to identify a cell. See @8F DCE Administration Guidéor
a full description of how to set up a cell entry by using either GDS or DNS.

1.5.2 The CDS Namespace

The CDS namespace is the part of the DCE namespace that resides in the local cell's
CDS. DCE itself is made up of components that, like the applications that use them,
are distributed client/server applications. These components rely on CDS to make
themselves available as services to DCE applications. This requires that the structure
of the cell namespace be stable, known, and have parts that are not alterable by casual
users or applications.

15.2.1 The CDS Schema

The cell namespace’s hierarchy model is different from the GDS model, and the
CDS rules do not enforce any particular model; CDS allows entries containing any
kind of data to be created anywhere in the namespace. Thus, CDS offers a free-
form namespace in which entries and directories can be organized as desired, and
in which any entry or directory can contain any attributes. The CDS administrator

1-16 OSF® DCE Application Development Guide — Directory Services

DCE Directory Service Overview

can create additional directories, and applications can add name entries as needed;
applicationscannotcreate CDS directory entries. Because of this, and because the
cell namespace is so important to the operation of the cell, application developers and
system administrators have more responsibility in planning and regulating their use
of it.

The cell namespace has a structure similar to that of a UNIX file system. The CDS
namespace is a tree of entries that grows from the root downward. The name entries
are organized under directory entries, which can themselves be subentries of other
directories. The cell root (represented by the préfix can be thought of as the
location you get when you dereference the cell’s global name. New directories and
new entries within the directories can be added anywhere in the tree, subject to the
restrictions mentioned previously.

1.5.2.2 CDS Entries and CDS Attributes

There are three different kinds of CDS entries that are of significance to application
programmers, as follows:

* Object
» Soft link

* Directory

The object entries are the most primitive form. These are where data is stored.
Directory entries contain other entries (that is, can have children) just like UNIX file
system directories. Soft link entries are essentially alias names for other directory
or object entries. Only object entries can be created by applications; soft links and
directories have to be created and manipulated withctisep command.

Thus, any CDS entry is defined as a directory, a soft link, or an object entry by the
presence of a certain combination of attributes belonging to that kind of entry. You
can use thedscpcommand to get a display of all the attributes of any CDS entry.

The termattributeas applied to namespace entry objects has roughly the same meaning

in CDS and GDS. The main difference is that CDS does not restrict or control the
combinations of attributes attached to entries written in its namespace.

OSF® DCE Application Development Guide — Directory Services 1-17

DCE Directory Service

153

1.6

16.1

1.6.2

1-18

Other Namespaces

For information about names contained in the DFS namespace (the filespace) and the
security hamespace, refer to the chapters on those components in this guide.

Programming Interfaces to the DCE Directory
Service

The following two subsections describe two programming interfaces for accessing the
DCE Directory Service.

The XDS Interface

The main programming interface to all services within the directory service is XDS/
XOM, as defined by X/Open. The calls correspond to the X.500 service requests,
including Read, List (enumerate children), Search, Add Entry, Modify Entry, Modify
RDN, and Remove Entry. XDS uses XOM to define and manipulate data structures
(calledobjects used as the parameters to these calls, and used to describe the directory
entries manipulated by the calls. XOM is extremely flexible, but also somewhat
complex. The interfaces are used in different ways, depending on which underlying
directory service is being addressed. For example, CDS entries are typeless, but GDS
entries are typed. This difference is reflected in the use of the interface.

The RPC Name Service Interface

The DCE Remote Procedure Call (RPC) facility supports an interface to the directory
service that is specific to RPC and is layered on top of directory service interfaces; it
is called the Name Service Independent (NSI) interface. NSI can manipulate three
object classes — entries, groups, and profiles — which were created to store RPC
binding information. NSI data is stored in CDS. Programming using this interface
is discussed in th®SF DCE Application Development Guide—Core Comporemds

OSF DCE Application Development Guide—Introduction and Style Guatlames.

OSF® DCE Application Development Guide — Directory Services

DCE Directory Service Overview

1.6.3 Namespace Junction Interfaces

For information about programming interfaces to names that occur in namespace
junctions, see the documentation for that component.

OSF® DCE Application Development Guide — Directory Services 1-19

Part 2

CDS Application Programming

Part 2 describes DCE Directory Service application programming in the CDS
namespace. Chapter 2 describes the contents of the CDS namespace, where
applications should put their data, and what the valid CDS characters and names
are. Chapter 3 describes how to use the XDS programming interface to access data
in the CDS namespace.

Chapter 2
Programming in the CDS Namespace

This chapter provides information about writing applications that use the XDS/XOM
interface to access the portion of the DCE namespace contained in CDS.

The XDS/XOM interface provides generalized access to CDS. However, if you only

need to use CDS to store information related to RPC (for example, storing the location
of a server so that clients can find it), you should use the NSI interface of DCE RPC.

NSI implements RPC-specific use of the namespace. For information on using RPC
NSI, see theOSF DCE Application Development Guide—Core Components

For information on the details of accessing the CDS namespace through the XDS/
XOM interface, see Chapter 3.

2.1 Initial Cell Namespace Organization

The following subsections describe the organization of a cell's namespace after it has
initially been configured. (For more information on configuring a cell, seeQ8€&
DCE Administration Guidg

OSF® DCE Application Development Guide — Directory Services 2-1

CDS Application Programming

Every DCE cell is set up at configuration with the basic namespace structure necessary
for the other DCE components to be able to find each other and to be accessible to
applications. The vital parts of the namespace are protected from being accessed by
unauthorized entities by ACLs that are attached to the entries and directories.

Figure 2-1 shows what the cell namespace looks like after a cell has been configured
and before any additional directories or entries have been added to it by system
administrators or applications. In the figure, ovals represent directories, rectangles
represent simple entries, circles represent soft links, and triangles represent namespace
junctions.

All of the simple entries shown in the figure are created for use with RPC NSI routines;
that is, they all contain server-binding information and exist to enable clients to find
servers. These are referred toRBC entries

Note that only the name entries (those in boxes) and junction entries (those in
triangles) are RPC entries. The directories (entries indicated by ovals) are normal
CDS directories.

Some of the namespace entries in the figure are intended to be used (if desired)
directly by applications; namely,:/cell-profile, /.:/lan-profile, and, through the:

soft link alias,/.:/fs. Theself andprofile name entries unddrostsalso fall into this
category. Others, such as those unbi#subsys/dce are for the internal use of the
DCE components themselves.

Each of the entries is explained in detail in the following subsections. Se®3ie

DCE Administration Guiddor detailed information on the contents of the initial DCE
cell namespace.

2-2 OSF® DCE Application Development Guide — Directory Services

Programming in the CDS Namespace

Figure 2-1. The Cell Namespace After Configuration

Soft Link to DFS @ @ Cell Root
cell-profile

lan-profile
cdshostnamech

/ fs

sec

cds-serve

bak

OSF® DCE Application Development Guide — Directory Services 2-3

CDS Application Programming

2.1.1

2.1.2

2.1.3

The Cell Profile

The /.:/cell-profile entry is an RPC profile entry that contains the default list of
namespace entries to be searched by clients trying to bind to certain basic services.
An RPC profile is a class of nhamespace entry used by the RPC NSI routines. When
a client imports bindings from such an entry, it imports, through the profile, from an
ordered list of RPC entries containing appropriate bindings. The list of entries is
keyed by their interface universal unique identifiers (UUIDSs) so that only bindings to
servers offering the interface sought by the client are returned. The entries listed in
the profile exist independently in the namespace, and can be separately accessed in
the normal way. The profile is simply a way of organizing clients’ searches.

The main purpose dfell-profile is as a path of last resort for prospective clients. All
other profile entries in the cell namespace are required to haveethprofile entry

in their entry lists so that, if a client exhausts a particular profile’s list of entries, it
tries those incell-profile.

The LAN Profile

The /.:/lan-profile entry is a local area network (LAN)-oriented default list of
services’ namespace entries that is used when servers’ relative positions in the network
topography are of importance to their prospective clients.

The CDS Clearinghouse

The/.:/cdshostnamech entry is the namespace entry faishostnarnie clearinghouse,
wherecdshostnames the name of the host machine on which a CDS server is installed.

A clearinghouseés the database managed by a CDS server; it is where CDS directory
replicas are physically stored. For more information about clearinghouses, see the
OSF DCE Administration Guide All clearinghouse namespace entries reside at the
cell root, and there must be at least one in a DCE cell. The first clearinghouse’s
name must be in the form shown in Figure 2-1, but additional clearinghouses can be
named as desired.

OSF® DCE Application Development Guide — Directory Services

Programming in the CDS Namespace

2.1.4 The Hosts Directory

The/.:/hostsentry is a directory containing entries for all of the host machines in the
cell. Each host has a separate directory ufmbests its directory has the same name
as the host. Four entries are created in each host’s directory:

o self
This entry contains bindings to the host's DCE daemalece), which is
responsible for, among other things, dynamically resolving the partial bindings

that it receives in incoming RPCs from clients attempting to reach servers resident
on this host.

* profile
This entry is the default profile entry for the host. This profile contains in its list
of entries at least the:/cell-profile entry described in Section 2.1.1.

e cds-clerk

This entry contains bindings to the host's resident CDS clerk.

» cds-server

This entry contains bindings to a CDS server.

2.1.5 The Subsystems Directory

The /.:/subsysentry is the directory for subsystems. Subdirectories bedobsys
are used to hold entries that contain location-independent information about services,
particularly RPC binding information for servers.

Thedcedirectory is created below:/subsysat configuration. This directory contains
directories for the DCE Security Service and Directory File Service (DFS) components.
The functional difference between these two directories andsttamd secjunctions
described in Section 2.1.7 is that the latter two entries are the access points for the
components’ special databases, whereas the directories sulogys/dcecontain the
services’ binding information.

OSF® DCE Application Development Guide — Directory Services 2-5

CDS Application Programming

2.1.6

2.1.7

2-6

Subsystems that are added to DCE should place their system names in directories
created beneath thé:/subsys directory. Companies adding subsystems should
conform to the convention of creating a unique directory bekwbsysby using

their trademark as a directory name. Use these directories for storage of location-
independent information about services. You should store server entries, groups and
profiles for the entire cell in the directories belewbsys For example, International

Air Freight-supplied subsystems should be placed:subsys/IAF.

The /: DFS Alias

The entry/: is created and set up as a soft link to théfs entry, which is the DFS
database junction. The narhe is equivalent td.:/fs. Note, however, that the name
[:is well-known, whereas the nanie/fs is not, so using: makes an application
more portable. A CDS soft link entry is an alias to some other CDS entry. A soft
link is created through thedscpcommand. The procedure is described in @®F
DCE Administration Guide

The DFS and DCE Security Service Junctions

The/../fs entry is the DFS junction entry. This is the entry for a server that manages
the DFS file location database.

The/.:/secentry is the DCE Security Service junction entry. This is the entry for a
server that manages the security service database (also callesbisiey database

The /.:/fs and /.:/secroot entries in Figure 2-1 are junctions maintained by DCE
components. Thé.:/secjunction is the security service's namespace of principal
identities and related information. The DFS’s fileset location servers are reached
through the/.:/fs entry, making/.:/fs effectively the entry point into the cell's
distributed file system.

Note that/.:/sec and /.:/fs are both actually RPC group entries; the junctions are
implemented by the servers whose entries are members of the group entries. (See the
OSF DCE Administration Guidéor further details on the security service and DFS
junctions.)

OSF® DCE Application Development Guide — Directory Services

Programming in the CDS Namespace

2.2

2.2.1

Recommended Use of the CDS Namespace

CDS data is maintained in a loosely consistent manner. This means that, when

the writeable copy of a replicated name is updated, the read-only copies may not be
updated for some period of time, and applications reading from those nonsynchronized

copies can receive stale data. This is in contrast to distributed databases, which use
multiphase commit protocols that prevent readers from accessing potentially stale or

inconsistent data while the writes are being propagated to all copies of the data. Itis

possible to specifically request data from the master copy, which is guaranteed to be
up-to-date, but replication advantages are then lost. This should only be done when
it is important to obtain current data.

Storing Data in CDS Entries

Some CDS entries may contain information that is immediately useful or meaningful

to applications. Other entries may contain RPC information that enables application
clients to reach application servers; that is, binding handles for servers, which are
stored and retrieved using the RPC NSI routines. In either case, the entry’s
name should be a meaningful identification label for the information that the entry
contains. This is because the namespace entry names are the main clue that users
and applications have to the available set of resources in the DCE cell. Using the
CDS namespace to store and retrieve binding information for distributed applications

is the function of DCE RPC NSI.

In general, applications can store data into CDS object entry attributes in any XDS-
expressible form they wish. Refer to Tables 3-3 and 3-4 in Chapter 3 for XDS-
to-CDS data type translations. If you add new attributes to/tip¢/dcelocal/etc/
cds_attributes file, together with a meaningful CDS syntax (that is, a data type
identifier) and name, then the attribute is displayedctigcp showcommands when
executed on objects containing instances of that attribute.

There are three main questions to consider when using CDS to store data through
application calls to XDS:

1. Where in the CDS namespace should the new entries be placed?

OSF® DCE Application Development Guide — Directory Services 2-7

CDS Application Programming

2-8

You are free to create new directories as long as you do not disturb the
namespace’s configured structure. Keep in mind that CDS directories must be
created with theedscpcommand; they cannot be created by applications.

Only two root-level directories are created at configuratidmosts and subsys
Applications should not add entries under tiststree; the host's default profile
should instead be set up by a system administrator. Sthmsysdirectory is
intended to be populated by directories (for examplésubsys/dcgin which the
servers and other components of independent vendors’ distributed products are
accessed. Thus, the typical cell should usually have a series of root-level CDS
directories that represent a reasonable division of categories.

One obvious division could be between entries intended for RPC use (that is,
namespace entries that contain bindings for distributed applications), and entries
that contain data of other kinds. On the other hand, it may be very useful to
add supplementary data attributes to RPC entries in which various housekeeping
or administrative data can be held. In this way, for example, performance data
for printers can be associated with the print servers’ name entries. You can
either add new attributes to the server entries themselves, where, for example, the
following is the name of a server entry that receives the new attributes:

/.:lapplications/printers/pri
Or you can change the subtree structure so thater@viesare added to hold the

data, the server bindings are still held in separate wholly RPC entries, and each
group of entries is located under a directory named for the printer:

/.:lapplications/printers/prl — directory
/.:lapplications/printers/prl/server — server bindings
/.:lapplications/printers/prl/stats — extra data

In general, the same principals of logic and order that apply to the organization
of a file system apply to the organization of a namespace. For example, server
entries shouldhot be created directly at the namespace root because this is the
place for default profiles, clearinghouse entries, and directories.

Figure 2-2 illustrates some of the preceding suggestions, added to the initial
configuration namespace structure shown in Figure 2-1. In Figure 2-2, the vendor
of the xyz subsystem has set up agz directory under'.:/subsysin which the
system’s servers are exported. This cell also hag.:&applications directory

OSF® DCE Application Development Guide — Directory Services

Programming in the CDS Namespace

in which the printers directory contains separate directories for each installed
printer available on the system; the directory fwf is illustrated in the figure.

In theprl directory,serveris an RPC entry containing exported binding handles,
andstatsis an entry created and maintained through the XDS interface.

Figure 2-2. A Possible Namespace Structure

Soft Link to DFS @ @ Cell Root

cell-profile
lan-profile

‘ cdshostname_ch ‘

subsys fs sec

Xyz-server

Xyz-view

OSF® DCE Application Development Guide — Directory Services 2-9

CDS Application Programming

2. How should the entries be constructed?

Because CDS allows you to add as many attributes as you wish to an object
entry, it is up to you to impose some restraint in doing this. In view of the XDS
overhead involved in reading and writing single CDS attributes, it makes sense
to combine multiple related attributes under single entries (that is, in the same
directory object) where they can be read and written in single calits toead()

or ds_modify_entry(). This way, for example, you only have to create one
interface input object (to pass tts_read() to read all the attributes, which you

can do with one call tads_read() You can then separate out the returned
subobjects that you are interested in and ignore the rest. Chapter 3 contains
detailed discussions of XDS programming techniques.

In any case, you should define object types for use in applications so that
namespace access operations can be standardized and kept efficient. A CDS
object type consists of a specific set of attributes that belong to an object of that
type, with no other attributes allowed. Note again that CDS, unlike GDS, does
not force you to do things this way. You could theoretically have hundreds
of CDS object entries, each of which would contain a different combination of
attributes.

3. Should a directory or an entry be created?

When you consider adding information to the namespace, you can choose between
creating a new directory, possibly with entries in it, or creating simply one or
more entries. When making your decision, take into consideration the following:

a. Directories cannot be created using XDS; they must be created using
administrative commands. Directories are more expensive; they take up
more space and take more time to access. However, they can contain entries
and can therefore be used to organize information in the namespace.

b. Entries can be created using XDS and they are cheaper to create and use
than directories. However, they must be created in existing directories, and
cannot themselves contain other entries.

2.2.2 Access Control for CDS Entries

Each object in the CDS namespace is automatically equipped with a mechanism by
which access to it can be regulated by the object’'s owner or by another authority.

2-10 OSF® DCE Application Development Guide — Directory Services

Programming in the CDS Namespace

For each object, the mechanism is implemented by a separate list of the entities that
can access the object in some way; for example, to read it, write to it, delete it, and so
on. Associated with each entity in this list is a string that specifies which operations
are allowed for that entity on the object. The object’s list is automatically checked
by CDS whenever any kind of access is attempted on that object by any entity. If
the entity can be found in the object’s list, and if the kind of access the entity intends
is found among its permissions, then the operation is allowed to proceed by CDS;
otherwise, it is not allowed.

DCE permission lists are calleaccess control list§ACLs). ACLs are one of the
features of the DCE Security Service used by CDS. ACLs are used to test the entities’
(that is, the principals’) authorization to do things to the objects they propose to do
them to. The authorization mechanism for all CDS objects is handled by CDS itself.
All that users of the CDS namespace have to do is make sure that ACLs on the CDS
objects that they create are set up with the appropriate permissions.

2.2.2.1 Creation of ACLs

Whenever you create a new entry in the CDS namespace, an ACL is created for it
implicitly, and its initial list of entries and their permission sets are determined by the
ACL templates associated with the CDS directory in which you create the entry.
Each CDS directory has the following two ACL templates associated with it:
* Initial Container
This template is used to generate the initial ACL for any directories created within
the directory.
« Initial Object
This template is used to generate ACLs for entries created within the directory.
Like other CDS objects, each CDS directory also has its own ACL, generated from
the parent directory’s Initial Container template when the child directory is created.

The Initial Container template also serves as a template for the child directories’ own
Initial Container templates.

OSF® DCE Application Development Guide — Directory Services 2-11

CDS Application Programming

2-12

2.2.2.2 Manipulating ACLs

There are two ways to manipulate ACLs: either throughablke edit command (see
the acl_edit(8secyeference page) or through the DCE ACL application interface (see
the sec_acl*(3sec)reference pages).

2.2.2.3 Initializing ACLs

After creating a CDS directory by using tiedscpcommand, your first step is usually

to run theacl_edit command to set up the new directory’s ACLs the way you want
them. (The new directory will have inherited its ACLs and its templates from the
directory in which it was created, as explained in Section 2.2.2.1.) You may want
to modify not only the directory’s own ACLSs, but also its two templates. To edit
the latter, you can specify thé option (for the Initial Container template) or thie
option (for the Initial Object template); otherwise, you will edit the object ACL.

You can modify a directory’s ACL templates from an application, assuming that you
have control permission for the object, with the same combinatiseofacl_lookup()
andsec_acl_replace(xalls as for the object ACL. An option to these routines lets
you specify which of the three possible ACLs on a directory object you want the call
applied to. The ACLs themselves are in identical format.

The -e (entry) option toacl_edit can be used to make sure that you get the ACL for
the specified namespace entry object, and not the ACL (if any) for the object that is
referenced byhe entry. This distinction has to be made cleaatb edit because it
finds the object (and hence the ACL) in question by looking it up in the namespace
and binding to its ACL manager. Essentially, tgeoption tellsacl_edit whether it
should bind to the CDS ACL manager (if the entry ACL is wanted), or to the manager
responsible for the referenced object’'s ACL. This latter manager would be a part of
the server application whose binding information the entry contained.

An example of such an ambiguous name would be a CDS clearinghouse entry, such
as thecdshostnamech entry discussed previously. With the option, you would
edit the ACL on the namespace entry, as follows:

acl_edit -e /.:kdshostnamech

OSF® DCE Application Development Guide — Directory Services

Programming in the CDS Namespace

Without the-e option, you would edit the ACL on the clearinghouse itself, which you
presumably daot want to do.

Similarly, there is aind_to_entryparameter by which the caller gec_acl_bind()
can indicate whether the entry object’'s ACL or the ACL to which the entry refers is
desired.

2224 Namespace ACLs at Cell Configuration

The ACLs attached to the CDS namespace at configuration are descrid&iiDCE
Administration Guide The following ACL permissions are defined for CDS objects.
The single letter in parentheses for each item represents the DCE notation for that
permission. These single letters are identical to the untokenized forms returned by
sec_acl_get_printstring()

* read ¢)
This permission allows a principal to look up an object entry and view its attribute
values.

o write (w)
This permission allows a principal to change an object’'s modifiable attributes,
except for its ACLs.

* insert)
This permission allows a principal to create new entries in a CDS directory. It
is used with directory entries only.

* delete ()

This permission allows a principal to delete a name entry from the namespace.
o test €)

This permission allows a principal to test whether an attribute of an object has a
particular value, but does not permit it actually to see any of the attribute values (in
other words, read permission for the object is not granted). The test permission
allows an application to verify a particular CDS attribute’s value without reading
it.

OSF® DCE Application Development Guide — Directory Services 2-13

CDS Application Programming

2.3

2-14

* control)

This permission allows a principal to modify the entries in the object’'s ACL. The
control permission is automatically granted to the creator of a CDS object.

» administer &)

This permission allows a principal to isswelscp commands that control the
replication of directories. It is used with directory entries only.

Detailed instructions on the mechanics of setting up ACLs on CDS objects can be
found in theOSF DCE Administration Guide

For CDS directories, read and test permissions are sufficient to allow ordinary
principals to access the directory and to read and test entries therein. Principals who
you want to be able to add entries in a CDS directory should have insert permission
for that directory. Entries created by the RPC NSI routines (for example, when a
server exports bindings for the first time) are automatically set up with the correct
permissions. However, if you are creating new CDS directories for RPC use, you
should be sure to grant prospective user principals insert permission to the directory
so that servers can create entries when they export their bindings. A general list
of the permissions required for the various RPC NSI operations can be found in the
rpc_intro(3rpc) andrpc_ns *(3rpc) (RPC NSI) reference pages.

Note that CDS names do not behave the same way as file system names. A principal

does not need to have access to an entire entry name path in order to have access to
an entry at the end of that path. For example, a principal can be granted read access
to the following entry:

/.:lapplications/utilities/pr2

and yet not have read access to thities directory itself.

Valid Characters and Naming Rules for CDS

The following subsections discuss the valid character sets for DCE Directory Service
names as used by CDS interfaces. They also explain some characters that have

OSF® DCE Application Development Guide — Directory Services

Programming in the CDS Namespace

special meaning and describe some restrictions and rules regarding case matching,
syntax, and size limits.

The use of names in DCE often involves more than one directory service. For
example, CDS interacts with either GDS or DNS to find names outside the local cell.

Figure 2-3 details the valid characters in CDS names, and the valid characters in GDS
and DNS names as used by CDS interfaces.

Note: Because CDS, GDS, and DNS all have their own valid character sets and
syntax rules, the best way to avoid problems is to keep names short and
simple, consisting of a minimal set of characters common to all three services.
The recommended set is the letters A to Z, a to z, and the digits 0 to 9. In
addition to making directory service interoperations easier, use of this subset
decreases the probability that users in a heterogeneous hardware and software
environment will encounter problems creating and using names.

Although spaces are valid in both CDS and GDS names, a CDS simple name
containing a space must be enclosed in "™ (double quotes) when you enter it through
the CDS control program. Additional interface-specific rules are documented in the
modules where they apply.

OSF® DCE Application Development Guide — Directory Services 2-15

CDS Application Programming

Figure 2-3. Valid Characters in CDS, GDS, and DNS Names

sp|lo [@ | P | |op

(8 H X h X
) 9 I Y i y
* J Z j z
+ : K [k {
, < L \ | |

> N A n _

/ ? 0] 0

Key:[] validin cDS, GDS, and DNS names
[] valid only in CDS and GDS names
Valid only in CDS names

2-16 OSF® DCE Application Development Guide — Directory Services

Programming in the CDS Namespace

2.3.1 Metacharacters

Certain characters have special meaning to the directory services; these are known as
metacharacters Table 2-1 lists and explains the CDS, GDS, and DNS metacharacters.

Table 2-1. Metacharacters and Their Meaning
Directory Character Meaning
Service
CDs / Separates elements of a name (simple names}.
* When used in the rightmost simple name of a

name entered in adscp showor list command,
acts as a wildcard, matching zero or more
characters.

? When used in the rightmost simple name of a
name entered in adscp showor list command,
acts as a wildcard, matching exactly one
character.

\ Used where necessary in front bf(asterisk) or?
(question mark) to escape the character (indicdtes
that the following character is not a
metacharacter).

GDS / Separates RDNs.

, Separates multiple attribute type/value pairs
(attribute value assertions) within an RDN.

= Separates an attribute type and value in an
attribute value assertion.

\ Used in front of/ (slash),, (comma), or= (equal
sign) to escape the character (indicates that th
following character is not a metacharacter).

D

DNS . Separates elements of a name.

OSF® DCE Application Development Guide — Directory Services 2-17

CDS Application Programming

Some metacharacters are not permitted as normal characters within a name. For
example, & (backslash) cannot be used as anything but an escape character in GDS.
You can use other metacharacters as normal characters in a name, provided that you
escape them with the backslash metacharacter.

2.3.2 Additional Rules
Table 2-2 summarizes major points to remember about CDS, GDS, and DNS character
sets, metacharacters, restrictions, case-matching rules, internal storage of data, and
ordering of elements in a name. For additional details, see the documentation for
each technology.
Table 2-2. Summary of CDS, GDS, and DNS Characteristics
Characteristic | CDS GDS DNS
Character Set |atoz, Ato Z,0t0 9 atoz,AtoZ,0to 9 atoz, AtoZ,0to 9
plus space and special| plus. : ,"+-=()? |plus. -
characters shown in / and space
Figure 2-3
Metacharacterq / * ? \ [, =\

2-18

OSF® DCE Application Development Guide — Directory Services

Programming in the CDS Namespace

Characteristic

CDS

GDS

DNS

Restrictions

Simple names cannot
contain slashes.

The first simple name
following the global cell
name (or /.: prefix)
cannot contain an equd
sign.

When entering a name
as part of acdscp show
or list command, you
must use a backslash f
escape any asterisk or
guestion mark characte]
in the rightmost simple
name. Otherwise, the
character is interpreted
as a wildcard.

Relative distinguished
names cannot begin or
end with a slash.
Attribute types must
begin with an alphabeti
| character, can contain
only alphanumerics, an
cannot contain spaces.
An alternate method of
specifying attribute
btypes is by object
identifier, a sequence 0
I digits separated by
(dots).
You must use backslas
to escape a slash, a
comma, and an equal
sign when using them
as anything other than
metacharacters.
Multiple consecutive
unescaped occurrenceq
of slashes, commas,
equal signs and
backslashes are not
allowed.
Each attribute value
assertion contains
exactly one unescaped
equal sign.

The first character mus
be alphabetic.

The first and last
characters cannot he

C (dot) or— (dash).

Cell names in DNS

I must contain at least on
dot; they must be more
than one level deep.

OSF® DCE Application Development Guide — Directory Services

2-19

CDS Application Programming

Characteristic | CDS GDS DNS
Case-Matching| Case exact Attribute types are Case insensitive
Rules matched case

insensitive. The
case-matching rule for
an attribute value can be
case exact or case
insensitive, depending
on the rule defined for
its type at the DSA.

Internal Case exact Depends on the Alphabetic characters
Representation case-matching rule are converted to all
defined at DSA. If the | lowercase characters.
rule says case
insensitive, alphabetic
characters are convertdd
to all lowercase
characters. Spaces ar¢
removed regardless of
the case-matching rule.

Ordering of Big endian (left to right| Big endian (left to right| Little endian (right to

Name from root to lower-level| from root to lower-level| left from root to
Elements names). names). lower-level names).
2.3.3 Maximum Name Sizes

Table 2-3 lists the maximum sizes for directory service names. Note that the limits
are implementation specific, not architectural.

2-20 OSF® DCE Application Development Guide — Directory Services

Programming in the CDS Namespace

Table 2-3. Maximum Sizes of Directory Service Names
Name Type Maximum Characters
(Size)
CDS simple name (character string between two254
slashes)

CDS full name (including global or local prefix, | 1023
cell name, and slashes separating simple namgs)

GDS relative distinguished name 64

GDS distinguished name 1024

DNS relative name (character string between ty64
dots)

DNS fully qualified name (sum of all relative 255
names)

2.3.3.1 Valid Characters for GDS Attributes

This section describes the valid character sets for the GDS attributes.

The values of the country attributes are restricted to the 1ISO 3166 Alpha-2 code
representation of country names. (For more information, see QB& DCE
Administration Guidg

The character set for all other naming attributes is the T61 graphical character set. It
is described in the next section.

2.3.3.2 T61 Syntax

Table 2-4 shows the T61 graphical character set.
Note: The 1) entry in the table indicates that it is not recommended that you use the

codes in Column 2 Row 3, and Column 2 Row 4. Instead, use the appropriate
code in Column A.

OSF® DCE Application Development Guide — Directory Services 2-21

CDS Application Programming

Table 2-4. T61 Syntax

0O|1| 2| 3| 4] 5 6| 7| 8 9 A B C D H H
0 SPl 0| @ P p QK
1 '11]A|Qlalqg (- £ e
2 "12 |B|R |b | ¢ |2 d
3 nl3|lc|s|cls q3 |- a
4)| 4|D|T|d|t $| x| - H| f
5 %|5|E|U| el u ul -
6 & |6 |F|V|f|v # | O 191 ij
7 171Gl W|glw §| o Le| lo
8 (| 8|H|X|h|x +
9 YL LY |i]y
A * J|Z]] |z E| e
B + ;KT |k << [>> R
C <L L] Va| _
D -l=/M|] |m Vo | " T | ¢
E >N n Ya nin
F [1?]0]_|o n

The administration interface supports only characters smaller than 0x7e for names.
The XDS application programming interface (API) supports the full T61 range as
indicated in the preceding table.

2-22 OSF® DCE Application Development Guide — Directory Services

Programming in the CDS Namespace

Some T61 alphabetical characters have a 2-byte representation. For example, a
lowercase lettea with an acute accent is represented by Oxc2 (the code for an acute
accent) followed by 0x61 (the code for a lowercage

Only certain combinations of diacritical characters and basic letters are valid. They
are shown in Table 2-5.

Table 2-5. Combinations of Diacritical Characters and Basic Letters

Name Repr. Code Valid Basic Letters Following

grave accent |° Oxcl a,A e EiloOu U

acute accent | a 0xc2 a,AcC,e EgilLLL n N
0,0,rnR,s,S,uU\vyY,zZ

circumflex A 0xc3 a,AcC,e E g,G, h H,il,

accent »Jd,0,0,s,S,u, U w, W,y VY

tilde ~ Oxc4 a,Ai,lLn N o O5u U

macron B 0xch5 a,AekEiloOuU

breve - 0xc6 a,Ag G uU

dot above ' oxc7 ¢c,C,e E,gG, 1 2zZ

umlaut " 0xc8 a,A e EiloOuUyY

ring ° Oxca a, A u U

cedilla s Oxchb ¢,C, G Kk K, LLn N,rR,s,
St T

double accent | " Oxcd 0,0,u, U

ogonek . Oxce a,A e EiluU

caron ” Oxcf ¢c,C,d D,e, EILL,n,N, 1, R,
s,S,t,T,z,Z

The nonspacing underline (code Oxcc) must be followed by a Latin alphabetical
character; that is, a basic letter (a to z or A to Z), or a valid diacritical combination.

OSF® DCE Application Development Guide — Directory Services 2-23

CDS Application Programming

2.4

2-24

Use of OIDs

OIDs are not seen by applications that restrict themselves to using only the RPC NSI
routines (pc_ns_...(), but these identifiers are important for applications that use
the XDS interface to read entries directly or to create new attributes for use with
namespace entries.

RPC makes use of only four different entry attributes in various application-specified
or administrator-specified combinations. CDS, however, contains definitions for
many more than these, which can be added by applications to RPC entries through
the XDS interface. Attributes that already exist are already properly identified so
applications that use these attributes do not have to concern themselves with the
OIDs, except to the extent of making sure that they handle them properly.

Unlike UUIDs, OIDs are not generated by command or function call. They originate
from ISO, which allocates them in hierarchically organized blocks to recipients. Each
recipient, typically some organization, is then responsible for ensuring that the OIDs
it receives are used uniquely.

For example, the following OID block was allocated to OSF by ISO:
1.3.22

OSF can therefore generate, for example, the following OID and allocate it to identify
some DCE directory object:

1322114

(The OID 1.3.22.1.1.4identifies the RPC profile entry object attribute.) OSF is
responsible for making sure thht3.22.1.1.4s not used to identify any other attribute.
Thus, as long as all OIDs are generated only from within each owner’s properly
obtained block, and as long as each block owner makes sure that the OIDs generated
within its block are properly used, each OID will always be a universally valid
identifier for its associated value.

OIDs are encoded and internally represented as strings of hexadecimal digits, and
comparisons of OIDs have to be performed as hexadecimal string comparisons (not
as comparisons on NULL-terminated strings since OIDs can have NULL bytes as part
of their value).

OSF® DCE Application Development Guide — Directory Services

Programming in the CDS Namespace

When applications have occasion to handle OIDs, they do so directly because the
numbers do not change and should not be reused. However, for users’ convenience,
CDS also maintains a file (calledis_attributes found in/opt/dcelocal/etg that lists

string equivalents for all the OIDs in use in a cell in entries like the following one:

1.3.22.1.1.4 RPC_Profile byte

This allows users to seRPC_Profile in output, rather than the meaningless string
1.3.22.1.1.4 Further details about theds_attributesfile and OIDs can be found in
the OSF DCE Administration Guide

In summary, the procedure you should follow to create new attributes on CDS entries
consists of three steps:

1. Request and receive from your locally designated authority the OIDs for the
attributes you intend to create.

2. Update thecds_attributes file with the new attributes’ OIDs and labels if you
want your application to be able to use string name representations for OIDs in
output.

3. Using XDS, write the routines to create, add, and access the attributes.

Your cell administrator should be able to provide you with a name and an OID. The
nameis a guaranteed-unique series of values for a global directory entry name. If
the directory is GDS, the name is a series of type/value pairs, such as

C=US O=0SF

The cell administrator can also obtain an OID block. From this OID space, the
administrator can assign you the OIDs you need for your application.

Note that there is no need for new OIDs in connection with cell names. The OIDs for
Country Name and Organization Name are part of the X.500 standard implemented
in GDS; only the values associated with the OIDs (the values of the objects) change
from entry name to entry name. Instead, being able to generate new OIDs gives you
the ability to invent and add new details to the directory itself. For example, you can
create new kinds of CDS entry attributes by generating new OIDs to identify them.
The same thing can be done to GDS, although the procedure is more complicated
because it involves altering the directory schema.

OSF® DCE Application Development Guide — Directory Services 2-25

Chapter 3
XDS and the DCE Cell Namespace

This chapter describes the use of the XDS programming interface when accessing the
CDS namespace. The first section provides an introduction to using XDS in the CDS
namespace. Section 3.2 describes XDS objects and how they are used to access CDS
data. Section 3.3 provides a step-by-step procedure for writing an XDS program to
access CDS. Section 3.4 provides examples of using the XOM interface to manipulate
objects. Section 3.5 provides details of the structure of XDS/CDS objects. Finally,
Section 3.6 provides translation tables between XDS and CDS for attributes and data

types.

3.1 Introduction to Accessing CDS with XDS

Outside of the DCE cells and their separate hamespaces is the global namespace in
which the cell names themselves are entered, and where all intercell references are
resolved. Two directory services participate in the global namespace. The first is
the X.500-compliant GDS supplied with DCE. The second is DNS, with which DCE
interacts, but is not a part of DCE.

OSF® DCE Application Development Guide — Directory Services 3-1

CDS Application Programming

3.1.1

3-2

The global and cell directory services are accessed implicitly by RPC applications
using the NSI interface. GDS and CDS can also be accessed explicitly by using
the XDS interface. With XDS, application programmers can gain access to GDS, a
powerful general-purpose distributed database service, which can be used for many
other things besides intercell binding. XDS can also be used to acces=lthe
namespace directly, as this chapter describes.

An XDS application looks very different from the RPC-based DCE applications. This

is partly because there is no dependency in XDS on the DCE RPC interface, although
you can use both interfaces in the same application. Also, XDS is a generalized

directory interface, oriented more toward performing large database operations than
toward fine-tuning the contents of RPC entries. Nevertheless, XDS can be used as a
general access mechanism on the CDS namespace.

Using the Reference Material in This Chapter

Complete descriptions of all the XDS and XOM functions used in CDS operations
can be found in th©SF DCE Application Development Refereneich you should

have beside you as you read through the examples in this chapter. In particular, refer
to that manual for information about XDS error objects, which are not discussed in
this chapter.

Complete descriptions for all objects requiredigsut parameters by XDS functions
when accessing a CDS namespace can be found in Section 3.5. Abbreviated
definitions for these same objects can be found with all the others in Part 4. XOM
functions are general-purpose utility routines that operate on objects of any class, and
take the rest of their input in conventional form.

Slightly less detailed descriptions of tlmtput objects you can expect to receive
when accessing CDS through XDS are also given in Section 3.5. You do not have
to construct objects of these classes yourself; you just have to know their general
structure so that you can disassemble them using XOM routines.

No information is given in this chapter about tHgS_status error objects that

are returned by unsuccessful XDS functions; a description of all the subclasses of
DS_statusrequires a chapter in itself. Code for a rudimentary general-purpose
DS_statushandling routine can be found in theldir.c XDS sample program in
Chapter 7 of this guide.

OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

3.1.2 What You Cannot Do with XDS

XDS allows you to perform general operations on CDS entry attributes, something
which you cannot do through the DCE RPC NSl interface. However, there are certain
things you cannot do to cell directory entries even through XDS:

* You cannot create or modify directory entries; ttee modify_rdn() function does
not work in a CDS namespace. These operations must be performed through
the CDS control programc@iscp. For more information, see th@SF DCE
Command Reference

* You cannot perform XDS searches on the cell nhamespace; the XDS function
ds_search()does not work. This is mainly because the CDS has no concept of
a hierarchy of entry attributes, such as the X.500 schema. dSheompare()
function, however, does work.

3.1.3 Registering A Nonlocal Cell

If you are planning to use XDS to access the cell namespace in a one-cell environment
(that is, your cell does not need to communicate with other DCE cells), you do not
need to set up a cell entry in GDS for your cell because the XDS functions simply
call the appropriate statically linked CDS routines to access the cell namespace. In
these circumstances, XDS always tries to access the local cell when given an untyped
(non-X.500) name.

For XDS to be able to access any nonlocal cell namespace, that cell must be registered
(that is, have an entry) in the global namespace.

For information on setting up your cell name, see@fF DCE Administration Guide

3.2 XDS Objects

The XDS interface differs from the other DCE component interfaces in thabhject
oriented The following subsections explain two things: first, what object-oriented
programming means in terms of using XDS; and second, how to use XDS to access
CDS.

OSF® DCE Application Development Guide — Directory Services 3-3

CDS Application Programming

Figure 3-1.

Imagine a generalized data structure that always has the samedygatand yet

can contain any kind of data, and any amount of it. Functions could pass these
structures back and forth in the same way all the time, and yet they could use the
same structures for any kind of data they wanted to store or transfer. Such a data
structure, if it existed, would be a trobject Programming language constructs allow
interfaces to pretend that they use objects, although the realities of implementation
are not usually so simple.

XDS is such an interface. For the most part, XDS functions neither accept nor return
values in any form but as objects. The objects themselves are indeed always the
same data type; namely, pointers to array®loject descriptor(C struct) elements.
Contained within thes®M_descriptor element structures are unions that can actually
accommodate all the different kinds of values an object can be called on to hold. In
order to allow the interface to make sense of the unions, €dhdescriptor also
contains assyntaxfield, which indicates the data type of that descriptor’s union. There

is also a record of what the descriptor's value actually is; for example, whether it is
a name, a number, an address, a list, and so on. This information is held in the
descriptor'stype field.

These OM_descriptor elements, which are referred to abject descriptorsor
descriptors are the basic building blocks afl XDS objects; every actual XDS object
reduces to arrays of them. Each descriptor contains three items:

* A type field, which identifies the descriptor’s value
* A syntax field, which indicates the data type of tlalue field

* The value field, which is a union
Figure 3-1 illustrates one such object descriptor.

One Object Descriptor

type:OM_CLASS
syntax:OID string
value:DS_C_DS_DN

Note that, from an abstract point of viewyntax is just an implementation detail.
The scheme really consists only of a type/value pair. Tpe gives an identity
to the object (something like CDS entry attribute, CDS entry name, or DUA access

OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

Figure 3-2.

3.2.1

point), and thevalue is some data associated with that identity, just as a variable has
a name that gives meaning to the value it holds, and the value itself.

In order to make the representation of objects as logical and as flexible as possible,
these two logical components of every objdgpe andvalue, are themselves each
represented by separate object descriptors. Thus, the first element of every complete
object descriptor array is a descriptor whaype field identifies itsvalue field

as containing the name of the kind (olas9 of this object, and thesyntax field
indicates how that namealue should be read. Next is usually one (or more, if the
object is multivalued) object descriptor whosge field identifies itsvalue field as
containing some value appropriate for this class of object. Finally, every complete
object descriptor array ends with a descriptor element that is identified by its fields as
being a NULL-terminating element.

Thus, a minimum-size descriptor array consists of just two elements: the first contains
its class identity, and the second is a NULL (it is legitimate for objects not to have
values). When an object does have a value, it is held ivaéhee field of a descriptor
whosetype field communicates the value’s meaning.

Figure 3-2 illustrates the arrangement of a complete object descriptor array.

A Complete Object Represented

type:OM_CLASS type:DS_RDNS
syntax:OID string syntax:OM_S_OBJECT NULL
value:DS_C DS DN value:rdnl

Object Attributes

The generic term for any object valueasiribute In this sense, an object is nothing

but a collection of attributes, and every object descriptor describes one attribute. The
first attribute’s value identifies the object’'s class, and this determines all the other
attributes the object is supposed to have. One or more other attributes follow, which
contain the object’s working values. The NULL object descriptor at the end is an
implementation detail, and is not a part of the object.

OSF® DCE Application Development Guide — Directory Services 3-5

CDS Application Programming

Note that, depending on the attribute it represents, a descriptitie field can contain
a pointer to another array of object descriptors. In other words, an object’s value can
be another object.

Figure 3-3 shows a three-layer compound object: the top-level superobject,
dn_object, contains the subobjectinl, which in turn contains the subobjeatal

Figure 3-3. A Three-Layer Compound Object
type:OM_CLASS type:DS_RDNS
syntax:OID string syntax:OM_S_OBJECT NULL
value:DS_C_DS_DN value:rdnl
dn_object /
type:OM_CLASS type:DS_AVAS
syntax:OID string syntax:OM_S_OBJECT NULL
value:DS_C_DS_RDN value:aval
rdnl /
type:OM_CLASS type:DS_ATTRIBUTE_ type:DS_ATTRIBUTE_

. TYPE VALUES
syntax:OID string syntax:0ID string syntax:OM_S_TELETEX | NULL
. value:DSX_TYPELESS STRING

value:DS_C_AVA ~RDN _ value:"huh"
aval

3.2.2 Interface Objects and Directory Objects

3-6

GDS is composed of directory objects that reflect the X.500 design. The XDS
interface also works with objects. However, there is a big difference between
directory and XDS objects. Programmers do not work directly with the directory

objects; they are composed of attributes that make up the directory service's
implementation of entries.

Programmers work with XDS objects. XDS objects have explicit data representations

that can be directly manipulated with programming language operators. Some of
these techniques are described in this chapter; others can be found in Chapter 7.

OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

XDS and GDS terminology sometimes suggests that XDS objects are somehow direct
representations of the directory objects to which they communicate information. This
is not the case, however. You never directly see or manipulate the directory objects;
the XDS interface objects are used only to pass parameters to the XDS calls, which
in turn request GDS (or CDS) to perform operations on the directory objects. The
XDS objects are therefore somewhat arbitrary structures defined by the interface.

Figure 3-4 illustrates the relationship between XDS (also cafieetface objects and
directory objects. The figure shows an application passing several properly initialized
XDS objects to some XDS function; it then takes some action, which affects the
attribute contents of certain directory objects. The application never works with the
directory objects; it works with the XDS interface objects.

A side effect of the existence of a separate XDS interface and GDS or CDS directory
objects is the existence of attributes for both kinds of objects as well. Because the
purpose of XDS objects is to feed data into and extract data from directory objects,
programmers work with XDS objects whose attributes hdivectory object attributes

as their values. You should keep in mind the distinction between directory objects
and interface objects.

OSF® DCE Application Development Guide — Directory Services 3-7

CDS Application Programming

Figure 3-4.
GDS Directory Objects

DN attribute
attribute
attribute
attribute

Postal Code
attribute

AN

attribute

attribute

Directory Objects and XDS Interface Objects

ds_modify_entry()

XDS function

3-8

R

Object Class attribute

Entry Modification
Attribute Type
DS_A_POSTAL_CODE
Attribute Value

"77 Sunset Strip"

XDS Object

attribute

attribute

attribute

OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

3.2.3 Directory Objects and Namespace Entries

The GDS namespace is a hierarchical collection of entries. The name of each of
these entries is an attribute of a directory object. The object is accessed through
XDS by stating its name attribute.

Figure 3-5 shows the relationship of entry names in the GDS namespace to the GDS
directory objects to which they refer.

OSF® DCE Application Development Guide — Directory Services 3-9

CDS Application Programming

Figure 3-5. Directory Objects and Namespace Entries

GDS Namespace

/.../C=US/O=0SF/OU=DCE \

‘ /.../IC=US/L=Cambridge/CN=Killroy

Object Entries
GDS Directory Objects

DN attribute
attribute
attribute -
attribute

attribute

attribute

attribute

3-10 OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

3.2.4

3.2.5

Values That an Object Can Contain

There are many different classes of objects defined for the XDS interface; still more
are defined by the X.500 standard for general directory use. But only a small number
of classes are needed for XDS/CDS operations, and only those classes are discussed
in this chapter. Information about other classes can be found in Part 4 of this guide.

The class that an object belongs to determines what sort of information the object can
contain. Each object class consists of a list of attributes that objects must have. For
example, you would expect an object in the directory entry name class to be required
to have an attribute to hold the entry name string. However, it is not sufficient to
simply place a string like the following into an object descriptor:

/.../C=US/O=0SF/OU=DCE/hosts/tamburlaine/self

A full directory entry name such as the preceding one is called in XDBiStanguished
name(DN), meaning that the entry name is fully qualified (distinct) from root to entry
name. To properly represent the entry name in an object, you must look up the
definition of the XDS distinguished name object class and build an object that has the
set of attributes that the definition prescribes.

Building a Name Object

Complete definitions for all the object classes required as input for XDS functions can
be found in Section 3.5. Among them is the class for distinguished name objects,
calledDS_C_DS_DN There you will learn that this class of object has two attributes:
its class attribute, which identifies it a$% C_DS_DNobject, and a second attribute,
which occurs multiple times in the object. Each instance of this attribute contains as
its value one piece of the full name; for example, the directory nhasts

TheDS_C_DS_DNattribute that holds the entry name piece, or relative distinguished
name (RDN), is defined by the class rules to hold, not a string, but another object of
the RDN classDS_C_DS_RDN.

Thus, a static declaration of the descriptor array representing$h«€ DS _DNobject
would look like the following:

OSF® DCE Application Development Guide — Directory Services 3-11

CDS Application Programming

static OM_descriptor Full_Entry_Name_Obiject[] = {

/*
/*
/*
/*

/*
/*
/*
/*
/*
/*

/*
/*
/*

h

OM_OID_DESC(OM_CLASS, DS_C_DS_DN),

ANNANNNNNNNN * /
Macro to put an "OID string" in a descrip- */

tor's type field and fill its other */

fields with appropriate values. */

{DS_RDNS, OM_S_OBJECT, {0, Country_RDN}},
JAVAVAVAVAVAVAN NNANNNNNNNNN ANNANNNNNNNN * /
type syntax value */
*/
(the "value" union is in fact here a */
structure; the O fills a pad field in */
that structure.) */

{DS_RDNS, OM_S_OBJECT, {0, Organization_RDN}},
{DS_RDNS, OM_S_OBJECT, {0, Org_Unit RDN}},
{DS_RDNS, OM_S_OBJECT, {0, Hosts_Dir_RDN}},
{DS_RDNS, OM_S_OBJECT, {0, Tamburlaine_Dir_RDN}},
{DS_RDNS, OM_S_OBJECT, {0, Self_Entry_ RDN}},

OM_NULL_DESCRIPTOR
ANNNNNNNNNNNNNNNNN * /
Macro to fill a descriptor with proper */

NULL values. *

The use of theOM_OID_DESC and OM_NULL_DESCRIPTOR macros slightly
obscures the layout of this declaration. However, each line contains code to initialize
exactly oneOM_descriptor object; the array consists of eight objects.

The names (such &@ountry RDN) in the descriptorsvalue fields refer to the other
descriptor arrays, which separately represent the relative name objects. (The order of
the C declaration in the source file is opposite to the order described here.) Because
DS_C_DS_RDNobjects are now called for, the next step is to look at what attributes
that class requires.

3-12

OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

The definition forDS_C_DS_RDNcan be found in Section 3.5.2.6. This class object
is defined, likeDS_C_DS_DN to have only one attribute (with the exception of
the OM_Obiject attribute, which is mandatory for all objects). The one attribute,
DS_AVAS, holds the value of one relative name. The syntax of this value is
OM_S OBJECT, meaning thaDS_AVAS's value is a pointer to yet another object
descriptor array:

static OM_descriptor Country_RDNJ] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, Country_Value}},

OM_NULL_DESCRIPTOR
h

Note that there should also be five other similar declarations, one for each of the other
DS_C_DS_RDNobjects held irDS_C_DS DN

The declarations have the same meanings as they did in the previous example.
Country_Value is the name of the descriptor array that represents the object of class
DS_C_AVA, which we are now about to look up.

The rules for theDS_C_AVA class can be found in this chapter just after
DS_C_DS_RDN They tell us thatDbS_C_AVA objects have two attributes aside
from the omnipresen®M_Object; namely:

» DS_ATTRIBUTE_VALUES

This attribute holds the object’s value.

* DS_ATTRIBUTE_TYPE
This attribute gives the meaning of the object’s value.

In this instance, the meaning of the strikdf is that it is a country name. There

is a particular directory service attribute value for this; it is identified by an OID
that is associated with the lab&S_A_COUNTRY_NAME (the OIDs held in
objects are represented in string form). Accordingly, we make that OID the value
of DS_ATTRIBUTE_TYPE, and we make the name string itself the value of
DS_ATTRIBUTE_VALUES, as shown.

OSF® DCE Application Development Guide — Directory Services 3-13

CDS Application Programming

3.2.6

3-14

static OM_descriptor Country_Value[] = {

OM_OID_DESC(OM_CLASS, DS_C_AVA),

OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),

{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("US"},

/* NANANNNNNNNNNNNNN * /
I* Macro to properly */
I* fill the "value" union with the NULL-terminated string. */

OM_NULL_DESCRIPTOR

There are also five othddS_C_AVA declarations, one for each of the five other
separate name piece objects referred to inDBe C_DS_RDNsuperobjects.

A Complete Object

The previous sections described how an object is created: you look up the rules for
the object class you require, and then add the attributes called for in the definition.
Whenever some attribute is defined to have an object as its value, you have to look
up the class rules for the new object and declare a further descriptor array for it. In
this way, you continue working down through layers of subobjects until you reach an

object class that contains no subobjects as values; at that point, you are finished.

Normally, you do not statically declare objects in real applications. The steps outlined
in the preceding text are given as a method for determining what an object looks like.
Once you have done that, you can then write routines to create the objects dynamically.
An example of how to do this can be found in tteddir.c example application in
Chapter 7 of this guide.

The process of object building is somewhat easier than it sounds. There are only five
different object classes needed for input to XDS functions when accessing CDS, and
only one of those, th®S_C_DS_DNclass, has more than one level of subobjects.
The rules for all five of these classes can be found in Part 4 of this guide. In order
to use the GDS references, you should know a few things about class hierarchy.

OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

3.2.7

3.2.8

Class Hierarchy

Object classes are hierarchically organized so that some classes may be located above
some classes in the hierarchy and below others in the hierarchy. In any such system
of subordinate classes, each next lower class inherits all the attributes prescribed for
the class immediately above it, plus whatever attributes are defined peculiarly for it
alone. If the hierarchy continues further down, cumulative collection of attributes
continues to accumulate. If there were a class for every letter of the alphabet, starting
at the highest level with A and continuing down to the lowest level with Z, and if
each succeeding letter was a subclass of its predecessor, the Z class would possess
all the attributes of all the other letters, as well as its own, while the A class would
possess only the A class attributes.

XDS/XOM classes are seldom nested more than two or at most three layers. All
inherited attributes are explicitly listed in the object descriptions that follow, so you
do not have to worry about class hierarchies here. However, the complete descriptions
of XDS/XOM obijects in Part 4 of this guide rely on statements of class inheritance
to fill out their attribute lists for the different classes. Refer to Part 4 for information
about the classes of objects that can be returned by XDS calls in order to be able to
handle those returned objects.

Class Hierarchy and Object Structure

Note that class hierarchyis different from object structure Object structure is

the layering of object arrays that was previously described inDBeC_DS DN
declaration in Section 3.2.5. It occurs when one object contains another object as the
value of one or more of its attributes.

This is what is meant by recursive objects: one object can point to another object
as one of its attribute values. The layering of subobjects below superobjects in this
way is described repeatedly in Section 3.5.

The only practical significance of class hierarchy is in determining all the attributes a
certain object class must have. Once you have done this, you may find that a certain
attribute requires as its value some other object. The result is a compound object, but
this is completely determined by the attributes for the particular class you are looking
at.

OSF® DCE Application Development Guide — Directory Services 3-15

CDS Application Programming

3.2.9

3-16

Public and Private Objects and XOM

In Section 3.2.5, you saw how a multilevel XDS object can be statically declared in
C code. Now imagine that you have written an application that contains such a static
DS_C_DS_DNobject declaration. From the point of view of your application, that
object is nothing but a series of arrays, and you can manipulate them with all the
normal programming operators, just as you can any other data type. Nevertheless,
the object is syntactically perfectly acceptable to any XDS (or XOM) function that is
prepared to receive BS_C_DS_DNobject.

Objects are also created by the XDS functions themselves; this is the way they
usually return information to callers. However, there is a difference between objects
generated by the XDS interface and objects that are explicitly declared by the
application: you cannot access the formgrivate objects in the direct way that
you can the latterpublic, objects.

These two kinds of objects are the same as far as their classes and attributes are
concerned. The only difference between them is in the way they are accessed. The
public objects that an application explicitly creates or declares in its own memory area
are just as accessible as any of the other data storage it uses. However, private objects
are created and held in the XDS interface’s own system memory. Applications get
handles to private objects, and, in order to access the private objects’ contents, they
have to pass the handles to object management functions. The object management
(XOM) functions make up a sort of all-purpose companion interface to XDS. Whereas
XDS functions typically require some specific class object as input, the XOM functions
accept objects of any class and perform useful operations on them.

If a private object needs to be manipulated, one of the XOM functions,get()

can be called to make a public copy of the private object. Then, calling the XOM
om_create()function allows applications to generate private objects manipulable by
om_get() The main significance of private as opposed to public objects is that they
do not have to be explicitly operated on; instead, you can access them cleanly through
the XOM interface and let it do most of the work. You still have to know something
about the objects’ logical representation, however, to use XOM.

Except for a few more details, which will be mentioned as needed, this is practically
all there is to XDS object representation.

OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

3.2.10

3.3

3.3.1

XOM Objects and XDS Library Functions

To call an XDS library function, do the following:
1. Decide what input parameters you must supply to the function.

2. Bundle up these parameters in objects (that is, arrays of object descriptors) in an
XDS format.

Almost all data returned to you by an XDS function is enclosed in objects, which
you must parse to recover the information that you want. This task is made almost
automatic by a library function supplied with the companion X/Open OSI-Abstract-
Data Manipulation (XOM) interface.

With XDS, the programmer has to perform a lot of call parameter management, but
in other respects the interface is easy to use. The XDS functions’ dependence on
objects makes them easy to call, once you have the objects themselves correctly set

up.

Accessing CDS Using the XDS Step-by-Step
Procedure

You now know all that you need to know to work with a cell namespace through XDS.
The following subsections provide a walk-through of the steps of some typical XDS/
CDS operations. They describe what is involved in using XDS to access existing
CDS attributes. They then describe how you can create and access new CDS entry
attributes.

Reading and Writing Existing CDS Entry Attributes With
XDS

Suppose that you want to use XDS to read some information from the following CDS
entry:

/.../C=US/O=0SF/OU=DCE/hosts/tamburlaine/self

OSF® DCE Application Development Guide — Directory Services 3-17

CDS Application Programming

3-18

As explained in the©SF DCE Administration Guidehe/.:/hostshostnamegelf entry,

which is created at the time of cell configuration, contains binding information for the
machinehostname Since this is a simple RPC NSI entry, there is not very much in
the entry that is interesting to read, but this entry is used as an example anyway as a
simple demonstration.

Following are the header inclusions and general data declarations:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <xom.h>
#include <xds.h>
#include <xdsbdcp.h>
#include <xdscds.h>

Note that thexom.h andxds.h header files must be included in the order shown in the
preceding example. Also note that theéscds.hheader file is brought in for the sake

of DSX_TYPELESS_RDN This file is where the CDS-significant OIDs are defined.
The xdsbdcp.h file contains information necessary to the Basic Directory Contents
Package, which is the basic version of the XDS interface you can use in this program.

The XDS/XOM interface defines numerous object identifier string constants, which
are used to identify the many object classes, parts, and pieces (among other things)
that it needs to know about. In order to make sure that these OID constants do
not collide with any other constants, the interface refers to them with the string
OMP_O_ prefixed to the user-visible form; for examplB®S_C_DS_DNbecomes
OMP_O_DS_C_DS _DNnternally. Inorder to make application instances consistent
with the internal form, us®M_EXPORT to importall XDS-defined or XOM-defined

OID constants used in your application.

OM_EXPORT(DS_A_COUNTRY_NAME)
OM_EXPORT(DS_A_OBJECT_CLASS)
OM_EXPORT(DS_A_ORG_UNIT_NAME)
OM_EXPORT(DS_A_ORG_NAME)

OM_EXPORT(DS_C_ATTRIBUTE)
OM_EXPORT(DS_C_ATTRIBUTE_LIST)
OM_EXPORT(DS_C_AVA)
OM_EXPORT(DS_C_DS_DN)

OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

OM_EXPORT(DS_C_DS_RDN)
OM_EXPORT(DS_C_ENTRY_INFO_SELECTION)
OM_EXPORT(DSX_TYPELESS_RDN)

/* ... Special OID for an untyped (that is, nonX.500) */
/* relative distinguished name. Defined in xdscds.h header. */

A further important effect o©OM_EXPORT is that it builds arOM_string structure

to hold the exported OID hexadecimal string. As explained in the previous chapter,
OIDs are not numeric values, but strings. Comparisons and similar operations on
OIDs must access them as strings. Once an OID has been exported, you can access
it by using its declared name. For example, the hexadecimal string representation of
DS_C_ATTRIBUTE is contained inDS_C_ATTRIBUTE.elements and the length

of this string is contained iDS_C_ATTRIBUTE.length.

3.3.1.1 Significance of Typed and Untyped Entry Names

Next are the static declarations for the lowest layer of objects that make up the global
name (distinguished name) of the CDS directory entry you want to read. These
lowest-level objects contain the string values for each part of the name. Remember
that the first three parts of the name (excluding the global prefik which is not
represented) constitute the cell name, as follows:

/C=US/O=0SF/OU=DCE/

In this example, assume that GDS is being used as the cell's global directory
service, so the cell name is represented in X.500 format, and each part of it is
typed in the object representation; for examdls_A_COUNTRY_NAME is the
DS_ATTRIBUTE_TYPE in the Country_String_Object. If you were using DNS,

the cell name might be something like the following:

osf.org.dce

In this case, the entire stringsf.org.dcewould be held in a single object whose
DS_ATTRIBUTE_TYPE would beDSX_TYPELESS_RDN

DSX_TYPELESS RDNis a special type that marks a name piece as not residing in
an X.500 namespace. If the object resides under a typed X.500 name, as is the case

OSF® DCE Application Development Guide — Directory Services 3-19

CDS Application Programming

3-20

in the declared object structures, then it serves as a delimiter for the end of the cell

name GDS looks up, and the beginning of the name that is passed to a CDS server
in that cell, assuming that the cell has access to GDS,; if not, such a name cannot be
resolved. In the following name, the untyped portion is at the beginning:

/...losf.org.dce/hosts/zenocrate/self

In this case, the name is passed immediately by XDS via the local CDS (and the GDA)
to DNS for resolution of the cell name. Thus, the typing of entry names determines
which directory service a global directory entry name is sent to for resolution.

3.3.1.2 Static Declarations

The following are the static declarations you need:

/ /
/* Here are the objects that contain the string values for each */
/* part of the CDS entry’'s global name... */

static OM_descriptor Country_String_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("US")},
OM_NULL_DESCRIPTOR

%

static OM_descriptor Organization_String_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("OSF")},
OM_NULL_DESCRIPTOR

h

static OM_descriptor Org_Unit_String_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_UNIT_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("DCE")},
OM_NULL_DESCRIPTOR

OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

static OM_descriptor Hosts_Dir_String_Object]] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("hosts")},
OM_NULL_DESCRIPTOR

h

static OM_descriptor Tamburlaine_Dir_String_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),

OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("tamburlaine")},
OM_NULL_DESCRIPTOR

h

static OM_descriptor Self_Entry_String_Object]] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("self")},
OM_NULL_DESCRIPTOR

h

The string objects are contained by a next-higher level of objects that identify the
strings as being pieces (RDNs) of a fully qualified directory entry name (DN).
Thus, theCountry RDN object containsCountry_String_Object as the value of

its DS_AVAS attribute; Organization_RDN containsOrganization_String_Object,

and so on.

/ /
/* Here are the "relative distinguished name" objects.

static OM_descriptor Country_RDNJ] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, Country_String_Object}},
OM_NULL_DESCRIPTOR

I3

static OM_descriptor Organization_RDN[] = {

OSF® DCE Application Development Guide — Directory Services 3-21

CDS Application Programming

OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{DS_AVAS, OM_S_OBJECT, {0, Organization_String_Object}},
OM_NULL_DESCRIPTOR

I8

static OM_descriptor Org_Unit_RDN[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, Org_Unit_String_Object}},
OM_NULL_DESCRIPTOR

I8

static OM_descriptor Hosts_Dir_RDN][] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, Hosts_Dir_String_Object}},
OM_NULL_DESCRIPTOR

I3

static OM_descriptor Tamburlaine_Dir_RDN[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{DS_AVAS, OM_S_OBJECT, {0, Tamburlaine_Dir_String_Object}},
OM_NULL_DESCRIPTOR

I8

static OM_descriptor Self_Entry_ RDN[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{DS_AVAS, OM_S_OBJECT, {0, Self Entry_String_Object}},
OM_NULL_DESCRIPTOR

I8

At the highest level, all the subobjects are gathered together in the DN object named
Full_Entry_Name_Obiject.

static OM_descriptor Full_Entry_Name_Obiject[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_DN),
{DS_RDNS, OM_S_OBJECT, {0, Country_RDN}},
{DS_RDNS, OM_S_OBJECT, {0, Organization_RDN}},
{DS_RDNS, OM_S_OBJECT, {0, Org_Unit RDN}},
{DS_RDNS, OM_S_OBJECT, {0, Hosts_Dir_RDN}},

3-22 OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

{DS_RDNS, OM_S_OBJECT, {0, Tamburlaine_Dir_RDN}},
{DS_RDNS, OM_S_OBJECT, {0, Self Entry RDN}},
OM_NULL_DESCRIPTOR

3.3.13 Other Necessary Objects ttg read()

The ds read() procedure takes requests in the form of a
DS_C _ENTRY_INFO_SELECTION class object. However, if you refer

to the recipe for this object class in Section 3.5, you will find that it is much simpler
than the name object; it contains no subobjects, and its declaration is straightforward.

The value of thddS_ALL_ATTRIBUTES attribute specifies that all attributes be read
from the CDS entry, which is specified in tieill_Entry_Name_Object variable.

Note that the ternattribute is used slightly differently in CDS and XDS contexts. In
XDS, attributes describe the values that can be held by various object classes; they
can be thought of asbject fields. In CDS, attributes describe the values that can be
associated with a directory entry. The following code fragment shows the definition
of aDS_C_ENTRY_INFO_SELECTION object:

static OM_descriptor Entry_Info_Select_Object]] = {
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),
{DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, OM_TRUE},

{DS_INFO_TYPE, OM_S_ENUMERATION, DS_TYPES_AND_VALUES},
OM_NULL_DESCRIPTOR

3.3.14 Miscellaneous Declarations

The following are declarations for miscellaneous variables:

OM_workspace xdsWorkspace;
/* ..will contain handle to our "workspace" */

OSF® DCE Application Development Guide — Directory Services 3-23

CDS Application Programming

DS_feature featureList]] = {

{ OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE 1},

{o}
h

[* ..list of service "packages" we will want from XDS */
OM_private_object session;

/* ..will contain handle to a bound-to directory session */
DS_status dsStatus;

[* ..status return from XDS calls */
OM_return_code omsStatus;

/* ..status return from XOM calls */
OM_sint dummy;

[* ..for unsupported ds_read() argument */
OM_private_object readResultObject;

/* ...to receive entry information read from CDS by "ds_read()" */

OM_type |_want_entry object[] = {DS_ENTRY, OM_NO_MORE_TYPES},
OM_type |_want_attribute_list[] = {DS_ATTRIBUTES, OM_NO_MORE_TYPES};
OM_type |_want_attribute_value[] = {DS_ATTRIBUTE_VALUES, \
OM_NO_MORE_TYPES};
/* ..arrays to pass to "om_get()" to extract subobjects */
/* from the result object returned by "ds_read()" */

OM_value_position number_of_descriptors;
/* ...to hold number of attribute descriptors returned */

I* by "om_get() */

OM_public_object entry;
/* ...to hold public object returned by "om_get()" */

3-24 OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

3.3.15 The Main Program

This section describes the main program. Three calls usually precede any use of
XDS.

First, ds_initialize() is called to set up avorkspace A workspace is a memory
area in which XDS can generate objects that will be used to pass information to the
application. If the call is successful, it returns a handle that must be saved for the
ds_shutdown()call. If the call is unsuccessful, it returns NULL, but this example
does not check for errors.

xdsWorkspace = ds_initialize();

If GDS is being used as the global directory service, the service packages are specified
next. Packages consist of groups of objects, together with the associated supporting
interface functionality, designed to be used for some specific end. For example, to
access the (X.500) Global Directory, specsX_GDS_PKG This example uses

the basic XDS service sBS_BASIC_DIR_CONTENTS_PKG is specified. The
featureListparameter tals_version()is an array, not an object, since packages are
not being handled yet:

dsStatus = ds_version(featureList, xdsWorkspace);

Note that, if you arenot using GDS as your global directory service (in other words,
if you are using XDS by itself), then you shoutabt call ds_version()

From this point on, status is returned by XDS functions vi®& _statusvariable.
DS_statusis a handle to a private object, whose valueDS_SUCCESS(that is,
NULL) if the call was successful. If something went wrong, the information in the
(possibly complex) private error object has to be analyzed through cadis t@et()

which is one of the general-purpose object management functions that belongs to
XDS’s companion interface XOM. Usage om_get()is demonstrated later on in

this program, but return status is not checked in this example.

The third necessary call is ws_bind(). This call brings up the directory service,
which binds to a Directory System Agent (DSA), the GDS server, through a Directory
User Agent (DUA), the GDS client. Th&®S_DEFAULT_SESSION parameter
calls for a default session. The alternative is to build and fill out your own
DS_C_SESSIONobject, specifying such things as DSA addresses, and pass that.
The default is used in this example:

OSF® DCE Application Development Guide — Directory Services 3-25

CDS Application Programming

dsStatus = ds_bind(DS_DEFAULT_SESSION, xdsWorkspace, &session);

3.3.1.6 Reading a CDS Attribute

At this point, you can read a set of object attributes from the cell namespace entry.
Call ds_read()with the two objects that specify the entry to be read and the specific
entry attribute you want:

dsStatus = ds_read(session, DS_DEFAULT_CONTEXT, Full_Entry Name_Object,
Entry_Info_Select_Object, &readResultObject, &dummy);

The DS _DEFAULT_CONTEXT parameter could be substituted with a
DS_C_CONTEXT object, which would typically be reused during a series of
related XDS calls. This object specifies and records how GDS should perform the
operation, how much progress has been made in resolving a name, and so on.

If the call succeeds, the private objemadResultObject contains a series of
DS_C_ATTRIBUTE subobjects, one for each attribute read from the cell name entry.
A complete recipe for th®S C_READ_RESULT object can be found in Chapter
11, but the following is a skeletal outline of the object’s structure:

DS_C_READ_RESULT
DS_ENTRY: object(DS_C_ENTRY_INFO)
DS_ALIAS_DEREFERENCED: OM_S_BOOLEAN
DS_PERFORMER: object(DS_C_NAME)

DS_C_ENTRY_INFO
DS_FROM_ENTRY: OM_S_BOOLEAN
DS_OBJECT_NAME: object(DS_C_NAME)
DS_ATTRIBUTES: one or more object(DS_C_ATTRIBUTE)

DS_C_NAME == DS_C_DS_DN
DS_RDNS: object(DS_C_DS_RDN)

DS_C_DS_RDN
DS_AVAS: object(DS_C_AVA)

3-26 OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

DS_C_AVA
DS_ATTRIBUTE_TYPE: OID string
DS_ATTRIBUTE_VALUES: anything

DS _C _ATTRIBUTE ---one for each attribute read
DS_ATTRIBUTE_TYPE: OID string
DS_ATTRIBUTE_VALUES: anything

DS_C_ATTRIBUTE
DS_ATTRIBUTE_TYPE: OID string
DS_ATTRIBUTE_VALUES: anything

Figure 3-6 illustrates the general object structure oD&_C_READ_RESULT,

showing only the object-valued attributes, and only ob&_ C_ATTRIBUTE
subobiject.

OSF® DCE Application Development Guide — Directory Services 3-27

CDS Application Programming

Figure 3-6. The DS_C_READ_RESULT Obiject Structure

DS_C_READ_RESULT

o~

DS_C_ENTRY_INFO

I,

DS_C_DS DN DS_C_ATTRIBUTE

~

DS_C_DS_RDN

.

DS_C_AVA

3.3.1.7 Handling the Result Object

The next goal is to extract the instances of Bt C_ATTRIBUTE subsubclass, one
for each attribute read, from the returned object. The first step is to make a public
copy of readResultObject which is aprivate object, and therefore does not allow

3-28 OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

access to the object descriptors themselves. Using the X@Mget()function, you

can make a public copy akadResultObject and at the same time specify that only

the relevant parts of it be preserved in the copy. Then, with a couple of calls to
om_get() you can reduce the object to manageable size, leaving a superobject whose
immediate subobjects are fairly easily accessed.

The om_get()function takes as its third input parameter @M_type_list, which is

an array ofOM_type. Possible parameters aiS _ENTRY, DS_ATTRIBUTES,
DS_ATTRIBUTE_VALUES, and anything that can legitimately appear in an object
descriptor'stype field. The types specified in this parameter are interpreted according
to the options specified in the preceding parameter. For example, the relevent attribute
from the read result iDS_ENTRY. It contains theDS_C_ENTRY_INFO object,
which in turn contains th®S_C_ATTRIBUTE objects. TheDS_C_ATTRIBUTE
objects contain the data read from the cell directory name entry. Therefore, you
should specify th©M_EXCLUDE_ALL_BUT_THESE_TYPES option, which has

the effect of excluding everything but the contents of the objda8s ENTRY type
attribute.

The OM_EXCLUDE_SUBOBJECTS option is also ORed into the parameter. Why
would you not preserve the subobjectsds C_ENTRY_INFO? Becausem_get()
works only on private, not on public, objects. If you were to usm®_get()

on the entire object substructure, you would not be able to continue getting the
subobjects, and instead you would have to follow the object pointers down to the
DS_C_ATTRIBUTE. However, wherom_get()excludes subobjects from a copy, it
does not really leave them out; it merely leaves the subobjects private, with a handle
to the private objects where pointers would have been. This allows you to continue
to callom_get()as long as there are more subobjects.

The following is the first call:
/* The DS_C_READ_RESULT object that ds_read() returns has */

/* one subobject, DS_C_ENTRY_INFO; it in turn has two sub- */
/* objects, that is a DS_C_NAME which holds the object's */

/* distinguished name (which we don’t care about here), */
/* and a DS_C_ATTRIBUTE which contains the attribute info */
/* we read; that one we want. So we climb down to it ... */
/* This om_get() will "return" the entry-info object ... */

omStatus = om_get(readResultObject,
OM_EXCLUDE_ALL_BUT_THESE_TYPES +

OSF® DCE Application Development Guide — Directory Services 3-29

CDS Application Programming

3-30

OM_EXCLUDE_SUBOBJECTS,
|_want_entry_object,
OM_FALSE,
OM_ALL_VALUES,
OM_ALL_VALUES,

&entry,
&number_of_descriptors);

The number_of_descriptors parameter contains the number of attribute descriptors
returned in the public copy, not in any excluded subobjects.

If an XOM function is successful, it returns &M_SUCCESScode. Unsuccessful
calls to XOM functions do not return error objects, but rather return simple error
codes. The interface assumes that, if the XOM function does not accept your object,
then you will not be able to get much information from any further objects. The
return status is not checked in this example.

The return parametentry should now contain a pointer to tiess_ C_ENTRY_INFO
object with the following immediate structure. (The number of instances of
DS_ATTRIBUTES depends on the number of attributes read from the entry.)

DS_C_ENTRY_INFO
DS_FROM_ENTRY: OM_S_BOOLEAN
DS_OBJECT_NAME: object(DS_C_NAME)
DS_ATTRIBUTES: object(DS_C_ATTRIBUTE)
DS_C_ATTRIBUTE
DS_ATTRIBUTE_TYPEOID string
DS_ATTRIBUTE_VALUESanything

DS_ATTRIBUTES: object(DS_C_ATTRIBUTE)
object(DS_C_ATTRIBUTE)

DS_C_ATTRIBUTE

DS_ATTRIBUTE_TYPEOID string

DS_ATTRIBUTE_VALUESanything

The italics indicate private subobjects. Figure 3-7 showdx8eC_ENTRY_INFO

object. Only one instance of ®S_C_ATTRIBUTE subobject is shown in

the figure; usually there are several such subobjects, all at the same level, each
containing information about one of the attributes read from the entry. These

OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

subobjects are representedd®_C_ENTRY_INFO as a series of descriptors of type
DS_ATTRIBUTES, each of which has as its value a sepafda® C_ATTRIBUTE
subobject.

Figure 3-7. The DS_C_ENTRY_INFO Object Structure

DS_C_ENTRY_INFO

DS _C_DS_DN -~ DS_C_ATTRIBUTE

DS_C_DS_RDN

.

DS_C_AVA

Now extract the separate attribute values of the entry that was read. These were
returned as separate object valuesD8 ATTRIBUTES; each one has an object
class of DS_C_ATTRIBUTE. To return any one of these subobjects, a second call
to om_get()is necessary, as follows:

/* The second om_get() returns one selected subobject */
/* from the DS_C_ENTRY_INFO subobject we just got. The */
/* contents of "entry" as we enter this call is the */

~

* private subobject which is the value of DS_ATTRIBUTES. */

OSF® DCE Application Development Guide — Directory Services 3-31

CDS Application Programming

/* If we were to make the following call with the */

/* OM_EXCLUDE_SUBOBJECTS and without the */
/* OM_EXCLUDE_ALL_BUT_THESE_VALUES flags, we would get */
/* back an object consisting of six private subobjects, */

/* one for each of the attributes returned. Note the */

/* values for initial and limiting position: "2" */

/* specifies that we want only the third DS_C_ATTRIBUTE */

/* subobject to be gotten (the subobjects are numbered */

/* from 0, not from 1), and the "3" specifies that we want */

/* no more than that--in other words, the limiting value */

/* must always be one more than the initial value if the */

/* latter is to have any effect. */

/* OM_EXCLUDE_ALL_BUT_THESE_VALUES is likewise required */
/* for the initial and limiting values to have any */

[* effect ... */

omStatus = om_get(entry->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES
+ OM_EXCLUDE_SUBOBJECTS
+ OM_EXCLUDE_ALL_BUT_THESE_VALUES,
|_want_attribute_list,
OM_FALSE,
((OM_value_position) 2),
((OM_value_position) 3),
&entry,
&number_of_descriptors);

Note the value that is passed as the first parameter. ®imceet()does not work
on public objects, pass it the handle of the private subobject explicitly. To do this

you have to know the arrangement of the descriptor’s value union, which is defined
in xom.h.

3.3.1.8 Representation of Object Values

The following is the layout of th@bject field in a descriptor'ssalue union:

typedef struct {
OM_uint32 padding;

3-32 OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

OM_object object;
} OM_padded_object;

The following is the layout of thevalue union itself:

typedef union OM_value_union {

OM_string string;
OM_boolean boolean;
OM_enumeration enumeration;
OM_integer integer;
OM_padded_object object;

} OM_value;

The following is the layout of the descriptor itself:

typedef struct OM_descriptor_struct {

OM_type type;
OM_syntax syntax;
union OM_value_union value;

} OM_descriptor;

Thus, ifentry is a pointer to th®S_C_ENTRY_INFO object, then the private handle
to theDS_C_ATTRIBUTE object you want next is the following:

entry—>value.object.object

3.3.1.9 Extracting an Attribute Value

The last call yielded one separ@@&_ C_ATTRIBUTE subsubobject from the original
returned result object:

DS_C_ATTRIBUTE
DS_ATTRIBUTE_TYPE: OID string
DS_ATTRIBUTE_VALUES: anything

Figure 3-8 illustrates what is left.

OSF® DCE Application Development Guide — Directory Services 3-33

CDS Application Programming

Figure 3-8.

3-34

The DS_C_ATTRIBUTE Object Structure

DS_C_ATTRIBUTE

A final call to om_get()returns the single object descriptor that contains the actual
value of the single attribute you selected from the returned object:

omsStatus = om_get(entry->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES,
|_want_attribute_value,
OM_FALSE,
OM_ALL_VALUES,
OM_ALL_VALUES,
&entry,
&number_of_descriptors);

At this point, the value okntry is the base address of an object descriptor whose
entry—>type is DS_ATTRIBUTE_VALUES. Depending on the value found in
entry—>syntax, the value of the attribute can be read framtry—>value.string,
entry—>value.integer, entry—>value.boolean or entry—>value.enumeration

For example, suppose the valuearitry—>syntaxis OM_S_OCTET_STRING. The
attribute value, represented as an octet strimgf {erminated by a NULL), is found
in entry—>value.string.elementsits length is found irentry—>value.string.length

You can check any attribute value against the value you get froradbepcommand
by entering the following:

cdscp show object /.:/hosts/tamburlaine/self

For further information orcdscp see theOSF DCE Command Reference

Note that you can always calim_get()to get theentirereturned object from an XDS
call. This yields a full structure of object descriptors that you can manipulate like
any other data structure. To do this with te_read() return object would have

required the following call:

/* make a public copy of ENTIRE object... */

OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

omsStatus = om_get(readResultObject,
OM_NO_EXCLUSIONS,
((OM_type_list) 0),
OM_FALSE,
((OM_value_position) 0),
((OM_value_position) 0),
&entry,
&number_of_descriptors);

At the end of every XDS session, you need to unbind from GDS and then deallocate
the XDS and XOM structures and other storage. You must also explicitly deallocate
any service-generated objects, whether public or private, with calistodelete()

as follows:

/* delete service-generated public or private objects... */

omStatus = om_delete(readResultObject);
omStatus = om_delete(entry);

/* unbind from the GDS... */
dsStatus = ds_unbind(session);

/* close down the workspace... */
dsStatus = ds_shutdown(xdsWorkspace);

exit();

3.3.2 Creating New CDS Entry Attributes

The following subsections provide the procedure and some code examples for creating
new CDS entry attributes.

3.3.2.1 Procedure for Creating New Attributes

To create new attributes of your own on cell hamespace entries, you must do the
following:

OSF® DCE Application Development Guide — Directory Services 3-35

CDS Application Programming

3-36

1. Allocate a new ISO OID for the new attribute. For information on how to do

this, see Chapter 2 of this guide and th8F DCE Administration Guide

. Enter the new attribute’s name and OID in the file/opt/dcelocal/etc/

cds_attributes This text file contains OID-to-readable string mappings that
are used, for example, bydscp when it displays CDS entry attributes. Each
entry also gives a syntax for reading the information in the entry itself. This
should be congruent with the format of the data you intend to write in the
attribute. For more information about tieds_attributesfile, see theOSF DCE
Administration Guide

. In thexdscds.hheader file, define an appropriate OID string constant to represent

the new attribute.

For example, the following shows tixescds.hdefinition for the CDSCDS_Class
attribute:

#define OMP_O_DSX_A_CDS Class "\x2B\x16\x01\x03\x0F"

Note the XDS internal form of the name. This is wHaX_A_CDS_Class
looks like when it has been exported usi@M_EXPORT in an application,

as all OIDs must be. Thus, if you wanted to create a CDS attribute called
CDS_Brave_New_Attrib, you would obtain an OID from your administrator
and add the following line taxdscds.h

#define OMP_O_DSX_A_CDS_Brave_New_Attrib Your_OID'

. In an application, call the XD8s_maodify_entry() routine to add the attribute

to the cell namespace entry of your choice.

Coding Examples

In the following code fragments, a set of declarations similar to those in the previous
examples is assumed.

Theds_maodify_entry() function, which is called to add new attributes to an entry or
to write new values into existing attributes, requireB&_C_ENTRY_MOD_LIST
input object whose contents specify the attributes and values to be written to the

OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

entry. The name, as always, is specified iD& C_DS_DNobject. The following
is a static declaration of such a list, which consists of two attributes:

static OM_descriptor Entry_Modification_Object_1[] = {
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_Brave_New_Attrib),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING,
OM_STRING("O brave new attribute™)},
{DS_MOD_TYPE, OM_S_ENUMERATION, DS_ADD_ATTRIBUTE},
OM_NULL_DESCRIPTOR

h

static OM_descriptor Entry_Modification_Object_2[] = {
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_Class),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, \
OM_STRING("Miscellaneous")},
{DS_MOD_TYPE, OM_S_ENUMERATION, DS_ADD_ATTRIBUTE},
OM_NULL_DESCRIPTOR

h

static OM_descriptor Entry_Modification_List_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD_LIST),
{DS_CHANGES, OM_S_OBJECT, {0, Entry_Modification_Object_1}},
{DS_CHANGES, OM_S_OBJECT, {0, Entry_Modification_Object_2}},
OM_NULL_DESCRIPTOR

I8

A full description of this object can be found in Section 3.5. There could be
any number of additional attribute changes in the list; this would mean additional
DS_C_ENTRY_MOD objects declared, and an additioiixs CHANGESdescriptor
declared and initialized in thBS_C_ENTRY_MOD_LIST object.

With the DS_C_ENTRY_MOD_LIST class object having been declared as shown
previously, the following code fragment illustrates how to call XDS to write a hew
attribute value (actually two new values since two attributes are contained in the list
object). Note that any of the attributes may be new, although the entry itself must
already exist.

OSF® DCE Application Development Guide — Directory Services 3-37

CDS Application Programming

3-38

dsStatus = ds_modify_entry(session, /* Directory session */
/* from "ds_bind()" */
DS_DEFAULT_CONTEXT, /* Usual directory context */
Full_Entry_Name_Obiject, /* Entry name object */
Entry_Modification_List_Object, /* Entry Modification */
/* object */
&dummy); /* Unsupported argument */

If the entire entry is new, you must calls_add_entry() This function requires

an input object of clas®S C ATTRIBUTE_LIST, whose contents specify the
attributes (and values) to be attached to the new entry.

declaration for an attribute list that contains three attributes:

static

static

static

static

OM_descriptor Class_Attribute_Obiject[] = {

OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_Class),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("Printer")},
OM_NULL_DESCRIPTOR

OM_descriptor ClassVersion_Attribute_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_ClassVersion),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("1.0")},
OM_NULL_DESCRIPTOR

OM_descriptor My_Own_Attribute_Object[] = {

OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_My_OwnAttribute),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("zorro")},
OM_NULL_DESCRIPTOR

OM_descriptor Attribute_List_Object]] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
{DS_ATTRIBUTES, OM_S_OBJECT, {0, Class_Attribute_Object}},
{DS_ATTRIBUTES, OM_S_OBJECT, {0, ClassVersion_Attribute_Object}},
{DS_ATTRIBUTES, OM_S_OBJECT, {0, My_Own_Attribute_Object}},
OM_NULL_DESCRIPTOR

OSF® DCE Application Development Guide — Directory Services

Following is the static

XDS and the DCE Cell Namespace

The ds_add_entry()function also requires BS_C_DS_DNclass object containing
the new entry’s full name, for example:

/...losf.org.dce/subsys/doc/my_book
where every member of the name exists except for the lastnopehook. Assuming

that Full_Entry Name_Objectis aDS_C_DS_DNobject, the following code shows
what the call would look like:

dsStatus = ds_add_entry(session, [* Directory session */
/* from "ds_bind()" */
DS_DEFAULT_CONTEXT, /* Usual directory context */
Full_Entry_Name_Obiject, /* Name of new entry */
Attribute_List_Obiject, [* Attributes to be */
/* attached to new entry, with values */
&dummy); /* Unsupported argument */

3.4 Object-Handling Techniques

The following subsections describe the use of XOM and discuss dynamic object
creation.

34.1 Using XOM to Access CDS

The following code fragments demonstrate an alternative way to set up the entry
modification object for ads_modify_entry() call, mainly for the sake of showing
how theom_put() andom_write() functions are used.

The following technique is used to initialize the modification object:

1. Theom_create()function is called to generate a private object of a specified
class.

OSF® DCE Application Development Guide — Directory Services 3-39

CDS Application Programming

3-40

2. The om_put() function is called to copy statically declared attributes into a

declared private object.

3. Theom_write() function is called to write the value string, which is to be assigned

to the attribute, into the private object.

4. Theom_get()function is called to make the private object public.

5. The object is now public, and its address is inserted
DS_C_ENTRY_MOD_LIST object'sDS_CHANGES attribute.

The following new declarations are necessary:

OM_private_object newAttributeMod_priv;
/* ...handle to a private object to "om_put()" to */

OM_public_object newAttributeMod_pub;
/* ...to hold public object from "om_get()" */

OM_type types_to_include[] = {DS_ATTRIBUTE_TYPE, DS_ATTRIBUTE_VALUES,
DS_MOD_TYPE, OM_NO_MORE_TYPES};

[* ..that is, all attribute values of the Entry Modification */
/* object. For "om_put()" and "om_get()" */

char *my_string = "O brave new attribute";
/* ..value | want to write into attribute */

OM_value_position number_of_descriptors;
/* ...to hold value returned by "om_get()" */

First, use XOM to generate a private object of the desired class:

omsStatus = om_create(DS_C_ENTRY_MOD, /* Class of object */
OM_TRUE, /* Initialize attributes per defaults */
xdsWorkspace, /* Our workspace handle */

&newAttributeMod_priv); /* Created object handle */

Next, copy the public object’s attributes into the private object:

OSF® DCE Application Development Guide — Directory Services

into

the

XDS and the DCE Cell Namespace

omsStatus = om_put(newAttributeMod_priv, /* Private object to copy */
/* attributes into *
OM_REPLACE_ALL, /* Which attributes to replace in */
/* destination object */
Entry_Modification_Object, /* Source object to copy */
[* attributes from *
types_to_include, /* List of attribute types we */
/* want copied */
0, 0); /* Start-stop index for multivalued */
[* attributes; ignored with OM_REPLACE_ALL */

Sinceom_put() ignores the class of the source object (the object from which attributes
are being copied), it is not necessary to declare class descriptors for the source
objects. In other words, the static declarations could have omitte@theCLASS
initializations if this technique were being used, for example:

static OM_descriptor Entry_Modification_Object_2[] = {

I* OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD), */
I* Not needed for "om_put()" ... */

OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_Class),

{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, \
OM_STRING("Miscellaneous")},

{DS_MOD_TYPE, OM_S_ENUMERATION, DS_ADD_ATTRIBUTE},

OM_NULL_DESCRIPTOR

I3
The OM_CLASS was already properly initialized bym_create()
Next, write the attribute value string into the private object:

omsStatus = om_write(newAttributeMod_priv,/* Private object to write to */
DS_ATTRIBUTE_VALUES, /* Attribute type whose value */

/* we're writing */
0, /* Descriptor index if attribute is multivalued */
OM_S_PRINTABLE_STRING, /* Syntax of value */
0, /* Offset in source string to write from */
my_string); /* Source string to write from */

OSF® DCE Application Development Guide — Directory Services 3-41

CDS Application Programming

Now make the whole thing public again:

omsStatus = om_get(newAttributeMod_priv, /* Private object to get */
0, /* Get everything */
types_to_include, /* All attribute types */
0, /* Unsupported argument */
0, 0, /* Start-stop descriptor index for multival- */

/* ued attributes; ignored in this case */
&newAttributeMod_pub, /* Pointer to returned copy */
&number_of_descriptors); /* Number of attribute */
/¥ descriptors returned */

Finally, insert the address of the subobject into its superobject:

Entry_Modification_List_Object[1].value.object.object = \
newAttributeMod_pub;

3.4.2 Dynamic Creation of Objects

Objects can be completely dynamically allocated and initialized; however, you have
to implement the routines to do this yourself. The examples in this section are code
fragments; for complete examples, see Chapter 7.

Initialization of object structures can be automated by declaring macros or functions
to do this. For example, the following macro initializes one object descriptor with a
full set of appropriate values:

/* Put a C-style (NULL-terminated) string into an object and */
/* set all the other descriptor fields to requested values */
#define FILL_OMD_STRING(desc, index, typ, syntx, val) \
desc[index].type = typ; \
desc[index].syntax = syntx; \
desc[index].value.string.length = \
(OM_element_position)strlen(val); \
desc[index].value.string.elements = val;

3-42 OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

When generating objects, usealloc() to allocate space for the number of objects
desired, and then use macros (or functions) such as the preceding one to initialize the
descriptors. The following code fragment shows how this can be done for the top-
level object of aDS_C_DS_DNobject, such as the one described near the beginning
of this chapter. Recall thddS_C_DS_DNhas a separateS_RDNSdescriptor for

each name piece in the full name.

/* Calculate number of "DS_RDNS" attributes there should be ... */
numberOfPieces = number_of _name_pieces;

/* Allocate space for that many descriptors, plus one for the */
/* object class at the front, and a NULL descriptor at the back */

Name_Object = (OM_object)malloc((numberOfPieces + 2) \

* sizeof(OM_descriptor));

if(Name_Object == NULL) /* "malloc()" failed */
return OM_MEMORY_INSUFFICIENT;

/* Initialize it as a DS_C_DS_DN object by placing that class */
/* identifier in the first position... */

FILL_OMD_XOM_STRING(Name_Object, 0, OM_CLASS,
OM_S_OBJECT_IDENTIFIER_STRING, DS_C_DS_DN)

Note that all these steps would have to be repeated for each &iSh€ DS RDN
objects required as attribute values of bD® C_DS_DN Then a tier oDS_C_AVA
objects would have to be created in the same way, since eachb&h€ DS RDINé
requires one of them dts attribute value.

You could now useom_create()and om_put() to generate a private copy of this
object, if so desired.

The application is responsible for managing the memory it allocates for such dynamic
object creation.

OSF® DCE Application Development Guide — Directory Services 3-43

CDS Application Programming

3.5

3.5.1

Table 3-1.

3-44

XDS/CDS Object Recipes

The following subsections contain shorthand for object classes. For example, if you
look at the reference pages for tls_*() functions, you will see that an object

of classDS_C_NAME is required to hold entry names you want to pass to the
call, not DS_C_DS DNas is stated in this chapter. Howev&®S_C NAME is

in fact an abstract class with only one subcl&S C_DS_DNso, in this chapter,

DS _C_DS_DNis used.

Input XDS/CDS Obiject Recipes

In general, the objects you work with in an XDS/CDS application fall into two
categories:

» Objects you have to supply asput parametergo XDS functions
» Objects returned to you asutputby XDS functions

This section describes only the first category, since you have to construct these input
objects yourself.

Table 3-1 shows XDS functions and the objects given to them as input parameters.

Only items significant to CDS are listed in the table.DS_C_SESSIONand
DS_C _CONTEXT are ignored. DS_C_SESSIONis returned byds_bind(),

which usually receives theDS DEFAULT_SESSION constant as input.
DS_C_CONTEXT is usually substituted by theéDS DEFAULT_CONTEXT

constant.

Note: DS_C_NAMEIis an abstract class that has the single sub&&sC_DS DN
Therefore, DS_C_NAME is practically the same thing &S_C_DS_ DN

Directory Service Functions With Their Required Input Objects

Function Input Object

ds_add_entry() DS_C_NAME

DS_C_ATTRIBUTE_LIST

OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

3.5.2

Function Input Object
ds_bind() None
ds_compare() DS_C_NAME
DS_C_AVA
ds_initialize() None
ds_list() DS_C_NAME
ds_modify_entry() DS_C_NAME
DS_C_ENTRY_MOD_LIST
ds_read() DS_C_NAME
DS_C_ENTRY_INFO_SELECTION
ds_remove_entry() DS_C_NAME
ds_shutdown() None
ds_unbind() None
ds_version() None

Input Object Classes for XDS/CDS Operations

The following subsections contain information about all the object types required as
input to any of the XDS functions that can be used to access CDS. In order to use
these functions successfully, you must be able to construct and modify the objects
that the functions expect as their input parameters. XDS functions require most of
their input parameters to be wrapped in a nested series of data structures that represent
objects, and these functions deliver their output returns to callers in the same object
form.

Objects that are returned to you by the interface are not difficult to manipulate because
theom_get()function allows you to go through them and retrieve only the value parts
you are interested in, and discard the parts of data structures you are not interested in.
However, any objects you are required to supplyngsit to an XDS or XOM function

are another matter: you must build and initialize these object structures yourself.

OSF® DCE Application Development Guide — Directory Services 3-45

CDS Application Programming

3-46

The basics of object building have already been explained earlier in this chapter. Each
object described in the following subsections is accompanied by a static declaration
in C of a very simple instance of that object class. The objects in an application are
usually built dynamically (this technique was demonstrated earlier in this chapter).

The static declarations that follow give a simple example of what the objects look

like.

An object’s properties, such as what sort of values it can hold, how many of them
it can hold, and so on, are determined by tllassthe object belongs to. Each
class consists of one or moattributesthat an object can have. The attributes hold
whatever values the object contains. Thus, the objects are data structures that all look
the same (and can be handled in the same way) from the outside, but whose specific
data fields are determined by the class each object belongs to. At the abstract level,
objects consist of attributes, just as structures consist of fields.

3.5.2.1 XDS/CDS Object Types

Following is a list of all the object types that are described in the following
subsections. Most of these objects are object structures; that is, compounds consisting
of superobijects that contain subobjects as some of their values. These subobjects may
in turn contain other objects, and so on. Subobjects are indicated by indentation.
A DS_C_DS_DNobject contains at least oneS_C_DS_RDNobject, and each
DS_C_DS_RDNcontains oneDS_C_AVA object. Note that subobjects can, and
often do, exist by themselves, depending on what object class is called for by a given
function. This list contains all the possible kinds of objects that can be required as
input for any XDS/CDS operation.

DS_C_ATTRIBUTE_LIST
— DS_C_ATTRIBUTE
« DS_C_DS_DN
— DS_C_DS_RDN
DS_C_AVA
DS_C_ENTRY_MOD_LIST
— DS_C_ENTRY_MOD
DS_C_ENTRY_INFO_SELECTION

OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

In each section, information is provided for the described object’s attributes. All its
attributes are listed.

The illustrations in the following sections can be compared to the same object classes’
tabular definitions later in this guide.

3.5.2.2 TheDS_C_ATTRIBUTE_LIST Object

A DS_C_ATTRIBUTE_LIST class object is required as input ds_add_entry()
The object contains a list of the directory attributes you want associated with the entry

that is to be added.
Its general structure is as follows:
« Attribute List class type attribute
» Zero or more Attribute objects:
— Attribute class type attribute
— Attribute Type attribute
— Zero or more Attribute Value(s)
Thus, aDS_C_ATTRIBUTE_LIST object containing one attribute consists of two
object descriptor arrays because each additional attribute in the list requires an
additional descriptor array to represent it. The subobject arrays’ names (that is,

addresses) are the contents of the value fields in0DBe ATTRIBUTES object
descriptors.

Figure 3-9 shows the attributes of th&_C_ATTRIBUTE_LIST object.

OSF® DCE Application Development Guide — Directory Services 3-47

CDS Application Programming

Figure 3-9. The DS_C_ATTRIBUTE_LIST Object

DS_C_ATTRIBUTE_LIST Object

type=OM_CLASS type=DS_ATTRIBUTES type=DS_ATTRIBUTES
syntax=OM_S_OBJECT_ syntax=OM_S_OBJECT
IDENTIFIER_STRING [DS_C_ATTRIBUTE]L - -
value=DS_C_ value=]
ATTRIBUTE_LIST
1 only 0 or more

DS_C_ATTRIBUTE Otjject

type=OM_CLASS type=DS_ATTRIBUTE _ type=DS_ATTRIBUTE_|
syntax=OM_S_OBJECT_ TYPE VALUES
IDENTIFIER_STRIN syntax=OM_S_OBJECT_ syntax=any
value=DS,_C._ IllDEIETIFIER_STRING value=any
ATTRIBUTE values...
1 only 1 only 1 or more

type=DS_ATTRIBUTE_
VALUES

* OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its
value is alwaydDS _C ATTRIBUTE_LIST.

* DS_ATTRIBUTES

This is an attribute whose value is another object of cRSsC_ATTRIBUTE

(see Section 3.5.2.3). The attribute is defined by a separate array of object
descriptors whose base address is the value oD®eATTRIBUTES attribute.

Note that there can be any number of instances of this attribute and, therefore,
any number of subobjects.

3-48 OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

3.5.2.3 TheDS_C_ATTRIBUTE Object

An object of this class can be an attribute 0D& C_ATTRIBUTE_LIST object
(see Section 3.5.2.2).

* OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its
value is alwaydDS_C_ATTRIBUTE.

» DS_ATTRIBUTE_TYPE

The value of this attribute, which is an OID string, identifies the directory attribute
whose value is contained in this object.

» DS_ATTRIBUTE_VALUES

These are the actual values for the directory attribute represented by this
DS_C_ATTRIBUTE object. Both the value syntax and the number of values
depend on what directory attribute this is; that is, they depend on the value of
DS_ATTRIBUTE_VALUE .

3.5.24 Example Definition of ®S_C_ATTRIBUTE_LIST
Object

The following code fragment is a definition of@S_C_ATTRIBUTE_LIST object.

static OM_descriptor Single_Attribute_Object[] = {

OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),

OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_CDS_Class),

{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, \
OM_STRING("Printer")},

OM_NULL_DESCRIPTOR

I3

static OM_descriptor Attribute_List_Object]] = {

OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),

{DS_ATTRIBUTES, OM_S_OBJECT, {0, Single_Attribute_Object}},

OM_NULL_DESCRIPTOR

¥

OSF® DCE Application Development Guide — Directory Services 3-49

CDS Application Programming

3.5.2.5 TheDS_C_DS_DNObject

DS_C_DS_DNclass objects are used to hold the full names of directory entries
(distinguished names). You need an object of this class to pass directory entry
names to the following XDS functions:

» ds_add_entry()

» ds_compare()

* ds_list()

» ds_modify_entry()
» ds_read()

 ds_remove_entry()

Figure 3-10 shows the attributes o6 _C_DS_DNobject.

3-50 OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

Figure 3-10. DS_C_DS_DN Object Attributes

DS _C_DS_DN Object

type=OM_CLASS type=DS_RDNS type=DS_RDNS
syntax=OM_S_OBJECT_ syntax=OM_S_OBJECT
IDENTIFIER_STRING [DS_C_DS_RDN]——
value=DS_C_DS_DN value=[-]
1only 1 or more

DS_C_DS_RDN Objeg,

type=OM_CLASS type=DS_AVAS type=DS_AVAS
syntax=OM_S_OBJECT_ syntax=OM_S_OBJEC[T
IDENTIFIER_STRING [DS_C_AVA]
value=DS_D_DS_RDN value=[_]
1 only 1 or more

DS_C AVA Object

type=OM_CLASS type=DS_ATTRIBUTE_| type=DS_ATTRIBUTE_|
syntax=OM_S_OBJEC[T_ TYPE VALUES
IDENTIFIER_STRING syntax=OM_S_OBJECT_ syntax=any
IDENTIFIER_STRING
value=DS_C_AVA value=. . value=...
1 only 1 only 1 only

* OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its
value isDS_C_DS DN

* DS_RDNS
This is an attribute whose value is another object of c@RSsC_DS_RDN(see

Section 3.5.2.6). Th®S_C_DS_RDNobject is defined by a separate array of
object descriptors whose base address is the value d$hd&kDNSattribute.

OSF® DCE Application Development Guide — Directory Services 3-51

CDS Application Programming

There are as manpS_RDNSattributes in aDS_C_DS_DNobject as there are
separate name components in the full directory entry name. For example, suppose
you wanted to represent the following CDS entry name:

/.../C=US/O=0SF/OU=DCE/hosts/brazil/self

This would require a total of six instances of tkS_RDNS attribute in the
DS_C_DS_DNobject. The/.../ (global root prefix) is not represented. This
means that another six object descriptor arrays are required to hold the RDN
objects, as well as six object descriptors in the present object, one to hold (as the
value of aDS_RDNSattribute) a pointer to each array.

Note that the order of thedeS RDNSattributes is significant; that is, the first
DS_RDNS should contain as its value a pointer to the array representing the
C=US part of the name; the neldS_RDNSshould contain as its value a pointer

to the array representing tli@=0OSF part, and so on. The root part of the name
is not represented at all.

3.5.2.6 TheDS_C_DS_RDNObject

DS_C_DS_RDNclass objects are required as values for B RDNSattributes of
DS_C_DS_DNobjects. (For an illustration of its structure, see Figure 3-1BDN
refers to the X.500 terniRDN that is used to signify a part of a full entry name.
Separate objects of this class are not usually required as input to XDS functions.

The standard permits multiple AVAs in an RDN, but the DCE Directory and XDS
API restrict an RDN to one AVA.
« OM_CLASS
The value of this attribute is an OID string that identifies the object’s class; its
value is alwaydDS C_DS_RDN
« DS_AVAS
This is an attribute whose value is yet another object of d@SsC_AVA (see

Section 3.5.2.7). Th®S_C_AVA object is defined by a separate array of object
descriptors whose base address is the value oDBeAVAS attribute.

3-52 OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

Note that there can only be one instance of this attribute iDeC _RDNobject.

The object descriptor array describing this object always consists of three object
descriptor structures: the first describes the object’s class, the second describes
the DS_AVAS attribute, and the third descriptor is the terminating NULL.

3.5.2.7 TheDS_C_AVA Object

The DS_C_AVA class object is used to hold an actual value. The value is usually
in the form of one of the many different XOM string types. (For an illustration of
its structure, see Figure 3-10.)

In calls tods_compare() an object of this type is required to hold the type and value
of the attribute that you want compared with those in the entry you specify. It holds
the type and value in a separd®s_C_DS_DNobject.

DS _C _AVA is also included here because it is a required subsubobject of
DS_C_DS_DNitself. DS_C_AVA is the subobject in which the name part’s actual
literal value is held.

» OM_CLASS
The value of this attribute is an OID string that identifies the object’s class; its
value is alwaydDS_C_AVA.

« DS _ATTRIBUTE_TYPE
The value of this attribute, which is an OID string, identifies the directory attribute
whose value is contained in this object.

« DS _ATTRIBUTE_VALUES

This is the literal value of what is represented by tbiS_C_AVA object.

If the DS_C_AVA object is a subobject @S_C_DS_RDN(and therefore also of
DS_C_DS_DN, then the value is a string representing the part of the directory
entry name represented by this object. For example, ifD8e C_DS RDN
object contains th©®=0SF part of an entry name, then the stri@$F is the value

of theDS_ATTRIBUTE_VALUES attribute, anddS_A_COUNTRY_NAME is

the value of thaDS_ATTRIBUTE_TYPE attribute.

OSF® DCE Application Development Guide — Directory Services 3-53

CDS Application Programming

3-54

On the other hand, IDS_C_AVA contains an entry attribute type and value to be
passed tas_compare()thenDS_ATTRIBUTE_TYPE identifies the type of the
attribute, andS_ATTRIBUTE_VALUES contains a value, which is appropriate
for the attribute type, to be compared with the entry value.

For example, suppose you wanted to compare a certain value with a CDS
entry’'s CDS_ Classattribute’s value. The identifiers for all the valid CDS entry
attributes are found in the file:/opt/dcelocal/etc/cds_attributes The value of
DS_ATTRIBUTE_TYPE would beCDS_Class which is the label of an object
identifier string, andDS_ATTRIBUTE_VALUES would contain some desired
value, in the correct syntax fa€DS_Class The syntax also is found in the
cds_attributesfile; for CDS_Classit is byte; that is, a character string.

3.5.2.8 Example Definition of ®S_C_DS_DNObject

The following code fragment shows an example definition fdSa C_DS_DNobject.

static OM_descriptor Entry_String_Object[] = {

OM_OID_DESC(OM_CLASS, DS_C_AVA),

OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_TYPELESS_RDN),

{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, \
OM_STRING("brazil")},

OM_NULL_DESCRIPTOR

I3

static OM_descriptor Entry_Part_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, Entry_String_Obiject}},
OM_NULL_DESCRIPTOR

I3

static OM_descriptor Entry_Name_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_DN),
{DS_RDNS, OM_S_OBJECT, {0, Entry_Part_Object}},
OM_NULL_DESCRIPTOR

¥

OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

3.5.2.9 TheDS_C_ENTRY_MOD_LIST Object

DS_C _ENTRY_MOD_LIST class objects, which contain a list of changes
to be made to some directory entry, must be passeddgomodify entry().
DS_C_ENTRY_MOD_LIST objects have the attributes shown in Figure 3-11.

Figure 3-11. The DS_C_ENTRY_MOD_LIST Object

DS_C_ENTRY_MOD_LIST Object

type=OM_CLASS type=DS_CHANGES type=DS_CHANGES
syntax=OM_S_OBJECT_ syntax=OM_S_OBJECT
IDENTIFIER_STRING [DS_C_ENTRY_ | -
value=DS_C_ENTRY_ MOD)]
MOD_ lue=
LIST valuezl-]
1 only 1 or more
DS_C_ENTRY Object
type=OM_CLASS type=DS_ATTRIBUTE_| type=DS_ATTRIBUTE
syntax=OM_S_OBJECT _ TYPE VALUES
IDENTIFIER_STRING syntax=OM_S_OBJECT_ syntax=any
value=DS_C_ENTRY_ IDENTIFIER_STRING value=...
MOD value=<attribute
OID>
1 only 1 only 0 or more
type=DS_MODIFI- type=DS_ATTRIBUTE
CATION_TYPE VALUES
syntax=OM_S_ [
ENUMERATION
value=DS_ADD _
ATTRIBUTE
1 only
* OM_CLASS

The value of this attribute is an OID string that identifies the object’s class; its
value is alwaydDS C _ENTRY_MOD_LIST.

» DS_CHANGES

OSF® DCE Application Development Guide — Directory Services 3-55

CDS Application Programming

3-56

This is an attribute whose value is another object of cl2SsC_ENTRY_MOD
(see Section 3.5.2.10). TS _C_ENTRY_MOD object is defined by a separate
array of object descriptors whose base address is the value DREhEHANGES
attribute.

Note that there can be one or more instances of this attribute in the object,
which is why it is called_LIST. Each attribute contains one separate entry
modification. To learn how the modification itself is specified, see Section
3.5.2.10. The order of multiple instances of this attribute is significant because,
if more than one modification is specified, the modifications are performed by
ds_modify_entry() in the order in which th&dS_CHANGES attributes appear

in the DS_C_ENTRY_MOD_LIST object.

3.5.2.10 TheDS_C_ENTRY_MOD Object

The DS_C_ENTRY_MOD class object holds the information associated with a
directory entry modification. (For an illustration of its structure, see Figure
3-11.) EachDS_C_ENTRY_MOD object describes one modification. To
create a list of modifications suitable to be passed tdsamodify_entry() call,
describe each modification in a separ@d& C _ENTRY_MOD object, and then
insert these objects as multiple instances of ® CHANGES attribute in a
DS_C_ENTRY_MOD_LIST object (see Section 3.5.2.9).

+ OM_CLASS
The value of this attribute is an OID string that identifies the object’s class; its
value is alwaydDS _C_ENTRY_MOD.

« DS _ATTRIBUTE_TYPE
The value of this attribute, which is an OID string, identifies the directory attribute
whose modification is described in this object.

« DS _ATTRIBUTE_VALUES
These are the values required for the entry modification; their type and number
depend on both the entry type and the modification requested.

« DS_MOD_TYPE

OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

The value of this attribute identifies the kind of modification requested. It can
be one of the following:

— DS_ADD_ATTRIBUTE

The attribute specified bypS _ATTRIBUTE_TYPE is not currently in
the entry. It should be added, along with the value(s) specified by
DS_ATTRIBUTE_VALUES, to the entry. The entry itself is specified in a
separatdDS_C_DS_DNobject, which is also passed tis_modify_entry().

— DS_ADD_VALUES
The specified attribute is currently in the entry. The value(s) specified by
DS _ATTRIBUTE_VALUES should be added to it.

— DS_REMOVE_ATTRIBUTE
The specified attribute is currently in the entry and should be deleted from the
entry. Any values specified bpS_ATTRIBUTE_VALUES are ignored.

— DS_REMOVE_VALUES

The specified attribute is currently in the entry. One or more values, specified
by DS_ATTRIBUTE_VALUES, should be removed from it.

3.5.2.11 Example Definition of BS_C_ENTRY_MOD_LIST
Object

The following code fragment is an example definiton of a
DS_C_ENTRY_MOD_LIST object.

OM_string my_uuid,;

static OM_descriptor Entry_Mod_Obiject[] = {
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_UUID),
{DS_ATTRIBUTE_VALUES, OM_S_OCTET_STRING, my_uuid},
{DS_MOD_TYPE, OM_S_ENUMERATION, DS_ADD_ATTRIBUTE},
OM_NULL_DESCRIPTOR

I3

OSF® DCE Application Development Guide — Directory Services 3-57

CDS Application Programming

static OM_descriptor Entry_Mod_List_Object[] = {
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD_LIST),
{DS_CHANGES, OM_S_OBJECT, {0, Entry_Mod_Object}},
OM_NULL_DESCRIPTOR

I3

3.5.2.12 TheDS_C_ENTRY_INFO_SELECTION Object

When you calds_read()to read one or more attributes from a CDS entry, you specify
in the DS_C_ENTRY_INFO_SELECTION object the entry attributes you want to

read.

The DS_C_ENTRY_INFO_SELECTION object contains the attributes shown in
Figure 3-12.

Figure 3-12. The DS_C_ENTRY_INFO_SELECTION Object

DS_C_ENTRY_INFO_SELECTION Object

type=OM_CLASS type=DS_ALL_ type=DS_ATTRIB-
syntax=OM_S_OBJECT_ ATTRIBUTES UTES_SELECTED
IDENTIFIER_STRING syntax=OM_S_ syntax=OM_S_OBJECT
value=DS_C_ENTRY_ BOOLEAN IDENTIFIER_STRING
INFO_ value=OM_TRUE or value=<attribute
SELECTION OM_FALSE 0OID>
1 only 1 only 0 or more
type=DS_ type=DS_ATTRIB-
INFO_TYPE UTES_SELECTED
syntax=OM_S_
ENUMERATION
value=DS_TYPES_
AND_VALUES
1 only

Note that this object class has no subobjects.

* OM_CLASS

3-58 OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

The value of this attribute is an OID string that identifies the object’s class; its
value is alwaydDS _C ENTRY_INFO_SELECTION.

* DS_ALL_ATTRIBUTES

This attribute is a simple Boolean option whose value indicates whether all the
entry’s attributes are to be read, or only some of them. Its possible values are as
follows:

— OM_TRUE, meaning that all attributes in the directory entry should be read.
Any values specified by thBS_ATTRIBUTES_SELECTED attribute are
ignored.

— OM_FALSE, meaning that only some of the entry attributes should be read;
namely, those specified by ti¥S ATTRIBUTES_SELECTED attribute.

» DS_ATTRIBUTES_SELECTED

The value of this attribute, which is an OID string, identifies the entry attribute
to be read. Note that this attribute’s value has meaning only if the value of
DS_ALL_ATTRIBUTES is OM_FALSE; if it is OM_TRUE, the value of
DS_ATTRIBUTES_SELECTED is ignored.

Note also that there are multiple instances of this attribute if more than one
attribute, but not all of them, is to be selected for reading. Each separate instance
of DS_ATTRIBUTES_SELECTED has as its value an OID string that identifies
one directory entry attribute to be read. O6_ATTRIBUTES_SELECTED is
present but does not have a valds, read()reads the entry but does not return
any attribute data; this technique can be used to verify the existence of a directory
entry.

« DS_INFO_TYPE

The value of this attribute specifies what information is to be read from each
attribute specified bypS_ATTRIBUTES_SELECTED. The two possible values
are as follows:

— DS_TYPES_ONLY, meaning that only the attribute types of the selected
attributes should be read.

— DS_TYPES_AND_VALUES, meaning that both the attribute types and the
attribute values of the selected attributes should be read.

OSF® DCE Application Development Guide — Directory Services 3-59

CDS Application Programming

3.5.2.13 Example Definition of a

3.6

Table 3-2.

3-60

DS_C_ENTRY_INFO_SELECTION Object

The following code fragment provides an example definition of a
DS_C_ENTRY_INFO_SELECTION object.

static OM_descriptor Entry_Info_Select_Object]] = {
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DSX_A_CDS_Class),
{DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, OM_FALSE},
{DS_INFO_TYPE, OM_S_ENUMERATION, DS_TYPES_AND_VALUES},
OM_NULL_DESCRIPTOR

I3

Attribute and Data Type Translation

This section provides translations between CDS and XDS for attributes and data types.
Table 3-2 provides the OM syntax for CDS attributes. Table 3-3 provides the OM
syntax for CDS data types. Table 3-4 defines the mapping of CDS data types to OM
syntaxes.

CDS Attributes to OM Syntax Translation

CDS Attribute OM Syntax

CDS_CTS OM_S_OCTET_STRING
CDS_UTS OM_S_OCTET_STRING
CDS_Class OM_S_OCTET_STRING
CDS_ClassVersion OM_S INTEGER
CDS_ObjectUID OM_S_OCTET_STRING
CDS_AllUpTo OM_S_OCTET_STRING
CDS_Convergence OM_S INTEGER
CDS_InCHName OM_S_INTEGER

OSF® DCE Application Development Guide — Directory Services

XDS and the DCE Cell Namespace

Table 3-3.

CDS Attribute OM Syntax
CDS_DirectoryVersion OM_S INTEGER
CDS_UpgradeTo OM_S INTEGER
CDS_LinkTimeout OM_S_INTEGER
CDS_Towers OM_S_OCTET_STRING

OM Syntax to CDS Data Types Translation

OM Syntax

CDS Data Type

OM_S_TELETEX_STRING
OM_S_OBJECT_IDENTIFIER_STRING
OM_S_OCTET_STRING
OM_S_PRINTABLE_STRING
OM_S_NUMERIC_STRING
OM_S_BOOLEAN

OM_S_INTEGER
OM_S_UTC_TIME_STRING
OM_S_ENCODING_STRING

cds_char
cds_hyte
cds_bhyte
cds_char
cds_char
cds_long
cds_long

cds_char

cds_bhyte

OSF® DCE Application Development Guide — Directory Services

3-61

CDS Application Programming

Table 3-4. CDS Data Types to OM Syntax Translation

CDS Data Type OM Syntax

cds_none OM_S NULL

cds_long OM_S INTEGER

cds_short OM_S INTEGER

cds_small OM_S INTEGER

cds_uuid OM_S_OCTET_STRING
cds_Timestamp OM_S _OCTET_STRING
cds_Version OM_S_PRINTABLE_STRING
cds_char OM_S_TELETEX_STRING
cds_byte OM_S_OCTET_STRING

3-62 OSF® DCE Application Development Guide — Directory Services

Part 3

GDS Application Programming

Part 3 is an overview of programming GDS using XDS.

Chapter 4 discusses GDS concepts and gives an overview of GDS programming.
Chapter 5 describes XOM programming, and Chapter 6 describes XDS programming.
Chapter 7 contains programming examples. Chapter 8 describes how to use threads
with XDS and XOM, and Chapter 9 describes the XDS and XOM convenience
routines.

Chapter 4
GDS API: Concepts and Overview

The Global Directory Service (GDS) is a distributed, replicated directory service. Itis
distributed because information is stored in different places in the network. Requests
for information may be routed by GDS to directory servers throughout the network.
It is replicated because information can be stored in more than one location for easier
and more efficient access by its users.

GDS is based on the CCITT X.500/ISO 9594 (1988) international standard. The
aim of this standard, also referred to as the OSI Directory standard, is to provide
a global directory that supports network users and applications with information
required for communications. The directory plays a significant role in allowing

the interconnection of information processing systems from different manufacturers,
under different managements, of different levels of complexity, and of different ages.

GDS is the DCE implementation of the OSI Directory standard. Together with the
Cell Directory Service (CDS), it provides its users with a centralized place to store
information required for communications, which can be retrieved from anywhere in
a distributed system. GDS maintains information describing objects such as people,
organizations, applications, distribution lists, network hardware, and other distributed
services dispersed over a large geographical area.

OSF® DCE Application Development Guide — Directory Services 4-1

GDS Application Programming

4.1

CDS stores names and attributes of resources located in a DCE cell. A DCE cell
consists of various combinations of DCE machines connected by a network. Each
DCE cell contains its own cell directory server, which provides access to local resource
information. CDS is optimized for local information access by its users. For a more
detailed description of cells and their resource services, semtitmgluction to OSF
DCE

GDS serves as a general-purpose information repository. It provides information
about resources outside a DCE cell. It ties together the various cells by helping
to find remote cells. A detailed discussion of the DCE namespace and its various
servers and their interaction is provided in Chapter 1.

Directory Service Interfaces

X/Open Directory Service (XDS) and X/Open OSlI-Abstract-Data Manipulation
(XOM) are application programming interfaces. XOM and XDS application
interfaces are based on X/Open standards specifications. Together these interfaces
provide the application programmer with a library of functions with which to develop
applications that access the directory service.

The XOM application programming interface (XOM API) is an interface for creating,
deleting, and accessing information objects. The XOM API defines an object-oriented
information model. Objects belong to classes and have attributes associated with
them. The XOM API also defines basic data types, such as Boolean, string, object,
and so on. The representation of these objects are transparent to the programmer.
Objects can only be manipulated through the XOM interface, not directly.

DCE programmers use the XDS API to make directory service calls. In DCE, the
XDS API directs the calls it receives to either GDS or CDS by examining the names
of the information objects to be looked up as shown in Figure 4-1. It uses the
XOM interface for defining and handling information objects. These objects are
passed as parameters and return values to the XDS routines. The XDS API contains
functions for managing connections with a directory server: reading, comparing,
adding, removing, modifying, listing, and searching for directory entries. The GDS
package provides additional information objects that provide for security and cache
management when using GDS.

OSF® DCE Application Development Guide — Directory Services

GDS API: Concepts and Overview

GDS supports additional functions, callednvenience functionst the XDS/XOM
API. These functions, described in Chapter 9, provide GDS programmers with a toolkit
to allow more efficient production of XDS/XOM based applications.

Figure 4-1. XDS: Interface to GDS and CDS

Application

/.../C=US/O=0SF/OU=DCE /.../cs.univ.edu

4.2 The X.500 Directory Information Model

This section describes the directory information model of X.500, which GDS is based
on. A directory is a collection of information about some part of the world. The
most familiar type of directory is the list of names and numbers that make up a city
telephone directory. A name is provided with some information about the named
object, such as an address and telephone number. The ISO and CCITT standards
define adirectory information modethat defines the abstract structure of directory
information, services, and protocols for a computer network environment, such as
DCE.

4.2.1 Directory Objects

The directory contains information about objects. The standard defines an object very
broadly as “anything in some ‘world,” generally the world of telecommunications and
information processing or some part thereof, which is identifiable (can be named).”
Some examples of objects include people, corporations, and application processes.

OSF® DCE Application Development Guide — Directory Services 4-3

GDS Application Programming

Figure 4-2.

4-4

Each object known to the directory is represented by an entry. The set of all entries
is called the Directory Information Base (DIB), which is a hierarchical tree. Each
entry consists of a set of attributes representing specific information about the object.
Each attribute, in turn, has a type and one or more values of that type. Attributes
with more than one value are referred torasltivaluedor recurring attributes.

Figure 4-2 shows the structure of the DIB.

The Structure of the DIB

I
A A B

alias entry Object Entry
Entry
Attribute Attribute = o= Attribute
’ Type ‘ ’ Value(s)

The attributes that constitute a single entry can be of various types. For example,
an entry for a person may contain that person’s name, address, and phone number.
If the person has a second telephone number, the attribute of type telephone number
may have two values, one for each telephone number.

OSF® DCE Application Development Guide — Directory Services

GDS API: Concepts and Overview

4.2.2

4.2.3

Object entries are composed of mandatory and optional attributes. Mandatory and
optional attributes are discussed in Section 4.4.3.

Attribute Types

All attributes in a particular entry must be of different attribute types. Each attribute
type is assigned a unique object identifier value. The directory standard assigns object
identifiers for several commonly used attribute types, including surname, country
name, telephone number, and presentation address. Other international standards
may define additional attribute types. For example, the X.400 Message Handling
standard defines mail-specific attributes like O/R address. It is expected that various
national and private organizations will also define attribute types of their own. The
CDS attributes (defined in thedscds.hheader file) and the GDS package attributes
(defined in thexdsgds.hheader file) are examples of additional attribute definitions.

Object Identifiers

Objects in a network environment, such as DCE, require unique hames to distinguish
them from one another. To provide these names, object identifiers are allocated by
an administrative organization, such as a standards body. An object identifier is a
hierarchical sequence of numbers uniquely identifying an object. Associated with

each object identifier is a character string to make it easier to document.

The possible values of object identifiers are defined in a tree. Part of this tree is
shown in Figure 4-3. It begins with three numbered branches coming from the root:
branch 0 (assigned to CCITT), branch 1 (assigned to ISO), and branch 2 (a joint ISO-
CCITT branch). Below each of these branches are other numbered branches assigned
to various standards such as the directory serds€s)) and electronic mail service
(mhs-motis(6) with each ending in a named object. Thus, the name of any of these
objects is a series of integers describing a path down this tree to the leaf node.

OSF® DCE Application Development Guide — Directory Services 4-5

GDS Application Programming

Figure 4-3.

Object Identifiers

root
ccitt(0) iso(1) joint-iso-ccitt(2)
ds(5) mhs-motis(6)
attributeType(4) objectClass(6) arch(5)
oc(1) at(2)

The object identifier associated with the XDS package is defined as follows:

{iso(1) identified-organization(3) icd-ecma(12) member-company(2)
dec(1011) xopen(28) dsp(0)}

All object classes and object attributes in the directory service package have these

numbered branches associated with them. The classes and attributes, in turn, have
their own unique numbers. These object identifiers are defined in header files included

as part of the XDS and XOM API software. For example, the attribute @gramon-

Name is identified by the object identifier 2.5.4.3.

Table 4-1 contains a sample list of object identifiers for selected attributes. The
complete list is provided in Chapter 12.

OSF® DCE Application Development Guide — Directory Services

GDS API: Concepts and Overview

Table 4-1.

4.2.4

Object Identifiers for Selected Attribute Types

Attribute Type Object Identifier
Aliased-Object-Name 2541
Business-Category 2.5.4.15
Common-Name 2543
Country-Name 2546
Description 2.54.13

Note: The object identifiers in Table 4-1 stem from the r§joint-iso-ccitt(2) ds(5)
attributeType(4)}.

Object Entries

Entries are grouped into generic object classes based on the type of object they
represent. Examples of object classes @muntry, Organizational-Person and
Application-Entity . All entries contain a special attribute, the object class attribute,
indicating to which object class (or classes) they belong.

Entries that model a certain object and contain information about the object in terms
of attributes are calledbject entries The directory contains a second type of entry,
which is a pointer to an object entry, called @ias entry Alias entries are discussed

in Section 4.3.4.

In summary (as shown previously in Figure 4-2), the DIB is made up of entries,
each of which contains information about objects. Entries consist of attributes; each
attribute has a type and one or more values.

Section 4.3 describes how objects are organized in the DIB. Figure 4-4 shows an
example of an entry describinmgrganizational-Person

OSF® DCE Application Development Guide — Directory Services 4-7

GDS Application Programming

Figure 4-4.

A Directory Entry Describing Organizational Person

Top/GDS-Top
Object Class m
Organizational

f Person AN

M
Al Schmidt
/4 Alfred Schmidt

attribute values

4 ‘ Surname ‘ ‘ Schmidt ‘ -

attribute types

617 289 4448

Organizational

y New York Sal
Unit Name ew York Sales

OSF® DCE Application Development Guide — Directory Services

GDS API: Concepts and Overview

4.3

43.1

X.500 Naming Concepts

Large amounts of information need to be organized in some way to make efficient
retrieval possible and ensure that names are unique. Information in the DIB is
organized into a hierarchical structure known as the Directory Information Tree

(DIT). The structure and naming of the nodes in the DIT are specified by registration

authorities for a standardized set of X.500 names and by implementors of the directory
service (such as OSF) for implementation-specific names. The DIT hierarchy is
described by a schema. Schemas are described in more detail in Section 4.4.

Although the X.500 standard does not mandate a specific schema, it does make general
recommendations. For example, countries and organizations should be named close
to the root of the DIT; people, applications, and devices should be named further
down in the hierarchy. GDS supplies a default schema that complies with these
recommendations.

Distinguished Names

A hierarchical path exists from the root of the DIT to any entry in the DIB. To access
information stored in an entry, a hame that uniquely describes that entry must be
given. An RDN distinguishes an entry from other entries with the same superior
node in the DIT. A sequence of RDNSs, starting from the root of the tree, can identify
a unique path down the tree, and thus a unique entry. This sequence of RDNs, each
of which identifies a particular entry, is the distinguished name of that entry. Each
entry in the DIB can be referred to by its distinguished name.

Figure 4-5 shows an example of a distinguished name. The shaded boxes in the
DIT represent the entries that are named in the column labeled RDN. The schema
dictates that countries are named directly below the root, followed by organizations,
organization units, and people.

OSF® DCE Application Development Guide — Directory Services 4-9

GDS Application Programming

Figure 4-5. A Distinguished Name in a Directory Information Tree

DIT RDN Distinguished Name

Root {

Countries C=US (C=Us}

= [
TN

Organizations O=Acme Enterprises {C=Us

O=Acme Enterprises}

= [_J[_ |

OU=New York Sales {C=Us
O=Acme Enterprises

OU=New York Sales}

Organization Units

\\ CN=Alfred Schmidt {c=Us

O=Acme Enterprises
OU=New York Sales

| | = CN=Alfred Schmidt}

4-10

Every entry in the DIB has a distinguished name, not just the leaf nodes. For
example, the entry for the organization, Acme Enterprises (shown in Figure 4-5) is
represented by the shaded box in @ryanizations subtree. Its distinguished name

is the concatenation of the distinguished name of the previous entry above with its
relative distinguished name. The entry eople Alfred Schmidt, is represented by
the shaded box in thBeoplesubtree.

OSF® DCE Application Development Guide — Directory Services

GDS API: Concepts and Overview

4.3.2

4.3.3

Relative Distinguished Names and Attribute Value Assertions

Each entry has a uniquelative distinguished nam@rDN), which distinguishes it
from all other entries with a particular immediate superior in the DIT.

An RDN consists of one or more assertions of the type and value of an attribute. A
pair consisting of an attribute type and a value of that type is known astabute
value assertiofAVA). All attribute types in an RDN must be different. The attribute
value of an attribute in an RDN’'s AVA is called thdistinguished valueof that
attribute, as opposed to the other possible values of that attribute.

The assertion is TRUE if the entry contains an attribute of the specified type, and if
one of that attribute’s values matches the AVA’s distinguished attribute value. An
entry commonly has an RDN that consists of a single AVA. In some cases, however,
more than one AVA may be required to distinguish an entry. (Multiple AVAs are
discussed in Section 4.3.3.)

The entry shown in Figure 4-4 contains the R@&dmmon-Name = Alfred Schmidt

The attribute consists of two valuesAlfred Schmidt and Al Schmidt. The AVA

Common-Name = Alfred Schmidt contains the valuélfred Schmidt, which has
been designated as the distinguished value in the AVA.

Multiple AVAs

Frequently, as shown in the previous section, an entry contains a single distinguished
value; therefore, the RDN consists of a single AVA. However, under certain
circumstances, additional values (and hence multiple AVAS) can be used.

Figure 4-4 shows the contents of an entry descritfdrganizational-Person The
RDN of an Organizational-Person entry is usually composed of a single AVA,
such as the&Common-Nameattribute type with a distinguished value (in Figure 4-
5, the AVA CN = Alfred Schmidt). Depending on the schema, the RDN of an
Organizational-Person entry may contain more than one AVA. For example, the
RDN in Figure 4-5 could contain the AVAGN = Alfred Schmidt and OU = New
York Sales with Alfred Schmidt and New York Sales as distinguished values.

In summary:

OSF® DCE Application Development Guide — Directory Services 4-11

GDS Application Programming

4.3.4

4-12

» A DIT consists of a collection of distinguished names.
« Distinguished names result from a concatenation of RDNSs.

» RDNs consist of an unordered collection of attribute type and value pairs (AVAS).

Aliases

An alternative name or alias is supported in the DIT by the use of special pointer
entries calledhlias entries Alias entries do not contain any other attributes beyond
their distinguished attributes, the object class attribute, and the aliased object name
attribute; that is, the distinguished name of the aliased object entry. Furthermore, an
alias entry has no subordinate entries, making it, by definition, a leaf entry of the DIT
as shown in Figure 4-6. Alias entries point to object entries and provide the basis
for alternative names for the corresponding objects.

Aliases are used to do such things as provide more user-friendly names, direct the
search for a particular entry, reduce the scope of a search, provide for common
alternate abbreviations and spellings, or provide continuity after a name change.

Figure 4-6 demonstrates how an alias name provides continuity after a name change.
The ABC company’s branch office located originally in Osaka has moved to Tokyo.
To make the transition easier for directory service users and to guarantee that a search
based on the old information finds its target, an aliasdeABC has been added to

the directory beneath=Osaka. This alias entry points to the object en®=ABC.

A search for ABC undet.=Osaka in the DIT finds the entryC=Japan/L=Tokyo/
O=ABC.

OSF® DCE Application Development Guide — Directory Services

GDS API: Concepts and Overview

Figure 4-6. An Alias in the Directory Information Tree

L = Osaka L = Tokyo

0 =ABC O =ABC

OU = Osaka Branch

Another use of alias entries is as an alternativéltering; that is, by using assertions
about particular attributes to search through the DIT. Although this approach does not
require any special information to be set up in the DIT, it can be expensive to search
where there is a large population of entries and attributes. An alternative approach is
to set up special subtrees whose naming structures are designed for “Yellow Pages”
type searching. Figure 4-7 shows an example of such a subtree populated by alias
entries only. In reality, the entries within these subtrees can be a mixture of object

and alias entries, as long as there exists only one object entry for each object stored
in the directory.

Figure 4-7. A Subtree Populated by Aliases

Country

Organization \

Object within
the organization

An object with an entry in the DIT can have zero or more aliases. Several alias
entries can point to the same object entry. An alias entry can point to an object that

OSF® DCE Application Development Guide — Directory Services 4-13

GDS Application Programming

4.3.5

4.4

4.4.1

4-14

is not a leaf entry. Only object entries can have aliases. Thus, aliases of aliases are
not permitted.

Name Verification

A directory user identifies an entry by supplying an ordered set of RDNs (each of
which consists of an unordered set of AVASs) that form a purported name. The
purported name is mapped onto the desired entry by the process of name verification,
which performs a distributed tree walk through the DIT. When a purported name is a
valid name, a distinguished name exists with the same number of RDNs and matching
AVAs within the RDNs.

Schemas

The structure of directory information is governed by a set of rules callechama
Schemas specify rules for the following:

» The structure of the DIT
» The contents of entries in terms of attributes

» The syntax of attribute values and rules for comparing and matching them

The GDS Standard Schema

When the DCE software package is shipped to a customer, it includes a default or
standardschema for GDS. This is the GDS proprietary interpretation of the X.500
schema.

Each attribute in the schema is assigned a unique object identifier and the syntax
of its value. In addition, the schema specifies the mechanism by which attributes
of this type are compared with one another. Each entry in the DIT belongs to an
object class governed by the schema. Object class definitions can be used to derive
subclasses, supporting the inheritance and refinement of the attribute types defined for
the superclass.

OSF® DCE Application Development Guide — Directory Services

GDS API: Concepts and Overview

Included with the GDS standard schema are the following tables that define the
structure of the directory:

« Structure rule table (SRT)
» Object class table (OCT)
* Attribute table (AT)

4.4.2 The Structure Rule Table

The SRT specifies the relationship of object classes in the structure of the directory.
The SRT supplied with the GDS standard schema contains the entries shown in Table
4-2.

Table 4-2. Structure Rule Table Entries

Rule Number | Superior Rule | Acronym of Acronym of
Number Naming Attribute | Structural Object

Class

1 0 CN SCH

2 0 C C

3 2 @] ORG

4 3 ou ou

5 4 CN ORP

6 4 CN, OU ORP

7 4 CN ORR

8 4 CN MDL

9 4 CN APP

10 9 CN APE

11 9 CN DSA

12 9 CN MMS

13 9 CN MTA

OSF® DCE Application Development Guide — Directory Services 4-15

GDS Application Programming

Rule Number | Superior Rule | Acronym of Acronym of
Number Naming Attribute | Structural Object
Class
14 9 CN MUA
15 2 L LOC
16 15 CN REP
17 15 CN, STA REP

The SRT determines how the object classes are laid out in the DIT by assigning rule
numbers to each object class. An object class’ superior rule number specifies the
object class directly above it in the DIT.

For example, the object clagrganization (abbreviated with the acrony®RG in

the SRT) has a superior rule number of 2, indicating that it is located in the DIT
beneath the object clagountry (C), which has a rule number of 20rganization

Unit (OU) is located beneatdrganization because it has a superior rule number of
3 and so forth.

The SRT only contains structured object classes; that is, classes that form branches
in the DIT. Other object classes, such as abstract and alias classes, are not included.

The SRT specifies the attribute(s) used to name entries belonging to each object class.
These attributes, calledaming attributesare used to define the RDN and therefore
the distinguished name of directory entries.

Figure 4-8 shows the structure of the DIT as defined by the SRT of the GDS standard
schema.

4-16 OSF® DCE Application Development Guide — Directory Services

GDS API: Concepts and Overview

Figure 4-8. SRT DIT Structure for the GDS Standard Schema

@
Organizational Unit i i
Residential Person Residential Person

Organizational Person

MHS-Distribution-
List

Organizational Person
Organizational Role Application Process

MHS-Message- o .
MHS-Message-Store Transfer_Aggnt MHS-User-Agent Application Entity

4.4.3 The Object Class Table

The object classes that make up the GDS standard schema are defined in the
OCT. Table 4-3 contains a partial listing of the OCT (refer to @8F DCE GDS
Administration Guide and Referenéer a complete listing of the OCT for the GDS

OSF® DCE Application Development Guide — Directory Services 4-17

GDS Application Programming

standard schema). Each column in Table 4-3 contains information about an object
class entry in the schema.

Table 4-3. Object Class Table Entries
Object Class
Acronym | Name Kind Super-| OID File Mandatory | Optional
class No. Attributes | Attributes
TOP Top Abstract | None | 85.6.0| -1 OCL None
ALl Alias Alias TOP |85.6.1]-1 AON None
C Country Structural| GTP | 85.6.2| 1 C DSC SG
CDC CDR
LOC Locality Structural| GTP | 85.6.3| 4 None DSC L
SPN STA
SEA SG
CDC CDR
ORG Organization | Structural] GTP | 85.6.4]1 (@] DSC L
SPN STA
PDO PA
PC POB
FTN IIN
TN TTI
TXN X1A
PDM DI
RA SEA
UP BC SG
CDC CDR
Note: The object identifiers in Table 4-3 stem from the rfoint-iso-ccitt(2) ds(5)
objectClass(6)}
Column 4, Superclass acronyms, provides the class from which an object class inherits
its attributes. Using the information in Column 4, it is possible to derive a graphical
representation of the inheritance properties of object classes in the DIT as shown in
Figure 4-9.
4-18 OSF® DCE Application Development Guide — Directory Services

GDS API: Concepts and Overview

In the figure, the object clas®op is the root of the tree, witilias andGDS-Top as
the main branches.Top contains the attribute type object class, which is inherited
by all the other object classes.

Do not confuse the information in the OCT with that presented in the SRT. There
is no direct relationship between the relative location of branches and leaves in the
DIT structure and the inheritance properties of classes with their superclasses and
subclasses. For example, when a directory service request is made by a directory
user, such as a read operation, the SRT is used by the directory service to indicate
its position in the DIT. The directory service uses the information defined in the SRT
for tree traversal so that the requested object can be located in the directory. Figure
4-8 shows the object clagdrganization located beneatlCountry in the DIT.

On the other hand, the OCT defines, among other things, the attributes of an object
class along with its inherited attributes from its superclass. The superclass, in turn,
inherits the attributes from its superclass, and so on until the fiamg, is reached

(from which all classes derive their attributes). Figure 4-9 shows the object class
Organization as a subclass o6DS-Top. As such, it inherits its attributes from
GDS-Top, which in turn inherits from its superclassop.

OSF® DCE Application Development Guide — Directory Services 4-19

GDS Application Programming

Figure 4-9. A Partial Representation of the Object Class Table

Object-Class (M)

Aliased-Object_Name (M)|

Master Knowlege
Access-Control-List

Country-Name (M)

cps-Cell
CDS-Replica

Description Description

Search-Guide CDS-Cell Organization-Name (M)
CDS-Replica Business-Category
Locality-Name CDsS-Cell
Search-Guide CDS-Replica
See-Also Description
State-or-Prov_Name Dest-Indicator
Street_Address Facsimile-Phone-Nbr

Internat-ISDN-Nbr
Locality-Name
Phys.-Deliv-Off-Name
Postal-Address
Postal-Code
Post-Office-Box
Preferred-Delivery-Method
Registered-Address
Search-Guide
See-Also
State-or-Prov_Name
Street_Address
Phone-Nbr
Telex-NBR
TTX-Term-Ident
User-Password
X121-Address

The OCT also contains the unique object identifier of each class in the DIT. These
numbers are defined by various standards authorities and in the X.500 standards
documents mentioned previously. The AT also contains the predefined object
identifiers for each attribute in the directory. These object identifiers are defined
in the header files that are included as part of the GDS API. Table 4-4 shows some
examples of object identifiers for directory classes as defined in the X.500 standard.

4-20 OSF® DCE Application Development Guide — Directory Services

GDS API: Concepts and Overview

Table 4-4.

Object Identifiers for Selected Directory Classes

Object Class Type Object Identifier
Alias 85.6.1
Application-Entity 85.6.12
Application-Process 85.6.11
Country 85.6.2
Device 85.6.14
DSA 85.6.13
Group-of-Names 85.6.9
Locality 85.6.3
Organization 85.6.4
Organizational-Person 85.6.7
Organizational-Role 85.6.8
Organizational-Unit 85.6.5
Person 85.6.6
Residential-Person 85.6.10
Top 85.6.0

Note: The object identifiers in Table 4-4 stem from the r§joint-iso-ccitt(2) ds(5)
objectClass(6)}

Another important feature of the OCT is the distinction made between mandatory and
optional attributes for each object class. This distinction is based on recommendations
from X.500 standards documents. These documents (Recommendations X.520 and
X.521) define selected object classes and associated attribute types by using ASN.1
notation. Most object classes have one or more mandatory attributes associated
with them for use by implementors who want to comply with the X.500 standards
recommendations. In addition, optional attributes are defined.

OSF® DCE Application Development Guide — Directory Services 4-21

GDS Application Programming

4.4.4

4-22

The following example provides a flavor of ASN.1 notation; it shows how the object
classcountry is described in Recommendation X.52th¢ Directory: Selected Object
Classes

country OBJECT-CLASS

SUBCLASS of top

MUST CONTAIN {

countryName}

MAY CONTAIN {
description,

searchGuide}

= {objectClass 2}

This ASN.1 definition define€ountry as a subclass of superclagsp. The class,
Country, must contain the mandatory attributeuntryName (or Country-Name

as defined in the GDS standard schema) and can contain the optional attributes
Description and Search-Guide In addition, the DCE implementation adds two
more attributesCDS-Cell andCDS-Replicg to incorporate other aspects of the DCE
environment that are implementation specific.

Country is assigned the object identifi@t5.6.2 This number distinguishes it from

the other object classes defined by the standard. Tdpesuperclass is designated
as2.5.6.0 The first three number£.5.6 identify the object class as a member of

a discrete set of object classes defined by X.500. The last number in the object
identifier distinguishes objects within that discrete set. Alias, a subcla¥smfis
assigned the numbe&t.5.6.1 Country is assigned the numbé&:.5.6.2 and so on.
GDS-Top has no object identifier because it is implementation specific and thus not
identified by the standard.

The Attribute Table

The attributes that make up the entries in the GDS standard schema are defined in the
AT. (Refer to theOSF DCE GDS Administration Guide and Referefarea complete

listing of the AT.) The object identifiers are in the range fr8m4.0through85.4.35

as defined by the X.500 standaB8§.5.2.0through86.5.2.10as defined by the X.400
standard, and there are additional object identifiers for GDS-specific attributes.

Table 4-5 shows a partial listing of the AT for the GDS standard schema.

OSF® DCE Application Development Guide — Directory Services

GDS API: Concepts and Overview

Note: The access class for every attribute listed in Table 4-5 is O (zero).

Table 4-5. Attribute Table Entries

Acr. Ob;j. Name of Lower | Upper | Max. Syntax | Phon. | Index

of ID Attribute Bound | Bound | No. Flag Level

Attr. of Val.

OCL 85.4.0 | Object-Class 1 28 0 2 0 0

AON 85.4.1 | Aliased- 1 1024 1 1 0 0
Object-Name

KNI 85.4.2 | Knowledge- 1 1024 | O 4 0 0
Information

CN 85.4.3 | Common-Name | 1 64 2 4 1 1

SN 85.4.4 | Surname 1 64 2 4 1 0

SER 85.4.5 | Serial-Number |1 64 2 5 0 0

C 85.4.6 | Country-Name | 2 2 1 1010 1 1

L 85.4.7 | Locality-Name |1 128 2 4 1 1

SPN 85.4.8 | State-or- 1 128 2 4 1 0
Province-Name

The columns with the headings Lower Bound and Upper Bound specify the range
of the number of bytes (or octets) that the value of an attribute can contain. The
schema puts constraints on the number of values that an attribute can contain in the

Maximum Number of Values column.

The Syntax column describes how the data is represented and relates to ASN.1 syntax
definitions for attributes. For example, a sample of ASN.1 notation fo€tramon-

Name attribute follows:

commonName ATTRIBUTE
WITH ATTRIBUTE-SYNTAX
caseignoreStringSyntax
(SIZE(1..ub-common-name))
:= (attributeType 3)

OSF® DCE Application Development Guide — Directory Services

4-23

GDS Application Programming

The Common-Nameattribute is defined as case insensitive. The size of the string
is from 1 to the upper bound defined by the schema folGbmmon-Nameattribute
in the Upper Bound column (in this case, 64 bytes or octets).

Note also that th€ommon-Nameattribute is assigned the number 3 by the standard.
This corresponds to th& in the object identifieB5.4.3

The other columns in the AT refer to the phonetic matching flag, security access
classes, and index level.

As mentioned previously for object classes, object identifier values specified in the
AT are defined as constants in the GDS header files.

4.4.5 Defining Subclasses

The ability to define subclasses is a powerful feature of the directory. Structure rules
govern which object classes can be children of which others in the DIT and therefore
determine possible name forms.

The directory standard defines a number of standard attribute types and object classes.
For example, the attribute typgSommon-Name and Description, and the object
classesCountry and Organizational-Person are defined. Implementations of the
directory standard, such as DCE, define their own schemas following rules stated in
the standard with additional attribute types and object classes.

Figure 4-10 shows the relationship between schemas and the directory information
model.

4-24 OSF® DCE Application Development Guide — Directory Services

GDS API: Concepts and Overview

Figure 4-10.

4.5

The Relationship Between Schemas and the DIT

Definitions DIT Elements

Structure Rules |ules for

uses

Y
uses ’
Attributem»

uses

Abstract Syntax Notation 1

The need for Abstract Syntax Notation 1 (ASN.1) arises because different computer
systems represent information in different ways. For example, one computer can use
EBCDIC character representation while another can use ASCII. To transfer a file of
characters from one system to another, common representation must be used during
the transfer. This transfer can be one representation or the other, or some mutually
agreed upon representation negotiated by the two systems. Similarly, floating-point
values, integers, and other types of data can be stored internally in different ways.
To exchange information, a common format must be agreed to before information can
be exchanged.

The translation of EBCDIC to ASCII characters can seem like a trivial problem, but
that leaves the larger issue of mapping between the many diverse representations that
can exist within a network environment. To address this need, the ISO standards
committee defined ASN.1 and Basic Encoding Rules.

ASN.1 is based on the idea that the aspects of transferred information that are preserved
are type, length, and value. Data types are collections of values distinguished for
some reason, such as characters, integers, and floating-point values. Records and

OSF® DCE Application Development Guide — Directory Services 4-25

GDS Application Programming

45.1

4-26

structure types become more complex when they combine several types into a single
structure.

ASN.1 provides a way to group types into abstract syntaxes. An abstract syntax is a

named group of types. The standard defines abstract syntax as the notation rules that
are independent of the encoding technique used to represent them. Abstract syntax
does not specify how to represent values of types, but merely defines the types that
make up the group of types.

Abstract syntaxes are not enough to define how values of the data types in a specific
abstract syntax are to be represented during communications. For this reason, 1SO
further defines dransfer syntaXor each abstract syntax. A transfer syntax is a set

of rules for encoding values of some specified group of types.

ASN.1 Types

ASN.1 is similar to a high-level programming language. Unlike other high-level
languages, ASN.1 has no executable statements. It includes only language constructs
required to define types and values.

ASN.1 defines a number of built-in types. Users of ASN.1 can then define their own
types based on the built-in types provided by the language. The ASN.1 standard
defines four categories of types that are commonly used in defining application
interfaces such as XOM and XDS:

» ASN.1 simple types

» ASN.1 useful types

» ASN.1 character string types

» ASN.1 type constructors
ASN.1 simple types are Bit String, Boolean, Integer, Null, Object Identifier, Octet
String, and Real. Table 4-6 shows the relationship of OM syntaxes (syntaxes defined
in XOM API) to ASN.1 simple types. (Refer to Chapter 17 for the complete set
of tables for the four categories of ASN.1 types.) As shown in the table, for every
ASN.1 type except Real, there is an OM syntax that is functionally equivalent to it.

The simple types are listed in the first column of the table; the corresponding syntaxes
are listed in the second column.

OSF® DCE Application Development Guide — Directory Services

GDS API: Concepts and Overview

Table 4-6.

4.5.2

Syntax for the Simple ASN.1 Types

ASN.1 Type OM Syntax
Bit String StringgOM_S_BIT_STRING)
Boolean OM_S BOOLEAN
Integer OM_S INTEGER
Null OM_S_NULL
Object Identifier StringgOM_S_OBJECT_IDENTIFIER_STRING)
Octet String StringOM_S_OCTET_STRING)
Real None
1 A future edition of XOM can define a syntax corresponding to this type.

An example will illustrate how OM syntaxes are used to define the syntax of
values for various attributes. One of the simplest of the ASN.1 types is Boolean.
There are only two possible values for a Boolean type: TRUE and FALSE.
The DS_FROM_ENTRY OM attribute of theDS_C_ENTRY_INFO object class

has a value syntax cDM_S_BOOLEAN. OM_S_BOOLEAN is the C language
representation for the OM syntax that corresponds to the ASN.1 Boolean type. The
value of theDS_FROM_ENTRY OM attribute indicates whether information from
the directory was extracted from the specified object’s entry (TRUE), or from a copy
of the entry (FALSE). The actual C language definition @k_S BOOLEAN is

made in the XOM API header filrgom.h.

Basic Encoding Rules

It is possible to define a single transfer syntax that is powerful enough to encode
values drawn from a number of abstract syntaxes. ISO defines a set of rules for
encoding values of many different types for ASN.1. This set of encoding rules is
called basic encoding rule¢BER). It is so powerful that values from any abstract
syntax described by using ASN.1 can be encoded by using the transfer syntax defined
by BER.

OSF® DCE Application Development Guide — Directory Services 4-27

GDS Application Programming

4.6

4-28

Although other transfer syntaxes could be used for representing values from ASN.1,
BER is used most often.

GDS as a Distributed Service

When present in a DCE cell, GDS can serve two basic functions. First, it can provide
a high-level, worldwide directory service by tying together independent DCE cells.
Second, it can be used as an additional directory service to CDS for storing object
names and attributes in a central place.

The GDS database contains information that can be distributed over several GDS
servers. In addition, copies of information can be stored in multiple GDS servers,
and the information can also be cached locally. The unit of replication in GDS is
the directory entry; whole subtrees can be also replicated.

The information belonging to the DIB is shared between several Directory Service
Agents (DSAs). A DSAis a process that runs on a GDS server machine and manages
the GDS database. DSAs cooperate to perform directory service operations, with each
DSA knowing a fraction of the total directory information, as shown in Figure 4-11.
DSAs are a combination of local database functions and a remote interface to the
clients of users and other DSAs. DSAs can cooperate to execute operations. This
cooperation often involves the navigation of operations through the network.

OSF® DCE Application Development Guide — Directory Services

GDS API: Concepts and Overview

Figure 4-11.

4.6.1

The Relationship Between the DSA and the DUA

Director y Environment

The Directory

Users access the directory via Directory User Agents (DUAs). DUAs make requests
of DSAs on behalf of users requesting directory service operations. The manner
in which DUAs communicate with DSAs is defined by the X.500 standard. For
communications between DUAs and DSAs, the directory access protocol (DAP) is
defined. For communications between DSAs in a distributed directory, the standard
defines the directory system protocol (DSP).

The Directory Access Protocol

The directory standard defines directory functions in the DAP. The directory functions
can be divided into three general categories: read, search, and modify.

Read operations involve the retrieval of information from specific named entries.
This allows a general name-to-attributes mapping analogous to the White Pages phone
directory.

OSF® DCE Application Development Guide — Directory Services 4-29

GDS Application Programming

4.6.2

4.6.3

4-30

Search operations involve the general browsing and relational searching of
information. Search operations support human interaction with the directory service
and is analogous to that of the “Yellow Pages” telephone directory.

Modify operations involve the modification of information in the directory.

The Directory System Protocol

The DSA can interact with other DSAs to provide services by using the DSP. DSP is
a protocol defined by the directory standard to allow DSAs to communicate with one
another. DSP provides two methods of distributed request resolution: referral and
chaining.

Referral

In some cases, a DSA may not be able to provide service to a DUA because the
required information is held elsewhere in the network. A DSA can simply choose to
inform the DUA or the calling DSA where the information can be found. This

is called referral and can occur because of the user's preference or the DSA’s
circumstances.

Referrals are possible because the distinguished name provided by the DUA identifies
where in the DIT the requested entry is located. DSAs use their knowledge of the
DIT to inform the DUA of the DSA that holds the requested information.

Figure 4-12 shows an example of a referrddSA1 passes a referral tDSA2 back
to the DUA. The DUA then makes a requestD&A2.

OSF® DCE Application Development Guide — Directory Services

GDS API: Concepts and Overview

Figure 4-12. An Example of a Referral

Step 1

The Directory

Referral to DSA 2

The Directory

Read reqyest

4.6.4 Chaining

If a request received from a DUA cannot be fulfilled by the receiving DSA, that DSA
can send a referral back to the initiating DUA over DAP. Alternatively, the DSA can
chain the request over DSP, asking another DSA to perform the requested function.
That DSA can perform the function or can send back a referral of its own. In either

OSF® DCE Application Development Guide — Directory Services 4-31

GDS Application Programming

Figure 4-13.

4-32

case, the first DSA eventually responds to the originating DUA with either the results
of the completed operation or a referral.

Chaining can go deeper than one level. To prevent lengthy searches, a user can
request no chaining or specify a limit on the total elapsed time for an operation.

Figure 4-13 shows an example of chaining. The DUA makes a reque3SAfL
DSAL1 is unable to service the request and passes D3&2. DSA2 services the
request, passes the result baclo®Al, andDSA1 passes the result back to the DUA.

An Example of Chaining

Step 1
The Directory
Chained read request
Read reqyest
Step 2

The Directory

OSF® DCE Application Development Guide — Directory Services

GDS API: Concepts and Overview

4.6.5

The Directory User Agent Cache

The DUA cache is a process that keeps a cache of information obtained from DSAs.
One DUA cache runs on each client machine and is used by all users on that client.
The DUA cache contains copies of recently accessed object entries and information
about DSAs. The user specifies which information should be cached. It is also
possible to bypass the DUA cache to obtain information directly from a DSA. This is
desirable, for example, when the user wants to make sure the information obtained is
up-to-date.

The shadow update and cache update are processes that update replicated information
in DSAs and DUA caches. These processes run as needed and then terminate. The
shadow update process runs on the GDS server machine; the cache update process
runs on GDS client machines.

When an application program makes a directory service call by using XDS API, the
call is handed to the DUA library. The DUA first looks in the DUA cache (if
requested by the user) to see if the requested information is already available on the
local machine. If it is not, the DUA queries a DSA. If the DSA has the requested
information, it returns the results to the DUA. If it does not, the query can proceed
either by using chaining or a referral. In either case, different DSAs are queried until
the information is found. It is cached (if requested by the user) in the DUA cache
and the results are returned to the application program.

Figure 4-14 shows the interaction between an application program, via the XDS
interface, and the GDS client and server. The GDS client and server use DAP
to communicate. GDS servers use DSP to communicate with one another. DAP
and DSP perform functions similar to the functions that DCE RPC protocols perform
in other DCE services.

OSF® DCE Application Development Guide — Directory Services 4-33

GDS Application Programming

Figure 4-14.

4-34

GDS Components
GDS Client
GDS Server
XDS DAP
Appl DUA DSA
DiB
‘ g
DUA
Cache
DAP DSP
GDS Server
.\
DSA
DiB

]

4.6.5.1 Placing Entries in the Local DUA Cache

A special object OM classDSX_C_GDS_CONTEXT, is provided in the GDS
package to allow an application program to manage the placement of entries in the
local DUA cache as a result of a directory request.

DSX_C_GDS_CONTEXT inherits the OM attributes of its superclasses
OM_C_OBJECT and DS_C _CONTEXT. To enable caching entries, the
DS_DONT_USE_COPYOM attribute of DS_C_CONTEXT must be set to a value

of OM_FALSE, indicating that a directory request can access copies of directory
entries maintained in other DSAs or copies cached locally.

DSX_C_GDS_CONTEXT has the following private extension OM attributes in
addition to the OM attributes inherited fromS_C_ CONTEXT:

» DSX_DUAFIRST

» DSX_DONT_STORE

* DSX_NORMAL_CLASS

OSF® DCE Application Development Guide — Directory Services

GDS API: Concepts and Overview

DSX_PRIV_CLASS
DSX_RESIDENT_CLASS
DSX_USEDSA

« DSX_DUA_CACHE

DSX_DUAFIRST determines where a query operation, such as a search or list, looks
first for an entry. The default value ®M_FALSE, indicating that the DSA is
searched first. If the entry is not found, then the DUA cache is searched.

DSX_DONT_STORE determines if information read from the DSAs by a query
function also needs to be stored in the DUA cache. If this OM attribute is set
to OM_TRUE, nothing is stored in the cache. If this OM attribute is set to
OM_FALSE, the information read is stored in the DUA cache. The objects returned
by ds_list() and ds_compare() are stored in the cache without their associated
attribute information. The objects returned ty read()andds_search()are stored

in the cache with all their cachable attributes; these are all public attributes that do
not exceed 4 Kilobytes in length.

The three different memory classes that the user can specify for a cached entry are
DSX_NORMAL_CLASS, DSX_PRIV_CLASS, andDSX_RESIDENT_CLASS

DSX_NORMAL_CLASS assigns the entry to the class of normal objects. If the
number of entries in this class exceeds a maximum value, the entry that is not accessed
for the longest period of time is removed from the DUA cache.

DSX_PRIV_CLASS assigns the entry to the class of privileged objects. Entries can
be removed from the class in the same way as normal objects. However, by setting
this area of memory aside to be used sparingly, the user can protect entries from
deletion.

DSX_RESIDENT_CLASS assigns the entry to the class of resident objects. An
entry in this class is never removed automatically. It must be explicitly removed
by using an XDSds_remove_entry()function applied directly to the cache; that is,
DSX_DUA_CACHE and DSX_USEDSAare set toOM_TRUE and OM_FALSE,
respectively.

Tables 4-7 through 4-9 show the possible conditions that result when
DSX_DUA_CACHE andDSX_USEDSAare set tcOM_TRUE.

OSF® DCE Application Development Guide — Directory Services 4-35

GDS Application Programming

Table 4-7.

Table 4-8.

Table 4-9.

4-36

Cache Attributes: Read Cache First

OM Attribute Type OM_TRUE OM_FALSE
DSX_DUA_CACHE X

DSX_USEDSA X

DS_DONT_USE_COPY X
DSX_DUAFIRST X

In the situation presented in Table 4-7, the cache is read first, then the other DSAs.

The requested operation is permitted to use copies of entries.

Cache Attributes: Read DSA First

OM Attribute Type OM_TRUE OM_FALSE
DSX_DUA_CACHE X

DSX_USEDSA X

DS_DONT_USE_COPY X
DSX_DUAFIRST X

In the situation presented in Table 4-8, the DSA is read first, then the cache.

requested operation is permitted to use copies of entries.

Cache Attributes: Read DSA Only

OM Attribute Type OM_TRUE OM_FALSE
DSX_DUA_CACHE X

DSX_USEDSA X

DS_DONT_USE_COPY | X

DSX_DUAFIRST N/A N/A

In the situation presented in Table 4-9, only the DSA isread. The requested operation
is not permitted to use copies of entries.

OSF® DCE Application Development Guide — Directory Services

GDS API: Concepts and Overview

Tables 4-10 through 4-12 show the possible situations wb8X_DUA_CACHE
andDSX_USEDSAare not both set t&OM_TRUE.

Table 4-10. Cache Attributes: DSX_USEDSA is OM_FALSE

OM Attribute Type OM_TRUE OM_FALSE
DSX_DUA_CACHE X

DSX_USEDSA X
DS_DONT_USE_COPY X

In the situation presented in Table 4-10, the DUA Cache is used exclusively.

Table 4-11. Cache Attributes: DSX_DUA_ CACHE is OM_FALSE

OM Attribute Type OM_TRUE OM_FALSE
DSX_DUA_CACHE X
DSX_USEDSA X

In the situation presented in Table 4-11, the DSA is used exclusively.

Table 4-12. Cache Attributes: Error

OM Attribute Type OM_TRUE OM_FALSE
DSX_DUA_CACHE X
DSX_USEDSA X

In the situation presented in Table 4-12, neither the DSA nor the DUA cache is used,
and an error is returned.

4.6.5.2 Accessing the DUA Cache Without a GDS Server Present

An application program may need to access the local DUA cache without binding
to a GDS server. This section describes the steps that should be included in the

OSF® DCE Application Development Guide — Directory Services 4-37

GDS Application Programming

application program. Refer to Chapters 5 and 6 for information on how to use the
XDS and XOM API callsds_initialize(), ds_version() ds_bind(), ds_shutdown()
om_create() om_remove() how to do static initialization of public objects, and how

to create private objects.

The steps are as follows:
1. Callds_initialize() as normal.

2. Negotiate theDSX_GDS_PKG by using ds_version() This is necessary
becauseDSX_C_GDS_CONTEXT is required in order to set the DUA cache
service controls.

3. Supply aDSX_C_GDS_SESSIONobject to theds_bind() call, which has no
DS_DSA_NAME attribute and ndS_DSA_ADDRESSattribute present.

There are two ways of achieving this step:
« Supply a publicDSX_C_GDS_SESSIONbbject (static initialization):

OM_descriptor cache_session[] = {
OM_OID_DESC(OM_CLASS, DSX_C_GDS_SESSION),
OM_NULL_DESCRIPTOR

h

The other attributes ofDSX_C_GDS_SESSION (DS_REQUESTOR
DSX_PASSWORD DSX_DIR_ID, DSX_AUTH_MECHANISM and
DSX_AUTH_INFO) can be included if required.

» Supply a privateDSX_C_GDS_SESSIONbbject (using XOM API function
calls):

om_create(DSX_C_GDS_SESSION, OM_TRUE, workspace, &cache_session);
om_remove(cache_session, DS_DSA_NAME, 0, OM_ALL_VALUES);
om_remove(cache_session, DS_DSA_ADDRESS, 0, OM_ALL_VALUES);

Note that an uninitialized session object may not be passets tbind().
That means thatOM_FALSE should not be used with the previous
om_create()function call.

4-38 OSF® DCE Application Development Guide — Directory Services

GDS API: Concepts and Overview

4. Supply aDSX_C_GDS_CONTEXT object to the XDS calls that access the
DUA cache. The following service controls must be set to ensure that access is
restricted to the DUA cache alone:

DSX_DUA_CACHE = OM_TRUE
DSX_USEDSA = OM_FALSE

(Service controls that access the DSA will result iD8 E_BAD_CONTEXT
error.)
There are two ways of achieving this step:

» Supply a publicDSX_C_GDS_CONTEXT object (static initialization)

» Supply a privat&SX_C_GDS_CONTEXT object (using XOM API function
calls)

5. Supply the boundSX_C_GDS_SESSIONbbject to theds_unbind() call.

6. Call ds_shutdown()as normal.

4.6.6 GDS Configurations

A GDS machine can be configured in two ways:
* Client Only
A node can contain only the client side of GDS. This node can access remote
DSAs and cache information in the DUA cache.
» Client/Server
A machine can be configured with both the GDS client and server. This is the
typical configuration for a machine acting as a GDS server. This configuration

can be useful even if a node acts mainly as a client because the DSA can be used
as a larger, more permanent cache of information contained in remote DSAs.

Note: When a client and server reside on the same machine, access to the directory

is optimized. Communications between the DUA and the DSA are by means
of interprocess communications (IPC) via shared memory.

OSF® DCE Application Development Guide — Directory Services 4-39

GDS Application Programming

4.6.7

4-40

GDS Security

A number of authentication mechanisms are supported by GDS. XDS applications
must indicate which method is to be used. Since authentication takes place at bind
time, it is appropriate to pass the selected authentication mechanism as an argument
to ds_bind().

A bind operation can be performed by the application program with or without user
credentials. A bind with credentials is referred to asathenticated binénd allows

an application program to require a user to specify a distinguished name password
as user credentials. A bind without user credentials only permits access to public
information in the directory.

A special OM object clasf)SX_C_GDS_SESSIONis provided in the GDS package

to accommodate user credentials and authentication mechanisms. In addition to the
OM attributes inherited from its superclaB$ C_SESSION this OM class consists

of the following OM attributes:

» DSX_PASSWORD

This attribute contains the password for the user credentials.
* DSX_DIR_ID
This attribute contains the identifier for distinguishing between several

configurations of the directory service within a GDS installatiddSX_DIR_ID
plays no role in user credentials.

* DSX_AUTH_MECHANISM
If this attribute is present, it identifies the selected authentication mechanism. If

this attribute is absent, then a bind without credentials (that is, anonymous bind)
is attempted.

* DSX_AUTH_INFO
This attribute is for future use.

The GDS package also provides the following special OM classes to support access
rights to specific OM attributes by directory service users:

« DSX_C_GDS_ACL

OSF® DCE Application Development Guide — Directory Services

GDS API: Concepts and Overview

4.6.8

This attribute describes up to five categories of rights for one or more directory
users.

« DSX_C_GDS_ACL_ITEM

This attribute specifies the user, or subtree of users, to whom an access right
applies.

The five categories of rights correspond to the access rights defined for the directory
service as described in ti@SF DCE GDS Administration Guide and Referencehe
categories are as follows:

» Modify Public
Read Standard
Modify Standard
* Read Sensitive
Modify Sensitive

Refer to Chapter 6 for more information on binding with credentials and setting access
rights for users. The sample programs in Chapter 7 provide examples of how security
features are used in application programs.

GDS API Logging

The GDS API logging facility displays informational and error messages for XDS
functions. In addition, the input and output arguments to XDS function calls can
also be displayed. For each XDS object, its OM types, syntaxes, and values are
displayed recursively. A number of different display formats can be selected for the
XDS objects. These are selected by setting the value of the environment variable
XDS_LOG as shown in Table 4-13.

Logging can be activated dynamically at runtime by setting the environment variable
XDS_LOG.

OSF® DCE Application Development Guide — Directory Services 4-41

GDS Application Programming

Table 4-13.

4-42

XDS_LOG Values

XDS_LOG Value Result Example

Bit 1 = on Display arguments, N/A
messages, results and errdrs

Bit 1 = off Display messages only (all] N/A
other bits ignored)

Bit 2 = on Display result and error N/A
objects as private objects

Bit 2 = off Display result and error N/A
objects as public objects

Bit 3 = on Object identifiers displayed| N/A
as specified in 4th bit

Bit 3 = off Object identifiers displayed| DS_C_SESSION
as symbolic constants

Bit 4 = on Object identifiers displayed| 2.5.4.35
as dotted-decimal

Bit 4 = off Object identifiers displayed| \x55\x04\x23
as hexadecimal bytes

Bit 5 = on Syntaxes displayed as 127
integers

Bit 5 = off Syntaxes displayed as OM_S OBJECT
symbolic constants

Bit 6 = on Types displayed as integerp715

Bit 6 = off Types displayed as DS_AVAS

symbolic constants

The bits shown in Table 4-13 can be combined. For example, the following command

sequence set¥DS_LOG to 5 (00101 in binary):

XDS_LOG=5; export XDS_LOG

OSF® DCE Application Development Guide — Directory Services

GDS API: Concepts and Overview

In this example, the logging facility is directed to display arguments, messages, results,
and errors, to convert results and errors into public objects (for display purposes only),
and to display object identifiers as hexadecimal bytes; and to display OM syntaxes
and OM types as symbolic constants. NormaK{DS LOG should be set to 0. If

full tracing is required, then s&DS_LOG to 1.

4.6.8.1 Logging Format

The following general display format is used by the logging facility:
identifier-name= {

{ type, syntaxvalue},
{ type, syntaxvalue},

}; I* identifier-name/

where:

type Is the integer or symbolic constant for the specified type.

syntax Is the integer or symbolic constant for the specified syntax.+LAis
appended to the syntax label if tlM_S LOCAL_STRING bit is set
in the OM_syntax field.

value Is one of the following:

* An integer (if syntax is OM_S_INTEGER or
OM_S_ENUMERATION).

« OM_FALSE or OM_TRUE (if syntaxis OM_S_BOOLEAN).

» Symbolic constant, dotted-decimal notation, or hexadecimal bytes
(if syntaxis OM_S_OBJECT_ID_STRING).

» Quoted-string (ifsyntaxis any other type of string).
» Another object (ifsyntaxis OM_S_OBJECT).

Note: The terminating NULL descriptor is expected but not displayed.

OSF® DCE Application Development Guide — Directory Services 4-43

GDS Application Programming

4.6.8.2 Examples

The following examples show how a selection of XDS objects are displayed by the
logging facility.

The following filter selects entries that do not have the valsecret for
the DS_A USER_PASSWORD attribute. The DS_FILTER_TYPE has
the value DS _NOT. It contains a singleDS _C_FILTER_ITEM attribute.
DS_C FILTER_ITEM tests for equality against thBS_A USER_PASSWORD
attribute.

my_filter = {

{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_FILTER },

{ DS_FILTER_ITEMS, OM_S_OBJECT,
{
{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_FILTER_ITEM 1},
{ DS_FILTER_ITEM_TYPE, OM_S_ENUMERATION, 0 },
{ DS_ATTRIBUTE_TYPE, OM_S_OBJECT_ID_STRING, DS_A_USER_PASSWORD },
{ DS_ATTRIBUTE_VALUES, OM_S_OCTET_STRING, "secret" },
h

h

{ DS_FILTER_TYPE, OM_S_ENUMERATION, 3 },

Y, * my_filter */

The following example shows logging output if the interface logger encounters a
NULL pointer. The NULL pointer is flagged as follows:

my_session = {

{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_SESSION },

{ DS_DSA_NAME, OM_S_OBJECT, ---WARNING: NULL pointer encountered--- },
}; /* my_session */

The following example shows logging output if the interface logger encounters a
private object. The private object is displayed as follows:
bound_session = {

{ OM_PRIVATE_OBJECT, OM_S OBJECT_ID_STRING, DS_C_SESSION } ...
}; * bound_session */

4-44 OSF® DCE Application Development Guide — Directory Services

GDS API: Concepts and Overview

The following example shows how a 5-part DSA distinguished name is displayed (
C=de/O=sni/OU=ap/CN=dsa/CN=dsa-mjt

dsa_name = {
{ DS_DSA_NAME, OM_S_OBJECT,
{
{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_DS DN },
{ DS_RDNS, OM_S_OBJECT,
{
{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_DS_RDN 1},
{ DS_AVAS, OM_S_OBJECT,
{
{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_AVA },
{ DS_ATTRIBUTE_TYPE, OM_S_OBJECT_ID_STRING, DS_A_COUNTRY_NAME },
{ DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, "de" },
h
h
h
h
{ DS_RDNS, OM_S_OBJECT,
{
{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_DS_RDN 1},
{ DS_AVAS, OM_S_OBJECT,
{
{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_AVA 1},
{ DS_ATTRIBUTE_TYPE, OM_S_OBJECT_ID_STRING, DS_A_ORG_NAME },
{ DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, "sni" },

{ DS_RDNS, OM_S_OBJECT,
{
{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_DS_RDN },
{ DS_AVAS, OM_S_OBJECT,
{
{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_AVA 1},
{ DS_ATTRIBUTE_TYPE, OM_S_OBJECT ID_STRING, DS_A_ORG_UNIT_NAME },
{ DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, "ap" },
}

OSF® DCE Application Development Guide — Directory Services 4-45

GDS Application Programming

h
{ DS_RDNS, OM_S_OBJECT,
{
{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_DS_RDN },
{ DS_AVAS, OM_S_OBJECT,
{
{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_AVA },
{ DS_ATTRIBUTE_TYPE, OM_S_OBJECT_ID_STRING, DS_A_COMMON_NAME },
{ DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, "dsa" },
%
3
3
3
{ DS_RDNS, OM_S_OBJECT,
{
{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_DS_RDN },
{ DS_AVAS, OM_S_OBJECT,
{
{ OM_CLASS, OM_S_OBJECT_ID_STRING, DS_C_AVA 1},
{ DS_ATTRIBUTE_TYPE, OM_S_OBJECT_ID_STRING, DS_A_COMMON_NAME },
{ DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, "dsa-m1" },

}; I* dsa_name */

4-46 OSF® DCE Application Development Guide — Directory Services

Chapter 5

XOM Programming

XOM API defines a general-purpose interface for use in conjunction with other
application-specific APIs for OSI services, such as XDS API to directory services
or X.400 Application API to electronic mail service. It presents the application
programmer with a uniform information architecture based on the concept of groups,
classes, and similar information objects.

This chapter describes some of the basic concepts required to understand and use the
XOM API effectively.

The following names refer to the complete XDS example programs, which can be
found in Chapter 7:

* acl.c (acl.h)

» example.c(example.h

* teldir.c

For multithreaded XDS/XOM applications, please refer to Chapter 8. For use of the
XDS/XOM convenience functions please refer to Chapter 9.

OSF® DCE Application Development Guide — Directory Services 5-1

GDS Application Programming

5.1

5.1.1

5-2

OM Obijects

The purpose of XOM API is to provide an interface to manage complex information
objects. These information objects belong to classes and have attributes associated
with them. There are two distinct kinds of classes and attributes that are used
throughout the directory service documentatiogirectory classes and attributes and

OM classes and attributes.

The directory classes and attributes defined for XDS API correspond to entries that
make up the objects in the directory. These classes and attributes are defined in
the X.500 directory standard and by additional GDS extensions created for DCE.
Other APIs, such as the X.400 API, which is the application interface for the industry
standard X.400 electronic mail service, define their own set of objects in terms of
classes and attributes. OM classes and OM attributes are used to model the objects
in the directory.

XOM API provides a common information architecture so that the information objects
defined for any API that conforms to this architectural model can be shared. Different
application service interfaces can communicate by using this common way of defining
objects by means of workspaces. A workspace is simply a common work area where
objects defined by a service can be accessed and manipulated. In turn, XOM API
provides a set of standard functions that perform common operations on these objects
in a workspace. Two different APIs can share information by copying data from one
workspace to another.

OM Object Attributes

OM objects are composed of OM attributes. OM objects may contain zero or more
OM attributes. Every OM attribute has zero or more values. An attribute comprises
an integer that indicates the attribute’s value. Each value is accompanied by an
integer that indicates that value’s syntax.

An OM attribute type is a category into which all the values of an OM attribute are
placed on the basis of its purpose. Some OM attributes may either have zero, one,
or multiple values. The OM attribute type is used as the name of the OM attribute.

A syntax is a category into which a value is placed on the basis of its form.
OM_S PRINTABLE_STRING is an example of a syntax.

OSF® DCE Application Development Guide — Directory Services

XOM Programming

An OM attribute value is an information item that can be viewed as a characteristic
or property of the OM object of which it is a part.

OM attribute types and syntaxes have integer values and symbolic equivalents assigned
to them for ease of use by naming authorities in the various API specifications. The
integers that are assigned to the OM attribute type and syntax are fixed, but the
attribute values may change. These OM attribute types and syntaxes are defined in
the DCE implementation of XDS and XOM APIs in header files that are included with
the software along with additional OM attributes specific to the GDS implementation.

Figure 5-1 shows the internal structure of an OM object.

Figure 5-1. The Internal Structure of an OM Object

object
attribute
syntax syntax
type integer integer
integer
value value
e} e} e}
[e]
[e]
o
attribute
syntax syntax
type integer integer
integer
value value
o] o o

For example, the tables in Figure 5-2 show the OM attributes, syntax, and values
for the OM clas€DS_C_ENTRY_INFO_SELECTION, and how the integer values

OSF® DCE Application Development Guide — Directory Services 5-3

GDS Application Programming

are mapped to corresponding names in Xoen.h and xds.h header files. The
chapters in Part 4 of this guide contain tables for every OM class supported
by the directory service. Refer to Chapter 11 for a complete description of
DS_C_ENTRY_INFO_SELECTION and the accompanying table.

DS_C_ENTRY_INFO_SELECTION is a subclass of OM_C_OBJECT.
This information is supplied in the description of this OM class in Chapter
19. As such, DS_C_ENTRY_INFO_SELECTION inherits the OM
attributes of OM_C_OBJECT. The only OM attribute of OM_C_OBJECT

is OM_CLASS. OM_CLASS identifies the object's OM class, which in this case
is DS_C_ENTRY_INFO_SELECTION. DS_C_ENTRY_INFO_SELECTION
identifies information to be extracted from a directory entry and has the following
OM attributes, in addition to those inherited fradM_C_OBJECT:

« DS_ALL_ATTRIBUTES
. DS_ATTRIBUTES_SELECTED
« DS_INFO_TYPE

As part of an XDS function callDS_ALL_ATTRIBUTES specifies to the directory
service whether all the attributes of a directory entry are relevant to the application
program. It can take the valueOM_TRUE or OM_FALSE. These values

are defined to be of synta®M_S BOOLEAN. The valueOM_TRUE indicates

that information is requested on all attributes in the directory entry. The value
OM_FALSE indicates that information is only requested on those attributes that are
listed in the OM attributddS_ATTRIBUTES_SELECTED.

DS_ATTRIBUTES_SELECTED lists the types of attributes in the entry from
which information is to be extracted. The syntax of the value is specified as
OM_S_OBJECT_IDENTIFIER_STRING .

OM_S_OBJECT _IDENTIFIER_STRING contains an octet string of integers that
are BER encoded object identifiers of the types of OM attributes in the OM attribute
list. The value ofDS_ATTRIBUTES _SELECTED is significant only if the value

of DS_ALL_ATTRIBUTES is OM_FALSE, as described previously.

DS_INFO_TYPE identifies the information that is to be extracted from

each OM attribute identified. The syntax of the value is specified as
EnumS_Information_Type). DS_INFO_TYPE is an enumerated type that has

two possible values: DS _TYPES ONLY and DS_TYPES_ AND_VALUES

OSF® DCE Application Development Guide — Directory Services

XOM Programming

DS_TYPES_ONLY indicates that only the attribute types in the entry are returned
by the directory service operationDS_TYPES_AND_VALUES indicates that both
the types and the values of the attributes in the directory entry are returned.

A typical directory service operation, such as a read operatis réad(),
requires the entry_information_selectiorparameter to specify to the directory
service the information to be extracted from the directory entry. This
entry_information_selectioparameter is built by the application program as a public
object (Section 5.1.4 describes how to create a public object), and is included as a
parameter to thels_read()function call, as shown in the following code fragment
from example.c

/*

* Public Object ("Descriptor List") for

* Entry-Information-Selection

* parameter to ds_read().

*/

OM_descriptor selection[] = {
OM_OID_DESC(OM_CLASS,DS_C_ENTRY_INFO_SELECTION),

{ DS_ALL_ATTRIBUTES, OM_S BOOLEAN, { OM_FALSE, NULL } },
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A PHONE_NBR),
{ DS_INFO_TYPE,OM_S_ENUMERATION,

{ DS_TYPES_AND_VALUES,NULL } },

OM_NULL_DESCRIPTOR

h

CHECK_DS_CALL(ds_read(session, DS_DEFAULT_CONTEXT,
name, selection, &result, &invoke_id));

OSF® DCE Application Development Guide — Directory Services 5-5

GDS Application Programming

Figure 5-2. Mapping the Class Definition of DS_C _ENTRY_INFO_SELECTION

OM Attributes of a OM_C_OBJECT

i Value Value | Value
Attribute Value Syntax Length | No. Initially
OM_CLASS String
(OM_S_OBJECT_IDENTIFIER_STRING) | _ 1
OM Attributes of a DS_C_ENTRY_INFO_SELECTION
i Value Value | Value
Attribute Value Syntax Length | No. Initially
DS_ALL -
ATTRIBUTES OM_S_BOOLEAN 1 |OM.TRUE
DS_ATTRIBUTES_ String Oor
SELECTED (OM_S_OBJECT_IDENTIFIER_STRING) - more
DS _TYPES

DS_INFO_TYPE Enum(DS_Information_Type) - 1 AND_VALUES

#define OM_CLASS ((OM_type) 3)
#define OM_S_BOOLEAN ((OM_syntax) 1)

sample code from
#define OM_S_OBJECT_IDENTIFIER_STRING ((OM_syntax) 6) from the xom.h header file

#define OM_S_ENUMERATION ((OM_syntax) 10)

enum DS_Information_Type {

DS_TYPES_ONLY =0,
DS_TYPES_AND_VALUES = 1

[e]

sample code from
-
[}

from the xds.h header file

o]
#define DS_ALL_ATTRIBUTES ((OM_TYPE) 707)

#define DS_ATTRIBUTES_SELECTED ((OM_TYPE) 710)
#define DS_INFO_TYPE ((OM_type) 734)

5-6 OSF® DCE Application Development Guide — Directory Services

XOM Programming

5.1.2

Object Identifiers

OM classes are uniquely identifiable by means of ASN.1 object identifiers. OM
classes have mandatory and optional OM attributes. Each OM attribute has a type,
value, and syntax. OM objects are instances of OM classes that are uniquely
identifiable by means of ASN.1 object identifiers. The syntax of values defined
for these OM object classes and OM attributes are representations at a higher level
of abstraction so that implementors can provide the necessary high-level language
binding for their own implementations of the various application interfaces, such as
XDS API.

The DCE implementation uses C language to define the internal representation of OM
classes and OM attributes. These definitions are supplied in the header files that are
included as part of XDS and the XOM API.

OM classes are defined as symbolic constants that correspond to ASN.1 object
identifiers. An ASN.1 object identifier is a sequence of integers that uniquely
identifies a specific class. OM attribute type and syntax are defined as integer
constants. These standardized definitions provide application programs with a
uniform and stable naming environment in which to perform directory operations.
Registration authorities are responsible for allocating the unique object identifiers.

The following code fragment from the xdsbdcp.h (the basic
directory contents package) header file contains the symbolic constant
OMP_O_DS_A_COUNTRY_NAME:

#ifndef dsP_attributeType /* joint-iso-ccitt(2) ds(5) attributeType(4)*/
#define dsP_attributeType(X) ("\x55\x04" #X)
#endif

#define OMP_O_DS_A_COUNTRY_NAME dsp_attributeType(\x06)

It resolves t02.5.4.6 which is the object identifier value for th€ountry-Name
attribute type as defined in the directory standard. The symbolic constant for the
directory object clas€ountry resolves t@2.5.6.2 the corresponding object identifier

in the directory standard. OM classes are defined in the header files in the same
manner.

OSF® DCE Application Development Guide — Directory Services 5-7

GDS Application Programming

5.1.3

C

Naming Conventions

In the DCE implementation of XDS and XOM APIs, all object identifiers start with
the letterds, DS, MH, or OMP. Note that the interface reservalidentifiers starting

with the lettersdsP andomP for internal use by implementations of the interface. It
also reserves all identifiers starting with the lettdsX, DSX, omX, and OMX for
vendor-specific extensions of the interface. Applications programmers should not use
any identifier starting with these letters.

The C identifiers for interface elements are formed by using the following conventions:

XDS API function names are specified entirely in lowercase letters and are
prefixed byds_ (for example,ds_read().

XOM API function names are specified entirely in lowercase letters and are
prefixed byom_ (for example,om_get().

C function parameters are derived from the parameter and result names and are
specified entirely in lowercase letters. In addition, the names of results have

_return added as a suffix (for exampleperation_status_returr).

OM class names are specified entirely in uppercase letters and are prefixed by
DS_C_andMH_C_ (for example DS_C_AVA).

OM attribute names are specified entirely in uppercase letters and are prefixed by
DS_andMH_ (for example,DS_RDNS.

OM syntax names are specified entirely in uppercase letters and are prefixed by
OM_S_ (for example,OM_S_PRINTABLE_STRING).

Directory class names are specified entirely in uppercase letters and are prefixed
by DS_O (for example,DS_O_ORG_PERSON.

Directory attribute names are specified entirely in uppercase letters and are
prefixed byDS_A (for example,DS_A_COUNTRY_NAME).

Errors are treated as a special case. Constants that are the possible values of the
OM attributeDS_PROBLEM of a subclass of the OM claf3S_C_ERRORare
specified entirely in uppercase letters and are prefixe®8yE_ (for example,
DS_E_BAD_CLASS.

The constants in the Value Length and Value Number columns of the OM class
definition tables are also assigned identifiers. Where the upper limit in one of
these columns igot 1, it is given a name that consists of the OM attribute name,
prefixed byDS_VL_ for value length, oDS_VN_ for value number.

OSF® DCE Application Development Guide — Directory Services

XOM Programming

Table 5-1.

Table 5-2.

» The sequence of octets for each object identifier is also assigned an identifier for

internal use by certain OM macros.

These identifiers are all uppercase letters

and are prefixed bPMP_O .

Tables 5-1 and 5-2 summarize the XDS and XOM naming conventions.

C Naming Conventions for XDS

Item Prefix
Reserved for implementors dsP
Reserved for interface extensions dsX
Reserved for interface extensions DSX
XDS functions ds_
Error problem values DS E_
OM class names DS C ,MH C_
OM attribute names DS , MH_
OM value length limits DS VL_
OM value number limits DS VN _
Other constants DS , MH_
Attribute type DS_A_
Object class DS O_

C Naming Conventions for XOM
Element Type Prefix
Data type OM_
Data value OM_
Data value (class) OM_C_
Data value (syntax) OM_S
Data value component (structure member) None

OSF® DCE Application Development Guide — Directory Services

GDS Application Programming

5.1.4

5-10

Element Type Prefix
Function om_
Function parameter None
Function result None
Macro OM_
Reserved for use by implementors OMP
Reserved for use by implementors omP
Reserved for proprietary extension omX
Reserved for proprietary extension OMX

Public Objects

The ultimate aim of an application program is access to the directory to perform some
operation on the contents of the directory. A user may request the telephone number
or electronic mail address of a fellow employee. In order to access this information,
the application performs a read operation on the directory so that information is
extracted about a target object in the directory and manipulated locally within the
application.

XDS functions that perform directory operations, suchdasread() requirepublic
andprivate objects as input parameters. Typically, a public object is generated by an
application program and contains the information required to access a target directory
object. This information includes the AVAs and RDNs that make up a distinguished
name of an entry in the directory. However, an application program may also generate
a private object. Private objects are described in Section 5.1.5.

A public object is created by using OM classes and OM attributes. These OM classes

and OM attributes model the target object entry in the directory and provide other
information required by the directory service to access the directory.

OSF® DCE Application Development Guide — Directory Services

XOM Programming

5141 Descriptor Lists

A public object is represented by a sequenc®©M_descriptor data structures that

is built by the application program. A descriptor contains the type, syntax, and value
for an OM attribute in a public object.

The data structur©M_descriptor is defined in thexom.h header file as follows:

typedef struct OM_descriptor_struct {

OM_type type;
OM_syntax syntax;
union OM_value_union value;

}OM_descriptor;

Figure 5-3 shows the representation of a public object in a descriptor list. The first
descriptor in the list indicates the object’'s OM class; the last descriptor is a NULL
descriptor that signals the end of the list of OM attributes. In between the first and
the last descriptor are the descriptors for the OM attributes of the object.

For example, the following represents the public obmintry in example.c

static OM_descriptor country[] = {

OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),

{ DS_ATTRIBUTE_VALUES,OM_S_PRINTABLE_STRING,0OM_STRING("US") },
OM_NULL_DESCRIPTOR

h

OSF® DCE Application Development Guide — Directory Services 5-11

GDS Application Programming

Figure 5-3.

5-12

A Representation of a Public Object By Using a Descriptor List

object
first descriptor class of object
second descriptor first OM attribute of object

o last OM attribute of object

null descriptor

last descriptor (end marker of descriptor list)

The descriptor list is an array of data ty@&1_descriptor that defines the OM class,
OM attribute types, syntax, and values that make up a public object.

The first descriptor gives the OM class of the object. The OM class of the
object is defined by the OM attribute typ@M_CLASS. The OM_OID_DESC
macro initializes the syntax and value of an object identifier, in this case to OM
classDS_C_AVA, with the syntax ofOM_S_OBJECT_IDENTIFIER_STRING .
OM_S OBJECT_IDENTIFIER_STRING is an OM syntax type that is assigned by
definition in the macro to any OM attribute type and value parameters input to it.

OSF® DCE Application Development Guide — Directory Services

XOM Programming

The second descriptor defines the first OM attribute tyfe, ATTRIBUTE_TYPE,
which has as its value DS_A COUNTRY_NAME and syntax
OM_S_OBJECT_IDENTIFIER_STRING .

The third descriptor specifies the AVA of an object entry in the directory. The
OM_OID_DESC macro is not used here becauseM_OID_DESC is only
used to initialize values havingOM_S_OBJECT_IDENTIFIER_STRING
syntax. The OM attribute type i®S_ATTRIBUTE_VALUES, the syntax is
OM_S_PRINTABLE_STRING, and the value idJS. The OM_STRING macro
creates a data value for a string data type (data t@bé string), in this case
OM_S PRINTABLE_STRING. A string is specified in terms of its length or
whether or not it terminates with a NULL. (Th@M_STRING macro is described

in Section 5.8.2.4.)

The last descriptor is a NULL descriptor that marks the end of the public object
definition. It is defined in thexcom.h header file as follows:

#define OM_NULL_DESCRIPTOR
{ OM_NO_MORE_TYPES, OM_S_NO_MORE_SYNTAXES,
{ { 0, OM_ELEMENTS_UNSPECIFIED } } }

OM_NULL_DESCRIPTOR is OM attribute typedM_NO_MORE_TYPES, syntax
OM_S_NO_MORE_SYNTAXES, and valueOM_ELEMENTS_UNSPECIFIED .

Figure 5-4 shows the composition of a descriptor list representing a public object.

OSF® DCE Application Development Guide — Directory Services 5-13

GDS Application Programming

Figure 5-4.

5-14

A Descriptor List for the Public Object: country

static OM_descriptor country[] = {

OM attribute types

* Directory attribute type
OM_OID_DESC(OM_CLASS, DS_C_AVA),

i S

OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),

Directory attribute value

{ DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING,0M_STRING("US") },
OM_NULL_DESCRIPTOR
h

5.1.4.2 Building the Distinguished Name as a Public Object

Recall that RDNs are built from AVAs, and a distinguished name is built from a series
of RDNs. In a typical application program, several AVAs are defined in descriptor
lists as public objects. These public objects are incorporated into descriptor lists
that represent corresponding RDNs. Finally, the RDNs are incorporated into one
descriptor list that represents the distinguished name of an object in the directory, as
shown in Figure 5-5. This descriptor list is included as one of the input parameters
to a directory service function.

OSF® DCE Application Development Guide — Directory Services

XOM Programming

Figure 5-5.

The Distinguished Name of “Peter Piper” in the DIT

RDNs
O Country Name = "US"
O Organization Name = "Acme Pepper Co"
O Organizational Unit = "Research"
O Common Name = "Peter Piper"

Distinguished Name = {C=US, O=Acme Pepper Co, OU=Research, CN=Peter Piper}

The following code fragment fronexample.cshows how a distinguished name is
built as a public object. The public object is thameparameter for a subsequent
read operation call to the directory. The representation of a distinguished name in
the DIT is shown in Figure 5-5.

The first section of code defines the four AVAs. These AVAs make the assertion to
the directory service that the attribute values in the distinguished naetef Piper

are valid and can therefore be read from the directory. The country nabis ithe
organization name i&\cme Pepper Cq the organizational unit name Research

and the common name BReter Piper.

/*

* Public Object ("Descriptor List") for Name parameter to
* ds_read().

* Build the Distinguished-Name of Peter Piper

*

OSF® DCE Application Development Guide — Directory Services 5-15

GDS Application Programming

5-16

static OM_descriptor country[] = {

OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),

{ DS_ATTRIBUTE_VALUES,OM_S_PRINTABLE_STRING,0OM_STRING("US") },
OM_NULL_DESCRIPTOR

I

static OM_descriptor organization[] = {

OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_NAME),

{ DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING,

OM_STRING("Acme Pepper Co") },

OM_NULL_DESCRIPTOR

I

static OM_descriptor organizational_unit[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_UNIT_NAME),

{ DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING, OM_STRING("Research") },
OM_NULL_DESCRIPTOR

I

static OM_descriptor common_name[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COMMON_NAME),

{ DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING, OM_STRING("Peter Piper") },
OM_NULL_DESCRIPTOR

8

The next section of code is nested one level above the previously defined AVAs.
Each RDN has a descriptor with OM attribute tyPp& AVAS (indicating that it is

OM attribute typeAVA), a syntax ofOM_S_OBJECT, and a value of the name

of the descriptor array defined in the previous section of code for an AVA. The
rdnl descriptor contains the descriptor list for the AVA country, tHa2 descriptor
contains the descriptor list for the AVA organization, and so on.

OM_S OBJECT is a syntax that indicates that its value is a subobject. For example,
the value forDS_AVAS is the previously defined objecbuntry. In this manner, a
hierarchy of linked objects and subobjects can be constructed.
static OM_descriptor rdnlf] = {

OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

OSF® DCE Application Development Guide — Directory Services

XOM Programming

{ DS_AVAS, OM_S_OBJECT, { 0, country } },
OM_NULL_DESCRIPTOR

I3
static OM_descriptor rdn2[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{ DS_AVAS, OM_S_OBJECT, { 0, organization } },
OM_NULL_DESCRIPTOR

I3
static OM_descriptor rdn3[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{ DS_AVAS, OM_S_OBJECT, { 0, organizational_unit } },
OM_NULL_DESCRIPTOR

I3
static OM_descriptor rdn4[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

{ DS_AVAS, OM_S_OBJECT, { 0, common_name } },
OM_NULL_DESCRIPTOR

h

The next section of code contains the RDNs that make up the distinguished name,
which is stored in the array of descriptors callegme It is made up of the OM class
DS_C_DS_DN(representing a distinguished name) and four RDNs of OM attribute
type DS_RDNSand syntaxXOM_S_OBJECT.

OM_descriptor name[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_DN),

{ DS_RDNS, OM_S_OBJECT, { 0, rdnl } },
{ DS_RDNS, OM_S_OBJECT, { 0, rdn2 } },
{ DS_RDNS, OM_S_OBJECT, { 0, rdn3 } },
{ DS_RDNS, OM_S_OBJECT, { 0, rdn4 } },

OM_NULL_DESCRIPTOR
h

In summary, the distinguished name Reter Piperis stored in the array of descriptors
called name which is composed of three nested levels of arrays of descriptors (see
Figure 5-6). The definitions for the AVAs are at the innermost level, the definitions
for RDNs are at the next level up, and the distinguished name is at the top level.

OSF® DCE Application Development Guide — Directory Services 5-17

GDS Application Programming

Figure 5-6. Building a Distinguished Name

AVAs

RDNs

static OM_descriptor country[] = {| static OM_descriptor rdnlf] =
descriptor list

I8 k%

static OM_descriptor organization[] = {| static OM_descriptor rdn2[] =
descriptor list

h h

static OM_descriptor organizational_unit[] = static OM_descriptor rdn3[] =

descriptor list descriptor list

|
T
|

h b
static OM_descriptor common_name[] = static OM_descriptor rdn4[] =
} b

distinguished name

OM_descriptor name[] = {|

A

r- - - T T 77 descriptor list

I

I

I

I

I

I

: CHECK_DS_CALL(ds_read(session, DS_DEFAULT _CONTEXT,
| name, selection, &result, &invoke_id));
I

I

I

I

5-18 OSF® DCE Application Development Guide — Directory Services

XOM Programming

Figure 5-7 shows a more general view of the structure distinguished name.

Figure 5-7. A Simplified View of the Structure of a Distinguished Name

DS _C_NAME abstract class
DS_CfDS_DN concrete subclass

DS_CfDS_RDN concrete class

DS_i_AVA concrete class

The name descriptor defines a public object that is provided asrthmeparameter
required by the XDS API read function callis_read() as follows. (XDS API
function calls are described in detail in Chapter 6.)

CHECK_DS_CALL(ds_read(session, DS_DEFAULT_CONTEXT,
name, selection, &result, &invoke_id));

The result of thels_read()function call is in a private implementation-specific format;

it is stored in a workspace and pointed to f@pult. The application program must

use XOM function calls (described in Section 5.7) to interpret the data and extract the
information. This extraction process involves uncovering the nested data structures
in a series of XOM function calls.

5.1.4.3 Client-Generated and Service-Generated Public Objects

There are two types of public objects: service-generated objects and client-generated
objects. The distinguished name object described in the previous section is a client-
generated public object because an application program (the client) created the data
structure. As the creator of the public object, it is the responsibility of the application
program to manage the memory resources allocated for it.

OSF® DCE Application Development Guide — Directory Services 5-19

GDS Application Programming

5-20

Service-generated public objects are created by the XOM service. Service-generated
public objects may be generated as a result of an XOM request. An XOM API
function, such a®m_get() converts a private object into a service-generated public
object. This is necessary because XDS may return a pointer to data in private format
that can only be interpreted by XOM functions suchoas _get()

For example, Figure 5-8 shows how the read request described in the previous example
returns a pointer to an encoded data structure storedsunlt. This encoded data
structure, referred to as@ivate object(described in the next section) is one of the
input parameters tom_get() Theom_get()function provides a pointer to a public
object (in this caseentry) as an output parameter. The public object is a data
structure that has been interpreteddm_get()and is accessible by the application
program (the client). The information requested by the application in the read request
is contained in the output parametamtry.

OSF® DCE Application Development Guide — Directory Services

XOM Programming

Figure 5-8. Client-Generated and Service-Generated Objects

CHECK_DS_CALL(ds_read (session, DS_DEFAULT_CONTEXT,
name, selection, &result, &invoke));

client-generated service-generated
public objects private object

context

session

result

[e

entry

workspace

application program space

service-generated
public object

\
CHECK_OM_CALL(om_get (result,
OM_EXCLUDE_ALL_BUT_THESE_TYRES
+ OM_EXCLUDE_SUBOBJECTS,
entry_list, OM_FALSE, 0, 0, &entry,
&total_num));

The application program is responsible for managing the storage (memory) for the
service-generated public object. This is an important point because it requires that
the application issue a series ofm_delete() calls to delete the service-generated
public object from memory. Because the data structures involved with directory
service requests can be very large (often involving large subtrees of the DIT), it is
imperative that the application programmer build into any application program the
efficient management of memory resources.

OSF® DCE Application Development Guide — Directory Services 5-21

GDS Application Programming

5.1.5

Table 5-3.

5-22

The following code fragment fronexample.hdemonstrates how storage for public
and private objects is released by using a seriesnof delete()function calls after

they are no longer needed by the application program. The data (a list of phone
numbers associated with the nameter Piper required by the application program)
has already been extracted by using a seriesnofget()function calls, as follows:

/* We can now safely release all the private objects
* and the public objects we no longer need

*/

CHECK_OM_CALL(om_delete(session));
CHECK_OM_CALL(om_delete(result));
CHECK_OM_CALL(om_delete(entry));
CHECK_OM_CALL(om_delete(attributes));
CHECK_DS_CALL(ds_shutdown(workspace));

Private Objects

Private objects are created dynamically by the service interface. In Figure 5-8, the
ds_read() function returns a pointer to the data structwesult in the workspace.

This service-generated data structure is a private object in a private implementation-
specific format, which requires a call mm_get()to interpret the data. A private
object is one of the required input parameters to XOM API functions (such as
om_get(), as shown in Figure 5-8. Private objects are always service generated.

Table 5-3 compares private and public objects.

Comparison of Private and Public Objects

Private Public
Representation is implementation Representation is defined in the API
specific specification

Not directly accessible by the client | Directly accessible by the client

Manipulated by the client by using ONI Manipulated by the client by using
functions programming constructs

OSF® DCE Application Development Guide — Directory Services

XOM Programming

5.1.6

OSF® DCE Application Development Guide — Directory Services

Private

Public

Created in storage provided by the
service

Is a service-generated object if creatdd

by the service
Is a client-generated object if created

by the client in storage provided by tHe

client

Cannot be modified by the client
directly, except through the service
interface

If a client-generated object, can be
modified directly by the client

If a service-generated object, cannot pe

modified directly by the client, except
through the service interface

Storage is allocated and released by
service

Hé a service-generated object, storage
allocated and released by the service
If a client-generated object, storage i
allocated and released by the client

S

Private objects can also be used as input to XOM and XDS API functions to improve
program efficiency. For example, the output ads search()request can be used as
input tods_read() The search request returns the name of each entry in the search.
If the application program requires the address and telephone number of each name,
a ds_read()operation can be performed on each name as a private object.

Object Classes

Objects are categorized into OM classes based on their purpose and internal structure.

An object is an instance of its OM class.
attribute types that may appear in its instances.

by an ASN.1 object identifier.

An OM class is uniquely ide

An OM class is characterized by OM

ntified

Later in this section, it will be shown how OM classes are organized into groups of
OM classes, callepackagesthat support some aspect of the directory service.

5-23

GDS Application Programming

5.16.1 OM Class Hierarchy and Inheritance Properties

Figure 5-9.

5-24

OM classes are related to each other in a tree hierarchy whose root is a special
OM class calledOM_C_ OBJECT. Each of the other OM classes is the immediate
subclass of precisely one other OM class. This tree structure is known &Mhe
class hierarchy It is important because of the property of inheritance. The OM class
hierarchy is defined by the XDS/XOM standards. DCE implements this hierarchy
for GDS and adds its own set of OM classes defined in the GDS package.

The OM attribute types that may exist in an instance of an OM class, but not in an
instance of the OM class above it in the tree hierarchy, are said spéeficto that

OM class. OM attributes that may appear in an object are those specific to its OM
class as well as those inherited from OM classes above it in the tree. OM classes
above an instance of an OM class in the treesangerclassesf that OM class. OM
classes below an instance of an OM classsarieclasse®f that OM class.

For example, as shown in Figure 5-)S_C ENTRY_INFO_SELECTION
inherits its OM attributes from its superclas®OM_C_OBJECT. The OM
attributes DS_ALL_ATTRIBUTES, DS _ATTRIBUTES_SELECTED,
and DS_INFO _TYPE are attributes specific to the OM class
DS _C_ENTRY_INFO_SELECTION. The DS_C_ENTRY_INFO_SELECTION
class has no subclasses.

The OM Class DS_C_ENTRY_INFO_SELECTION

OM_C_OBJECT

OM_CLASS

DS_C_ENTRY_INFO_SELECTION

DS_ALL_ATTRIBUTES
DS_ATTRIBUTES_SELECTED
DS_INFO_TYPE

OSF® DCE Application Development Guide — Directory Services

XOM Programming

Another important point about OM class inheritance is that an instance of an OM
class is also considered to be an instance of each of its superclasses and may appear
wherever the interface requires an instance of any of those superclasses. For example,
DS_C_DS_DNis a subclass d0S_C_NAME. Everywhere in an application program
whereDS_C_NAME is expected at the interface (as a parametedstoread() for
example), it is permitted to suppS_C_DS_DN

51.6.2 Abstract and Concrete Classes

OM classes are defined as being eithbstractor concrete An abstract OM class
is an OM class in which instances are not permitted. An abstract OM class may be
defined so that subclasses can share a common set of OM attributes between them.

In contrast to abstract OM classes, instances of OM concrete classes are permitted.
However, the definition of each OM concrete class may include the restriction that
a client not be allowed to create instances of that OM class. For example, consider
two alternative means of defining the OM classes used in XD&:C_LIST_INFO
andDS_C_READ_RESULT. DS_C_LIST_INFO andDS_C_READ_RESULT are
subclasses of the abstract OM cl&S_C_COMMON_RESULT.

Figure 5-10 shows the relationship of DS _C_LIST_INFO and
DS_C_READ_RESULTSwhen the abstract OM clagsS_C_COMMON_RESULT

is defined and when it is not defined. It demonstrates that the presence of an abstract
OM class enables the programmer to develop applications that process information
more efficiently.

OSF® DCE Application Development Guide — Directory Services 5-25

GDS Application Programming

Figure 5-10.

5-26

Comparison of Two Classes With/Without an Abstract OM Class

OM_C_OBJECT

OM_CLASS

DS_C_COMMON_RESULT

DS_ALIASED_DEREFERENCED
DS_PERFORMER

DS_C_LIST_INFO DS_C_READ_RESULT

DS_ENTRY

DS_OBJECT_NAME
DS_PARTIAL_OUTCOME_QUAL

DS_SUBORDINATES

DS_C_LIST_INFO and DS_C_READ_RESULT with the DS_C_COMMON_RESULT abstract class defined

OM_C_OBJECT

OM_CLASS

DS_C_LIST_INFO DS_C_READ_RESULT

DS_OBJECT_NAME DS_ENTRY
DS_ALIASED_DEREFERENCED
DS_PERFORMER

DS_PARTIAL_OUTCOME_QUAL

DS_SUBORDINATES
DS_ALIASED_DEREFERENCED
DS_PERFORMER

DS_C_LIST_INFO and DS_C_READ_RESULT without the DS_C_COMMON_RESULT abstract class defined
The following list contains the hierarchy of concrete and abstract OM classes in

the directory service package. Abstract OM classes are shown in italics. The
indentation shows the class hierarchy; for example, the abstract@s€ OBJECT

OSF® DCE Application Development Guide — Directory Services

XOM Programming

is a superclass of the abstract cl&S_C_COMMON_RESULT®hich in turn is a
superclass of the concrete cld3§_C_COMPARE_RESULT.
OM_C_OBJECT
« DS_C_ACCESS_POINT
« DS_C_ADDRESS
— DS_C_PRESENTATION_ADDRESS
 DS_C_ATTRIBUTE
— DS_C_AVA
— DS_C_ENTRY_MOD
— DS_C_FILTER_ITEM
» DS_C_ATTRIBUTE_ERROR
* DS_C_ATTRIBUTE_LIST
— DS_C_ENTRY_INFO
« DS_C_COMMON_RESULTS
— DS_C_COMPARE_RESULT
— DS_C_LIST_INFO
— DS_C_READ_RESULT
— DS_C_SEARCH_INFO
« DS_C_CONTEXT
« DS_C_CONTINUATION_REF
— DS_C_REFERRAL
« DS_C_ENTRY_INFO_SELECTION
« DS_C_ENTRY_MOD_LIST
« DS_C_ERROR
— DS_C_ABANDON_FAILED
— DS_C_ATTRIBUTE_PROBLEM
— DS_C_COMMUNICATIONS_ERROR

OSF® DCE Application Development Guide — Directory Services 5-27

GDS Application Programming

— DS_C_LIBRARY_ERROR
— DS_C_NAME_ERROR
— DS_C_SECURITY_ERROR
— DS_C_SERVICE_ERROR
— DS_C_SYSTEM_ERROR
— DS_C_UPDATE_ERROR
« DS_C_EXT
« DS_C_FILTER
« DS_C_LIST_INFO_ITEM
« DS_C_LIST RESULT
« DS_C_NAME
— DS_C_DS_DN
« DS_C_OPERATION_PROGRESS
« DS_C_PARTIAL_OUTCOME_QUAL
. DS_C_RELATIVE_NAME
— DS_C_DS_RDN
« DS_C_SEARCH_RESULT
« DS_C_SESSION

In summary, an OM class is defined with the following elements:
» OM class name (indicated by an object identifier)
* Identity of its immediate superclass
« Definitions of the OM attribute types specific to the OM class
* Indication whether the OM class is abstract or concrete
» Constraints on the OM attributes

A complete description of OM classes, OM attributes, syntaxes, and values that
are defined for XDS and XOM APIs are described in Part 4. Tables and textual

5-28 OSF® DCE Application Development Guide — Directory Services

XOM Programming

descriptions, such as the one shown in Figure 5-11 for the concrete OM class
DS_C_ATTRIBUTE, are provided for each OM class.

Figure 5-11. Complete Description of Concrete OM Class DS_C_ATTRIBUTE

Description of the class including an
indication if it is an abstract class
DS_C_ATTRIBUTE / ndication T

An instance of OM class DS_C_ATTRIBUTE is an attribute of an object and, -
thus a component of its directory entry. / ';‘Jﬂg?fﬁ.sasses
An instance of this OM class has the OM attributes of its superclass, oM ¢ OBJECT ,in

addition to the OM attributes listed in the following table.
Table showing values

of syntax, length,
/ number of values,

Table 11-2. OM_Attributes of a DS_C_ATTRIBUTE and initial value

] Value Value Value Value
OM Attribute Syntax Length Number Initially

DS_ATTRIBUTE_ | String(OM_S_OBJECT_
TYPE IDENTIFIER_
STRING) - 1 -

DS_ATTRIBUTE_
VALUES any - O or more -

'/ Description of attributes and
listing of attribute values

o DS_ATTRIBUTE_TYPE

The attribute type that indicates the class of information given by this attribute.

© DS_ATTRIBUTE_VALUES

The attribute values. The OM value syntax and the number of values allowed for this
OM attribute are determined by the value of the DS_ATTRIBUTE_TYPE
OM attribute in accordance with the rules given in "Attribute and AVA" in Chapter
10. If the values of this OM attribute have the syntax String(*), the strings can be
long and segmented. For this reason, om_read() and om_write() need to be
used to access all String(*) values.

Note: A directory attribute must always have at least one value, although it is
acceptable for instances of this OM class not to have any values.

The table shown in Figure 5-11 provides information under the following headings:

OSF® DCE Application Development Guide — Directory Services 5-29

GDS Application Programming

* OM Attribute

This is the name of each of the OM attributes.

» Value Syntax

This provides the syntaxes of each of the OM attribute’s values.

* Value Length
This describes any constraints on the number of bits, octets, or characters in each
value that is a string.

* Value Number

This describes any constraints on the number of values.

* Value Initially
This is any value with which the OM attribute can be initialized.

An OM class can be constrained to contain only one member of a set of OM attributes.
In turn, OM attributes can be restricted to having no more than a fixed number of
values, either O (zero) or 1 as an optional value, or exactly one mandatory value.

An OM attribute’s value may be also constrained to a single syntax. That syntax can
be further restricted to a subset of defined values.

An object passed as a parameter to an XOM and XDS function call needs to meet a
minimum set of conditions, as follows:

» The type of each OM attribute must be specific to the object’'s OM class or one
of its superclasses.

» The number of values of each OM attribute must be within OM class limits.
» The syntax of each value must be among those the OM class permits.

» The number of bits, octets, or characters in each string value must be within OM
class limits.

5-30 OSF® DCE Application Development Guide — Directory Services

XOM Programming

5.2

5.2.1

Packages

A packagss a collection of OM classes that are grouped together, usually by function.
The packages themselves are features that are negotiated with the directory service by
using the XDS functiords_version() Consider which OM classes will be required

for your application programs and determine the packages that contain these OM
classes.

A package is uniquely identified by an ASN.1 object identifier. DCE XDS API
supports the following five packages, of which one is mandatory and four are optional:
» The directory service package (mandatory)
» The basic directory contents package (optional)

» The strong authentication package (optional)

The GDS package (optional)

» The message handling system (MHS) directory user package (optional)

The Directory Service Package

The directory service package is the default package and as such does not require
negotiation. The optional packages have to be negotiated with the directory service
by using theds_version()function.

The object identifiers for specific packages are defined in header files that are part
of the XDS API and XOM API. An object identifier consists of a string of integers.
The header files includédefine preprocessor statements that assign names to the
constants in order to make them more readable. For the application programmer, these
assignments alleviate the burden of maintaining strings of integers. For example, the
object identifiers for the directory service package are definedignh The xds.h
header file contains OM class and OM attribute hames, OM object constants, and
defines prototypes for XDS API functions, as shown in the following code fragment
from xds.h

/* DS package object identifier */
/* {iso(1) identifier-organization(3) icd-ecma(12)
* member-company(2)

OSF® DCE Application Development Guide — Directory Services 5-31

GDS Application Programming

5.2.2

5-32

* dec(1011) xopen(28) dsp(0) } */
#define OMP_O_DS_SERVICE_PKG "x2B\0C\x02\x87\xIC\x00"

A ds_version() function call must be included within an application program to
negotiate the optional features (packages) with the directory service. The first step is
to build an array of object identifiers for the optional packages to be negotiated (the
basic directory contents package and the GDS package), as shown in the following
code fragment from thacl.h header file:

DS_feature features[] = {

{ OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE },
{ OM_STRING(OMP_O_DSX_GDS_PKG), OM_TRUE 1},

{0}

I8

The OM_STRING macro is provided for creating a data value of data type
OM_string for octet strings and characters. XOM API macros are described in
Section 5.8.2.

The array of object identifiers is stored fisatures and passed as an input parameter
to ds_version() as shown in the following code fragment frcawl.c

/* Negotiate the use of the BDC and GDS packages. */

if (ds_version(features) != DS_SUCCESS)
printf("ds_version() error\n™);

The Basic Directory Contents Package

The basic directory contents package contains the object identifier definition of
directory classes and attribute types as defined by the X.500 standard. These
definitions allow the creation of and maintenance of directory entries for a number of
common objects so that the representation of all such objects is the same throughout
the directory. Also included are the definitions of the OM classes and OM attributes
required to support the directory attribute types. Chapter 12 describes the basic
directory contents package in detail.

OSF® DCE Application Development Guide — Directory Services

XOM Programming

5.2.3

5.24

The object identifier associated with the basic directory contents package is shown in
the following code fragment from thedsbdcp.h header file:

/* BDC package object identifier */

/* { iso(1) identifier-organization(3) icd-ecma(12)
* member-company (2)
* dec(1011) xopen(28) bdcp(l) } */

#define OMP_DS_BASIC_DIR_CONTENTS_PKG "\x2B\x0C\x02\x87\x73\x1C\x01"

The Strong Authentication Package

The strong authentication package contains the object identifier definition of directory
classes and attribute types as defined by the X.500 standard for security purposes.
Also included are the definitions of the OM classes and OM attributes required to
support these security attribute types. Chapter 13 describes the strong authentication
package in detail.

The object identifier associated with the strong authentication package is shown in the
following code fragment from th&dsap.h header file:

/* SA package object identifier */

/* { iso(1) identifier-organization(3) icd-ecma(12)
* member-company (2)
* dec(1011) xopen(28) sap(2) } */

#define OMP_DS_STRONG_AUTHENT_PKG "\x2B\x0C\x02\x87\x73\x1C\x02"

The GDS Package

The GDS package contains the definition of a DCE extension to the XDS API. It
contains the definitions of OM classes, OM attributes, and syntaxes to support extended
functionality specific to DCE. Chapter 15 describes the GDS package in detail.

OSF® DCE Application Development Guide — Directory Services 5-33

GDS Application Programming

The following code fragment from thedsgds.hheader file shows the object identifier
for the GDS package:

/* GDS package object identifier */
/* { iso(1) identifier-organization(3) icd-ecma(12) member-company (2)
I* siemens-units(1107) sni(1) directory(3) xds-api(100) gdsp(1) } */

#define OMP_O_DSX_GDS_PKG "\x2B\x0C\x02\x88\x53\x01\x03\x64\x01"

5.25

5-34

The MHS Directory User Package

The MHS directory user package contains definitions to support the use of the directory
in accordance with the standard X.400 (1988) User Agents and Message Transfer
Agents (MTAs) for name resolution, distribution list expansion, and capability
assessment. The definitions are based on the attribute types and syntaxes specified
in X.402, Annex A. The definitions of the OM classes and OM attributes required to
support these MHS attribute types are also included with this package. Chapter 14
describes the MHS directory user package in detail.

The object identifier associated with the MHS directory user package is shown in the
following code fragment from th&dsmdup.h header file:

/* MDU package object identifier */

/* { iso(1) identifier-organization(3) icd-ecma(12)
* member-company (2)
* dec(1011) xopen(28) mdup(3) } */

#define OMP_DS_MHS_DIR_USER_PKG "\x2B\x0C\x02\x87\x73\x1C\x03"
Part 4 of this guide describes in detail the attributes and data types that make up the

OM and directory classes defined in the XDS API packages. Chapter 7 examines in
detail how these packages are used in developing the sample application programs.

OSF® DCE Application Development Guide — Directory Services

XOM Programming

5.2.6

5.3

Package Closure

An OM class can be defined to have an attribute whose OM class is defined in some
other package in order to avoid duplication of OM classes. This gives rise to the
concept of a package closure. A package closure is the set of all OM classes that
need to be supported so that all possible instances of all OM classes can be defined
in the package.

Workspaces

Two application-specific APIs or two different implementations of the same service
require work areas, calledvorkspacesto maintain private and public (service-
generated) objects. The workspace is required because two implementations of the
same service (or different services) can represent private objects differently. Each
one has its own workspace. Using the functions provided by XOM API, such as
om_get()andom_copy() objects can be copied and moved from one workspace to
another.

Recall that private objects are returned by a service to a workspace in private
implementation-specific format. Using the OM function calls described in Section
5.7, the data can be extracted from the private object for further program processing.

Before a request to the directory can be made by an application program, a workspace
must be created by using the appropriate XDS function. An application creates a
workspace by performing the XDS API calls_initialize(). Once the workspace

is obtained, subsequent XDS API calls, such dssread() return a pointer to

a private object in the workspace. When program processing is completed, the
workspace is destroyed by using ttie shutdown()XDS API function. Implicit in
ds_shutdown()is a call to the XOM API functiorom_delete()to delete each private
object the workspace contains.

The programs in Chapter 7 demonstrate how to initialize and shut down a workspace.
The XDS functionsds_initialize() and ds_shutdown() are described in detail in
Chapter 6.

The closures of one or more packages are associated with a workspace. A package
can be associated with any number of workspaces. An application program must

OSF® DCE Application Development Guide — Directory Services 5-35

GDS Application Programming

5.4

5-36

obtain a workspace that supports an OM class before it is able to create any instances
of that OM class. For example, some of these operations in an application may require
involvement with GDS security, ACLs, or the DUA cache. Therefore, in addition

to the basic packages provided by the directory service APIs, the workspace would
have to support the GDS package. The following code fragment demonstrates how
an application initializes a workspace and negotiates the packages to be associated
with that workspace:

/* Build up an array of object identifiers for the optional */
/* packages to be negotiated. */

DS_feature features[] = {

{ OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE },
{ OM_STRING(OMP_O_DSX_GDS_PKG), OM_TRUE 1},

{0}

I3

CHECK_DS_CALL((OM_object) !(workspace = ds_initialize()));

CHECK_DS_CALL(ds_version(bdcp_package, workspace));

Storage Management

An object occupies storage. The storage occupied by a public object is allocated by
the client, and is, therefore, directly accessible by the client and can be released by
the client. The storage occupied by a private object is not accessible by the client
and must be managed indirectly by using XOM function calls.

Objects are accessed by an application program via object handles. Object handles
are used as input parameters to interface functions by the client and returned as output
parameters by the service. The object handle for a public object is simply a pointer
to the data structure (an array of descriptors) containing the object OM attributes.
The object handle for a private object is a pointer to a data structure that is in private
implementation-specific format and, therefore, inaccessible directly by the client.

The client creates a client-generated public object by using normal programming

language constructs; for example, static initialization. The client is responsible for
managing any storage involved. The service creates service-generated public objects

OSF® DCE Application Development Guide — Directory Services

XOM Programming

and allocates the necessary storage. As previously mentioned, the client must destroy
service-generated public objects and release the storage by applying the XOM function
om_delete()to it, as shown in the following code fragment:

/* We can now safely release all the private objects
* and the public objects we no longer need

*/

CHECK_OM_CALL(om_delete(session));
CHECK_OM_CALL(om_delete(result));
CHECK_OM_CALL(om_delete(entry));
CHECK_OM_CALL(om_delete(attributes));
CHECK_DS_CALL(ds_shutdown(workspace));

The service also creates private objects for which it allocates storage that must be
managed by the application.

One of the input parameters to this_read() function call isname The name
parameter is a public object created by the application from a series of nested data
structures (RDNs and AVAS) to represent the distinguished name contdiaitey

Piper. When the application no longer needs the public object, it issues the XDS
function call ds_shutdown()to release the memory resources associated with the
public object. Theds_read() call returns the pointer to a private objecgsult,
deposited in the workspace by the service.

The program goes on to use the XOM functiom_get() with the input parameter

result as a pointer to extract attribute values from the returned private object. The
om_get() call returns the pointeentry as a service-generated public object to the
program so that the attribute values specified in the call can be accessed by it. Once
the value is extracted, the application can continue processing; for example, printing
a message to a user with some extracted value like a phone number or postal address.
The service-generated public object becomes the responsibility of the application
program. The program goes on to release the resources allocated by the service
by issuing a series of calls mm_delete() as shown in the following code fragment

from example.h

/*
* extract the telephone number(s) of "name" from the result
*

* There are 4 stages:
* (1) get the Entry-Information from the Read-Result.

OSF® DCE Application Development Guide — Directory Services 5-37

GDS Application Programming

* (2) get the Attributes from the Entry-Information.
* (3) get the list of phone numbers.

* (4) scan the list and print each number.

*/

CHECK_OM_CALL(om_get(result,
OM_EXCLUDE_ALL_BUT_THESE_TYPES
+ OM_EXCLUDE_SUBOBJECTS,
entry_list, OM_FALSE, 0, 0, &entry,
&total_num));

CHECK_OM_CALL(om_get(entry->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES
+ OM_EXCLUDE_SUBOBJECTS,
attributes_list, OM_FALSE, 0, 0, &attributes,
&total_num));

CHECK_OM_CALL(om_get(attributes->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES
+ OM_EXCLUDE_SUBOBJECTS,
telephone_list, OM_FALSE, 0, 0, &telephones,
&total_num));

/* We can now safely release all the private objects
* and the public objects we no longer need

*/

CHECK_OM_CALL(om_delete(session));
CHECK_OM_CALL(om_delete(result));
CHECK_OM_CALL(om_delete(entry));
CHECK_OM_CALL(om_delete(attributes));

If the client possesses a valid handle (or pointer) for an object, it has access to a
private object. If the client does not possess an object handle or the handle is not
a valid one, a private object is inaccessible to the client and an error is returned to
the calling function. In the preceding code fragment, the handles for the objects
stored inentry, attributes andtelephonesare the pointergentry, &attributes and
&telephonesrespectively.

5-38 OSF® DCE Application Development Guide — Directory Services

XOM Programming

5.5 OM Syntaxes for Attribute Values

An OM attribute is made up of an integer uniquely defined within a package that
indicates the OM attribute’s type, an integer giving that value’s syntax, and an
information item called aalue The syntaxes defined by the XOM API standard are
closely aligned with ASN.1 types and type constructors.

Some syntaxes are described in the standard in terms of syntax templates.
A syntax template defines a group of related syntaxes. The syntax templates that are
defined are as follows:

* Enum¢)

» Objectf)

* String()

55.1 Enumerated Types

An OM attribute with syntax template Enum(is an enumerated type
(OM_S ENUMERATION) and has a set of values associated with that
OM attribute. For example, one of the OM attributes of the OM class
DS_C_ENTRY_INFO_SELECTION is DS_INFO_TYPE. DS_INFO_TYPE is
listed in the OM attribute table fdbS_C_ENTRY_INFO_SELECTION in Chapter

11 as having a value syntax of Enubg_Information_Type), as shown in Table
5-4. DS_INFO_TYPE takes one of the following values:

« DS_TYPES_ONLY
« DS_TYPES_AND_VALUES

OSF® DCE Application Development Guide — Directory Services 5-39

GDS Application Programming

Table 5-4. Description of an OM Attribute By Using Syntax Enum(*)
OM Attributes of DS_C_ENTRY_INFO_SELECTION
OM Attribute Value Syntax Value Value Value
Length Number Initially
DS_ALL_ATTRIBUTES | OM_S_BOOLEAN — 1 OM_TRUE
DS_ATTRIBUTES_ StringOM_S_OBJECT_ | — 0 or more | —
SELECTED IDENTIFIER_STRING)
DS_INFO_TYPE Enum@S_Information_ | — 1 DS _
Type) TYPES_
AND_
VALUES

5-40

The C language representation of the syntax of the OM attribute type
DS INFO_TYPE is OM_S ENUMERATION as defined in the xom.h
header file. The value of the OM attribute is eithBS TYPES ONLY or
DS_TYPES AND_VALUES as shown in the following code fragment from
example.h

/*

* Public Object ("Descriptor List") for

* Entry-Information-Selection

* parameter to ds_read().

*/

OM_descriptor selection[] = {

OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),

{ DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, { OM_FALSE, NULL } },
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A PHONE_NBR),
{ DS_INFO_TYPE,OM_S_ENUMERATION,

{ DS_TYPES_AND_VALUES,NULL } },

OM_NULL_DESCRIPTOR

h

OSF® DCE Application Development Guide — Directory Services

XOM Programming

5.5.2

Table 5-5.

5.5.3

Object Types

An OM attribute with syntax template Objetj(hasOM_S OBJECT as syntax

and a subobject as a value. For example, one of the OM attributes of the OM
classDS_C_DS_DNis DS _RDNS DS _RDNS:is listed in the OM attribute table for
DS_C_DS_DNas having a value syntax of Objebs C_DS_RDN, as shown in
Table 5-5.

Description of an OM Attribute By Using Syntax Object(*)

OM Attributes of DS _C DS DN
OM Attribute Value Syntax Value Value Value
Length Number | Initially
DS_RDNS ObjectDS_C_DS_RDN)| — 0 or —
more

The C language representation of the syntax of the OM attribute DPERDNSIs
OM_S _OBJECT, as shown in following code fragment froexample.h

OM_descriptor name[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_DN),
{ DS_RDNS, OM_S_OBJECT, rdnl } },
{ DS_RDNS, OM_S_OBJECT, rdn2 } },
{ DS_RDNS, OM_S_OBJECT, rdn3 } },
{ DS_RDNS, OM_S_OBJECT, rdnd } },
OM_NULL_DESCRIPTOR

h

e e R
O O O o

Strings

An OM attribute with syntax template Strirtg(specifies the string syntax of its value.

A string is categorized as eitherlat string, an octet string or a character string

The bits of a bit string, the octets of an octet string, or the octets of a character string
constitute theelementof the string. (Refer to Chapter 17 for a list of the syntaxes
that form the string group.)

OSF® DCE Application Development Guide — Directory Services 5-41

GDS Application Programming

5.5.4

5.6

5-42

The value length of a string is the number of elements in the string. Any constraints
on the value length of a string are specified in the appropriate OM class definitions.

The elements of the string are numbered. The position of the first element is 0 (zero).
The positions of successive elements are successive positive integers.

For example, one of the attributes of the oM class
DS _C_ENTRY_INFO_SELECTION is DS _ATTRIBUTES_SELECTED.
DS ATTRIBUTES SELECTED is listed in the OM attribute table
for DS_C_ENTRY_INFO_SELECTION as having a value syntax of
StringOM_S_OBJECT _IDENTIFIER_STRING), as shown in Table 5-4.

Other Syntaxes

The other syntaxes are defined as follows:
* OM_S_BOOLEAN
A value of this syntax is a Boolean; that is, the value canCd TRUE or
OM_FALSE.
* OM_S_INTEGER

A value of this syntax is a positive or negative integer.
+ OM_S_NULL

The one value of this syntax is a valueless placeholder.

Service Interface Data Types

The local variables within an application program that contain the parameters and
results of XDS and XOM API function calls are declared by using a standard set of
data types. These data types are definedypgdef statements in thg&om.h header

files. Some of the more commonly used data types are described in the following
subsections. A complete description of service interface data types is provided in
Chapter 18 and in th©SF DCE Application Development Reference

OSF® DCE Application Development Guide — Directory Services

XOM Programming

5.6.1 The OM_descriptor Data Type

The OM_descriptor data type is used to describe an OM attribute type and value.
A data value of this type is a descriptor, which embodies an OM attribute value. An
array of descriptors can represent all the values of an object.

OM_descriptor is defined in thexom.h header file as follows:

/* Descriptor */

typedef struct OM_descriptor_struct {

OM_type type;
OM_syntax syntax;
union OM_value_union value;

} OM_descriptor;

OM_descriptor is made up of a series of nested data structures, as shown in Figure
5-12.

OSF® DCE Application Development Guide — Directory Services 5-43

GDS Application Programming

Figure 5-12. Data Type OM_descriptor_struct

= typedef struct OM_descriptor_struct {
OM_type type; ———» typedef OM_uintl6 OM_type T
OM_syntax syntax; —® typedef OM_uintl6 OM_syntax; J

union OM_value_union value;
} OM_descriptor;

Y
typedef unsigned OM_uint16;
typedef long unsigned OM_uint32;
typedef long int OM_sint32;

\

typedef union OM_value_union {

OM_string string;
OM_boolean boolean; —» typedef OM_uint32 OM_boolean;
OM_enumeration enumeration; —= typedef OM_sint32 OM_enumeration;
OM_integer integer; — typedef OM_sint32 OM_integer
OM_padded_object object;

} OM_value;

L——» typedef struct {

OM_string_length length;
void *elements;
JOM_string;

t———————————® typedef struct {

OM_uint32 padding;
OM_object object;

} OM_padded_object;

typedef struct OM_descriptor_struct *OM_object; ———

Figure 5-12 shows thaype andsyntax are integer constants for an OM attribute type
and syntax, as shown in the following code fragment frexample.c

static OM_descriptor country[] = {

OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),

5-44 OSF® DCE Application Development Guide — Directory Services

XOM Programming

{ DS_ATTRIBUTE_VALUES,OM_S_PRINTABLE_STRING,OM_STRING("US") },
OM_NULL_DESCRIPTOR

h

The code fragment initializes four descriptors, as shown in Figure 5-13. The type
and syntax evaluate to integers for all four descriptors.

Figure 5-13. Initializing Descriptors
static OM_descriptor country[] ={
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),
{ DS_ATTRIBUTE_VALUES,OM_S_PRINTABLE_STRING,OM_STRING("US") },
OM_NULL_DESCRIPTOR
Type Syntax Value
OM_CLASS =3 OM_S_OBJECT_IDENTIFIER_STRING =6 | 9, DS _C_AVA=

DS_ATTRIBUTE_TYPE =711 OM_S_OBJECT_IDENTIFIER_STRING =6 | 3, DS_A_COUNTRY_NAME =\x55\x04\x06

DS_ATTIBUTE_VALUES =713 | OM_S_PRINTABLE_STRING =19 2, "us"

OM_NO_MORE_TYPES =0 OM_S_NO_MORE_SYNTAXES =0 0, OM_ELEMENTS_UNSPECIFIED =0

\x2B\x0C\x02\x87\x73\x1C\x00\x85\x44

The value component is a little more complex. Figure 5-12 shows tlatie is a

union of OM_value_union. OM_value_union has five members:string, boolean
enumeration, integer, andobject. The memberboolean enumeration, andinteger

have integer values. Thstring member contains a string of tyj@M_string, which

is a structure composed of a length and a pointer to a string of charactersobjEoe
member is a structure of tyg@M_padded_objectthat points to another object nested
below it. Many OM attributes have other objects as values. These subobijects, in
turn, may have other subobjects and so on.

For example, as shown in Figure 5-14, the OM cl&& C_READ_RESULT has
one OM attribute: DS_ENTRY. The syntax ofDS_ENTRY is OM_S_OBJECT
with a value of DS_C_ENTRY_INFO, indicating that it points to the
subobject DS_C_ENTRY_INFO. DS_C_ENTRY_INFO has the OM attribute

OSF® DCE Application Development Guide — Directory Services 5-45

GDS Application Programming

DS_OBJECT_NAME with the syntaxOM_S_OBJECT, indicating that it points to

the subobjecDS_C_NAME.

Figure 5-14. An Object and a Subordinate Object

OM Class Attribute Syntax and Value
DS_C_READ_RESULT DS_ENTRY Object(DS_C_ENTRY_INFO)
DS_C_ENTRY_INFO DS_FROM_ENTRY OM_S_BOOLEAN
DS_OBJECT_NAME Object(DS_C_NAME)

5.6.2 Data Types for XDS API Function Calls

The following code fragment froraxample.hshows how the data types are used to
declare the variables that contain the output parameters from the XDS API function

calls.

int main(void)

{
DS_status error; /* return value from DS functions */
OM_return_code return_code;/* return value from OM functions */
OM_workspace workspace; /* workspace for objects */
OM_private_object session; /* session for directory operations */
OM_private_object result; /* result of read operation */
OM_sint invoke_id; /* Invoke-ID of the read operation */

The code fragment shows the following:

» The ds_initialize() call returns a variable of typ®M_workspace that contains

a handle or pointer to a workspace.

» The ds_bind() call returns a pointer to a variable of tyg#V_private object.
The private object contains the session information required by all subsequent

XDS API calls, exceptls_shutdown()

5-46 OSF® DCE Application Development Guide — Directory Services

XOM Programming

» Theds_read()call returns a pointer to the result of a directory read request in a
variable of typeOM_private_object.

» The error handing macro€HECK_DS CALL and CHECK_OM_CALL ,
defined in the example.h header file, use the data typd3S_status and
OM_return_code, respectively, as return values from XDS and XOM API
function calls.

5.6.3 Data Types for XOM API Calls

The following code fragment froraxample.hshows how the data types are used to
declare the variables that contain the input and output parameters for the XOM API
function calls.

/*
* variables to extract the telephone number(s)
*

OM_type entry_list[] = { DS_ENTRY, 0 };
OM_type attributes_list[] = { DS_ATTRIBUTES, 0 };
OM_type telephone_list] = { DS_ATTRIBUTE_VALUES, 0 };

OM_public_object entry;

OM_public_object attributes;

OM_public_object telephones;

OM_descriptor *telephone; /* current phone number */
OM_value_position total_num; /* number of Attribute Descriptors */

The code fragment shows the following:

» The series obm_get()calls requires a list of OM attribute types that identifies the
types of OM attributes to be included in the operation. The variaddgy _list,
attribute_list, andtelephone_listare declared as typ®@M_type.

» The series of om_get() calls return pointers to variables of type
OM_public_object. The om_get() call generates public objects that
are accessible to the application program.

* Where the variabléotal_num is type OM_value_position and is used to hold
the number of OM descriptors returned bsn_get()

OSF® DCE Application Development Guide — Directory Services 5-47

GDS Application Programming

5.7

5.7.1

5-48

Chapter 17 contains detailed descriptions of all the data types defined by XOM API.

OM Function Calls

XOM API supports general-purpose OM functions defined by the X/Open standards
body that allow an application program to manipulate objects in a workspace. Section
5.7.1 lists the OM function calls and gives a brief description of each. Section 5.7.2
illustrates the use of OM function calls by using the_get()call as an example.

Summary of OM Function Calls

The following list of XOM API function calls contains a brief description of each
function. Refer to the appropriate reference page in @&~ DCE Application
Development Referender a detailed description of the input and output parameters,
return codes, and usage of each function.

* om_copy()

Creates an independent copy of an existing private object and all of its subobjects
in a specified workspace.

» om_copy_value()
Replaces an existing OM attribute value or inserts a new value into a target private

object with a copy of an existing OM attribute value found in a source private
object.

» om_create()

Creates a private object that is an instance of the specified OM class.

» om_delete()

Deletes a private or service-generated public object.

* om_get()

OSF® DCE Application Development Guide — Directory Services

XOM Programming

5.7.2

Creates a new public object that is an exact, but independent, copy of an existing
private object; certain exclusions and/or syntax conversion may be requested for
the copy.

om_instance()

Tests to determine if an object is an instance of a specified OM class (includes
the case when the object is a subclass of that OM class).

om_put()

Places or replaces copies of the attribute values of the source private or public
object into the target private object.

om_read()

Reads a segment of a string attribute from a private object.

om_remove()

Removes and discards values of an attribute of a private object.

om_write()

Writes a segment of a string attribute to a private object.

om_encode()

Not supported by DCE XOM API.

om_decode()

Not supported by DCE XOM API.

Using the OM Function Calls

Most application programs require the use of a seriesmof get() function calls to
create service-generated public objects from which the program can extract requested
information. For this reason, this section uses the operationnofget() as an
example to describe how XOM API functions operate in general.

OSF® DCE Application Development Guide — Directory Services 5-49

GDS Application Programming

The following code fragment fronexample.h shows how a series obm_get()
function calls extract a list of telephone numbers from a workspace. d¥heead()
function call deposits the private object storedasult in the workspace and provides
access to it by the pointe&result.

/*

* extract the telephone number(s) of "name" from the result
*

* There are 4 stages:

* (1) get the Entry-Information from the Read-Result.

* (2) get the Attributes from the Entry-Information.

* (3) get the list of phone numbers.

* (4) scan the list and print each number.

*/

CHECK_OM_CALL(om_get(result,
OM_EXCLUDE_ALL_BUT_THESE_TYPES
+ OM_EXCLUDE_SUBOBJECTS,
entry_list, OM_FALSE, 0, 0, &entry,
&total_num));

CHECK_OM_CALL(om_get(entry->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES
+ OM_EXCLUDE_SUBOBJECTS,
attributes_list, OM_FALSE, 0, 0, &attributes,
&total_num));

CHECK_OM_CALL(om_get(attributes->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES
+ OM_EXCLUDE_SUBOBJECTS,
telephone_list, OM_FALSE, 0, 0, &telephones,
&total_num));

/* We can now safely release all the private objects
* and the public objects we no longer need

*/

CHECK_OM_CALL(om_delete(session));
CHECK_OM_CALL(om_delete(result));
CHECK_OM_CALL(om_delete(entry));
CHECK_OM_CALL(om_delete(attributes));

5-50 OSF® DCE Application Development Guide — Directory Services

XOM Programming

CHECK_DS_CALL(ds_shutdown(workspace));

for (telephone = telephones;
telephone->type '= DS_ATTRIBUTE_VALUES;
telephone++)

{
if (telephone->type I= DS_ATTRIBUTE_VALUES

|| (telephone->syntax & OM_S_SYNTAX) !=
OM_S_PRINTABLE_STRING)

{

(void) fprintf(stderr, "malformed telephone number\n");
exit(EXIT_FAILURE);

}

(void) printf("Telephone number: %s\n",
telephone->value.string.elements);

}

CHECK_OM_CALL(om_delete(telephones));

The om_get() call makes a copy of all or a selected set of parts of a private object.
The copy is a service-generated public object that is accessible to the application
program. The application program extracts the list of telephone numbers from this

copy.

5.7.2.1 Required Input Parameters

The om_get()function requires the following input parameters:
A private object

» A set of exclusions

A set of OM attributes to be included in the copy

A flag to indicate whether local string processing is required
» The position of the first value to be copied (the base value)

» The position within each OM attribute that is one beyond the last attribute to be
included in the copy (indicating the scope of the copy)

OSF® DCE Application Development Guide — Directory Services 5-51

GDS Application Programming

5-52

The om_get()call returns the following output parameters:
» The public object that is a copy of the private object

» The number of OM attribute descriptors returned in the public object
In the code fragment froraxample.h the private objectesult is input toom_get()

The next parameter, thexclusiongarameter, reduces the copy to a prescribed portion
of the original. The exclusions apply to the OM attributes of the object, but not to
those of subobjects. The possibilities for determining the combinations of types,
values, subobjects, and descriptors to be excluded depend on the creativity of the
programmer. For a detailed description of all the exclusion possibilities, refer to the
OSF DCE Application Development Referencehe values chosen for them_get()

calls inexample.hare simplified for clarity. These exclusion values are as follows:

« OM_EXCLUDE_ALL_BUT_THESE_TYPES
« OM_EXCLUDE_SUBOBJECTS

Each value indicates an exclusion, as definedioy get() and is chosen from the set

of exclusions; alternatively, the single valo®&_NO_EXCLUSIONS may be chosen,

which selects the entire object. Each value, exd@pt NO_EXCLUSIONS, is
represented by a distinct bit, the presence of the value being represented as 1, and
its absence as 0 (zero). Multiple exclusions are requested by adding or ORing the
values that indicate the individual exclusions.

OM_EXCLUDE_ALL_THESE_TYPES indicates that the OM attributes included

are only the ones defined in the list of included types supplied in the next parameter,
entry_list OM_EXCLUDE_SUBOBJECTS indicates that, for each value whose
syntax iSOM_S_OBJECT, a descriptor containing an object handle for the original
private subobject is returned, rather than a public copy of it. This handle makes
that subobject accessible for use in subsequent function calls. Exclusion provides a
means to examine an object one level at a time. The object the handle points to is
used in the nexom_get()call to get the next level.

The entry_list parameter is declared iexample.h as data typeOM_type and
initialized as a two-cell array with valueBS _ENTRY and a NULL terminator.
DS_ENTRY specifies the single OM attribute type included for tbat_get() call.

This call only limits processing to the one directory entry; only one entry was defined
previously in the program — the distinguished namePeter Piper. The 0 (zero)
marks the end of the OM attribute list.

OSF® DCE Application Development Guide — Directory Services

XOM Programming

The next paramete@M_FALSE, indicates that mapping to a local string format is
not required. The next two parameters set the initial and limiting value to O (zero),
meaning that no specific values are to be excluded.

The final two parameters are output parametegstry, a pointer to a service-generated
public object deposited bpm_get() in the workspace, antbtal_num an integer.
Both entry andtotal_numare available for examination by the application program.

5.7.2.2 Extracting the Data from the Read Result

The entry parameter contains the result of processing dm_get() of the read
parameter generated by this_read() operation. A successful call tds_read()
returns an instance of OM claf¥S_C_READ_RESULTIin the private objectesult
DS_C_READ_RESULT contains the information extracted from the directory entry

of the target object. Figure 5-15 shows the relationship of some of the superclasses,
subclasses, and the OM attribute®6 C_READ_RESULT. Consider Figure 5-15

as a partial map of the contents m@sult.

Figure 5-15. The Read Result

ds_read(...&result...) | | PS_C_READ_RESULT DS_C_ATTRIBUTE_LIST|

DS_ENTRY
DS_ATTRIBUTES

DS_C_ENTRY_INFO DS_C_ATTRIBUTE
DS_FROM_ENTRY

DS, OBJECT NAME DS_ATTRIBUTE_TYPE
| DS_ATTR_VALUES

o]
o
o

other objects | DS_C_ATTRIBUTE

DS_ATTRIBUTE_TYPE
DS_ATTR_VALUES

om_get(result...)

The om_get()function call creates a public object to make the information contained
in result available to the application program. Tieatry parameter is defined as

OSF® DCE Application Development Guide — Directory Services 5-53

GDS Application Programming

data typeOM_public_object. As such, it is composed of several nested layers of
subobjects that contain entry information, OM attributes, and OM attribute values, as
shown in Figure 5-16. The series om_get() calls removes these layers of objects

to extract a list of telephone numbers.

Figure 5-16 also shows that the process of exposing the subobjects continues
while the syntax of the subobjects ©®M_S_OBJECT. In effect, example.h

is reversing the process of building up a series of public objects as input to
ds_read() namely, the distinguished name Bkter Piper and the descriptor list

for entry_information_selection

Figure 5-16. Extracting Information Using om_get()

read result handle
TR

om_get

I
I
I
I
v entry_information handle

M DS_ENTRY private object
OM_S_OBJECT

om_get

attribute handle
attributes DS_ATTRIBUTES —ﬂ private object

OM_S_OBJECT

I
I
I
I
I
I

telephones DS_ATRIBUTE_

VALUES "+49 89 636 12345"
OM_S_PRINTABLE_
STRING

5-54 OSF® DCE Application Development Guide — Directory Services

XOM Programming

The following code fragment frorexample.cshows how the syntax of the variable
telephonesis tested for valid syntax; in this cas®M_S PRINTABLE_STRING:

for (telephone = telephones;
telephone->type '= DS_ATTRIBUTE_VALUES,;
telephone++)
{
if (telephone->type != DS_ATTRIBUTE_VALUES ||
(telephone->syntax & OM_S_SYNTAX) I=
OM_S_PRINTABLE_STRING)
{
(void) fprintf(stderr, "malformed telephone number\n");
exit(EXIT_FAILURE);
}
(void) printf("Telephone number: %s\n",
telephone->value.string.elements);

}

The preceding example determines whetkeéphonesis in a format that can be used

by the application program as string data that can be printed out, and that the syntax
is correct for a list of telephone numbers. Note that the program uses the constant
OM_S_SYNTAX to mask off the top 6 bits. These bits are special bits that are used
by XOM API. (Refer to Chapter 18 for more information on these special bits.)

5.7.2.3 Return Codes

XOM API function calls return a value of typ®M_return_code, which indicates
whether the function succeeded. If the function is successful, the value of
OM_return_code is set toOM_SUCCESS If the function fails, it returns one of
the values listed in Chapter 18. The constantsG@df_return_code are defined in

the xom.h header file.

OSF® DCE Application Development Guide — Directory Services 5-55

GDS Application Programming

5.8

5.8.1

5.8.2

5-56

XOM API Header Files

The XOM API includes the header firom.h. This header file is composed of
declarations defining the C workspace interface. It supplies type definitions, symbolic
constant definitions, and macro definitions.

XOM Type Definitions and Symbolic Constant Definitions

The xom.h header file includesypedef statements that define the data types of all
OM objects used in the interface. It also provides definitions of symbolic constants
used by the interface.

Refer to thexom.h(4xom)reference page for more information.

XOM API Macros

XOM API provides several macros that are useful in defining public objects in your
application programs. These macros are defined irxtime.h header file.

* OM_IMPORT

Makes object identifier symbolic constants available within a C source module.
« OM_EXPORT
Allocates memory and initializes object identifier symbolic constants within a C
source module.
« OM_OID_DESC
Initializes the type, syntax, and value of an OM attribute that holds an object
identifier.
« OM_NULL_DESCRIPTOR

Marks the end of a client-generated public object.
+ OMP_LENGTH

OSF® DCE Application Development Guide — Directory Services

XOM Programming

Calculates the length of an object identifier.
* OM_STRING

Creates a data value of a string data type.

5821 TheOM_EXPORT andOM_IMPORT Macros

Most application programs find it convenient to export all the names they use from
the same C source moduleOM_EXPORT allocates memory for the constants that
represent an object OM class or an object identifier, as shown in the following code
fragment fromexample.c

/* Define necessary Object Identifier constants
*/

OM_EXPORT(DS_A_COMMON_NAME)
OM_EXPORT(DS_A_COUNTRY_NAME)
OM_EXPORT(DS_A_ORG_NAME)
OM_EXPORT(DS_A_ORG_UNIT_NAME)
OM_EXPORT(DS_A_PHONE_NBR)
OM_EXPORT(DS_C_AVA)
OM_EXPORT(DS_C_DS_DN)
OM_EXPORT(DS_C_DS_RDN)
OM_EXPORT(DS_C_ENTRY_INFO_SELECTION)

In this code fragment, object identifier constants that represent OM classes defined in
the xds.h andxdsbdcp.hheader files are exported to the main program module. The
object identifier constants are definedds.h, with the OMP_O prefix followed

by the variable name for the object identifier. The constant itself provides the
hexadecimal value of the object identifier string.

The OM_EXPORT macro takes the OM class name as input and creates two new
data structures: a character string and a structure of@Mestring. The structure

of type OM_string contains a length and a pointer to a string that may be used later
in an application program by th@M_OID_DESC macro to initialize the value of an
object identifier.

OM_IMPORT marks the identifiers as external for the compiler. It is used if
OM_EXPORT is called in a different file from where its values are referenced.

OSF® DCE Application Development Guide — Directory Services 5-57

GDS Application Programming

5-58

OM_IMPORT is not used irexample.cbecauseOM_EXPORT is called in the file
where the object identifiers are referenced.

5.8.2.2 TheOM_OID_DESC andOMP_LENGTH Macros

The OM_OID_DESC macro initializes the type, syntax, and value of an OM attribute
that holds an object identifier; in other words, it initializ881_descriptor. It takes

as input an OM attribute type and the name of an object identifier. The object
identifier should have already been exported to the program module, as shown in the
previous section.

The output of the macro is a®M_descriptor composed of a type, syntax,
and value. The type is the name of the OM class. The syntax is
OM_S OBJECT_IDENTIFIER. The value is a two-member structure with
the length of the object identifier and a pointer to the actual object identifier string.
It is defined as a pointer teoid so that it can be used as a generic pointer; it can
point to any data type.

OM_OID_DESC callsOMP_LENGTH to calculate the length of the object identifier
string.

The following code fragment fromxom.h shows the OM_OID _DESC and
OMP_LENGTH macros:

/* Private macro to calculate length

* of an object identifier

*/

#define OMP_LENGTH(oid_string) (sizeof(OMP_O_##oid_string)-1)

/* Macro to initialize the syntax and value
* of an object identifier
*/
#define OM_OID_DESC(type, oid_name)
{ (type), OM_S_OBJECT_IDENTIFIER_STRING,
{ OMP_LENGTH(oid_name) , OMP_D_##oid_name } }

OSF® DCE Application Development Guide — Directory Services

XOM Programming

5.8.2.3 TheOM_NULL_DESCRIPTOR Macro

The OM_NULL_DESCRIPTOR macro marks the end of a client-generated
public object by setting the type, syntax, and valueQdl_NO_MORE_TYPES,
OM_S NO_MORE_SYNTAXES, and a value of zero length and a NULL string,
respectively.

5.8.24 TheOM_STRING Macro

The OM_STRING macro creates a string data value. Data strings are of type
OM_string, as shown in this code fragment from thkem.h header file:

[* String */

typedef struct {

OM_string_length length;

void *elements;
} OM_string;
#define OM_STRING(string) \

{ (OM_string_length)(sizeof(string)-1), string }

A string is specified in terms of its length or whether or not it terminates with a NULL.
OM_string_length is the number of octets by which the string is represented, or it is
the OM_LENGTH_UNSPECIFIED value if the string terminates with a NULL.

The bits of a bit string are represented as a sequence of octets. The first octet stores
the number of unused bits in the last octet. The bits in the bit string, beginning with
the first bit and proceeding to the trailing bit, are placed in bits 7 to O of the second
octet. These are followed by bits 7 to 0 of the third octet, then by bits 7 to 0 of each
octet in turn, followed by as many bits as are required of the final octet commencing
with bit 7.

OSF® DCE Application Development Guide — Directory Services 5-59

Chapter 6

XDS Programming

The XDS API defines an application programming interface to directory services in the
X/Open Common Applications Environment as defineKi@pen Portability Guide

This interface is based on the 1988 CCITT X.500 Series of Recommendations and
the 1SO 9594 Standard. This joint standard is referred to from this point on simply

as X.500.

This chapter describes the purpose and function of XDS API functions in a general
way. Refer to the reference pages in t®&F DCE Application Development
Referencdor complete and detailed information on specific function calls.

The sections that follow describe the following types of XDS functions:

» XDS interface management functions

These functions interact with the XDS interface

« Directory connection management functions

These functions initiate, manage, and terminate connections with the directory

« Directory operation functions

OSF® DCE Application Development Guide — Directory Services 6-1

GDS Application Programming

6.1

62

These functions perform operations on a directory

Note: The DCE XDS API does not support asynchronous operations from within
the same thread. If an application requires asynchronous XDS operations,
then it should use multiple threads to achieve this functionality. Please refer
to Chapter 8 for information on using the XDS/XOM API in a multithreaded
application.

Theds_abandon(Yfunction is not supported in this release. dé_abandon()
call returns aDS_C_ABANDON_FAILED (DS _E _TOO_LATE) error.
Refer to Chapter 10 for information on abandoning directory operations.

The following names refer to the complete XDS example programs, which can be
found in Chapter 7:

* acl.c (acl.h)

» example.c(example.h

* teldir.c

XDS Interface Management Functions

XDS API defines a set of functions that only interact with the XDS interface and have
no counterpart in the directory standard definition:

* ds_initialize()
» ds_version()
» ds_shutdown()

These interface functions perform operations that involve the initialization,
management, and termination of sessions with the XDS interface service.

OSF® DCE Application Development Guide — Directory Services

XDS Programming

6.1.1 The ds_initialize() Function Call

Every application program must first calk_initialize() to establish a workspace
where objects returned by the directory service are deposited. d3haitialize()
function must be called before any other directory interface functions are called.

Theds_initialize() call returns a handle (or pointer) to a workspace. The application
program performs operations on OM objects in this workspace. OM objects created
in this workspace can be used as input parameters to the other directory interface
functions. In addition, objects returned by the directory service are deposited in the
workspace.

Within the following code fragment froraxample.¢ a workspace is initialized. (The
declaration of the variablevorkspaceand the call tods_initialize() are found in
different sections of the program.)

int main(void)

{
DS_status error; /* return value from DS functions */
OM_return_code return_code;/* return value from OM functions */
OM_workspace workspace; /* workspace for objects */
OM_private_object session; /* session for directory operations */
OM_private_object result; /* result of read operation */
OM_sint invoke_id; /* Invoke-ID of the read operation */

OM_value_position total_num; /* Number of Attribute Descriptors */

/*

* Perform the Directory operations:

* (1) Initialize the directory service and get an OM workspace.
* (2) bind a default directory session.

* (3) read the telephone number of "name".

* (4) terminate the directory session.

*

CHECK_DS_CALL((OM_object) !(workspace=ds_initialize()));

OM_workspace is a type definition in thecom.h header file defined as a pointer to
void. A void pointer is a generic pointer that may point to any data type. The
variable workspaceis declared as data typ@M_workspace The return value is

OSF® DCE Application Development Guide — Directory Services 6-3

GDS Application Programming

6.1.2

assigned to the variableorkspace and theCHECK_DS_CALL macro determines
if the call is successful. CHECK_DS_CALL is an error-handling macro that is
defined inexample.h

The ds_initialize() call returns a handle to a workspace in which OM objects can
be created and manipulated. Only objects created in this workspace can be used
as parameters to other directory interface functions. ddaenitialize() call returns

NULL if it fails.

The ds_version() Function Call

The ds_version()call negotiates features of the directory interface. These features
are collected into packages that define the scope of the service. Packages define
such things as object identifiers for directory and OM classes and OM attributes,
enumerated types, structures, and OM object constants.

XDS API defines the following packages in separate header files as part of the XDS
API software product:
« Directory service package
The directory service package contains the OM classes and OM attributes used to

interact with the directory service. This package is contained ixdseh header
file.

 Basic directory contents package
The basic directory contents package contains OM classes and OM attributes that

represent values of selected attributes and selected objects defined in the X.500
standard. This package is contained in xldsbdcp.hheader file.

Strong authentication package

The strong authentication package contains OM classes and OM attributes that
represent values of security attributes and objects defined in the X.500 standard.
This package is contained in tixdssap.hheader file.

» GDS package

OSF® DCE Application Development Guide — Directory Services

XDS Programming

The GDS package contains the OM classes and OM attributes that are required
for GDS. This package is contained in tkésgds.hheader file.

» MHS directory user package

The MHS (message handling system) directory user package contains the OM
classes and OM attributes that are required for electronic mail support. This
package is contained in th@lsmdup.h header file.

The application program, which is the client, usiss version()to negotiate the scope

of the services the directory service will provide to the client. dé version()
function call includes a list of features (or packages) that the client wants to include
as part of the interface. The features are object identifiers that represent packages
supported by the DCE XDS API. The service returns a list of Boolean values to
indicate whether or not the package was successfully negotiated.

These features are assigned to the workspace that an application program initialized
(as described in Section 6.1.1). In addition, an application program must include the
header files for the appropriate packages as part of the source code.

It is not necessary to negotiate the directory service package. It it a mandatory
requirement for XDS API, and as such it is included by default. The other packages
listed previously are optional and require negotiation by usisgversion()

The following code fragment froracl.h shows how an application builds up an array
of object identifiers for the optional packages to be negotiated: the basic directory
contents package and the GDS package.

static DS_feature features[] = {
{ OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE 1},
{ OM_STRING(OMP_O_DSX_GDS_PKG), OM_TRUE 1},
{0}

I3

The OM_STRING macro is provided for creating a data value of data type
OM_string for octets strings and characters. The array of object identifiers is stored
in features the input parameter tds_version() as shown in the following code
fragment fromacl.c

OSF® DCE Application Development Guide — Directory Services 6-5

GDS Application Programming

6.1.3

6.2

6.2.1

66

/* Negotiate the use of the BDCP and GDS packages. */

if (ds_version(features,workspace) != DS_SUCCESS)
printf("ds_version() error\n");

The ds_shutdown() Function Call

The ds_shutdown() call deletes the workspace established dsy initialize() and
enables the directory service to release resources. No other directory functions that
reference that workspace may be called after this function.

The following code fragment froracl.c demonstrates how the application closes the
directory workspace by performingds_shutdown()call.

/* Close the directory workspace. */

if (ds_shutdown (workspace) = DS_SUCCESS)
printf ("ds_shutdown() error \n");

Directory Connection Management Functions

The following subsections describe the XDS functions that initiate, manage, and
terminate connections with the directory service.

A Directory Session

A directory session identifies the DSA to which a directory operation is sent. It
also defines the characteristics of a session, such as the distinguished name of the
requestor.

An application program can request a session with specific OM attributes tailored

for the program’s requirements. The application passes an instance of OM class
DC_C_SESSIONwith the appropriate OM attributes, or it uses the default parameters

OSF® DCE Application Development Guide — Directory Services

XDS Programming

by passing the constaitS _DEFAULT_SESSIONas a parameter to thes_bind()
function call.

6.2.2 The ds_bind() Function Call

The ds_bind() call establishes a session with the directory. T bind() call
corresponds to th®irectoryBind function in the Abstract Service defined in the
X.500 standard.

When ads_bind() call completes successfully, the directory returns a pointer to an
OM private object of OM clas®C_C_SESSION This parameter is then passed as
the first parameter to most interface function calls untdsaunbind() is called to
terminate the directory session.

XDS API supports multiple concurrent sessions so that an application can interact with
the directory service by using several identities, and interact directly and concurrently
with different parts of the directory service.

The following code fragment froraxample.cshows how an application binds to the
GDS server (without credentials) by using the default session:

CHECK_DS_CALL(ds_bind(DS_DEFAULT_SESSION, workspace, &session));

If a user wants to do an authenticated bind and/or wants to specify the directory
identifier, an instance of OM claf3SX_C_GDS_SESSIONrom the GDS package

is required. DSX_C_GDS_SESSIONdentifies a particular link from an application

to a DSA. SinceDSX_C_GDS_SESSIONSs a subclass of the standard OM class for

a sessionDS_C_SESSIONIt may be passed as a parameter to an XDS API function,
such agds_bind(), wherever a standard session is expected.

The following code fragment fronacl.c shows how an application performs an
authenticated bind to the GDS:

/*

* Create a default session object.

*/

if ((rc = om_create(DSX_C_GDS_SESSION,OM_TRUE,workspace,&session))
1= OM_SUCCESS)

OSF® DCE Application Development Guide — Directory Services 6—7

GDS Application Programming

printf("om_create() error %d\n", rc);

/*
* Alter the default session object to include the following
* credentials:
* requestor: /C=de/O=sni/OU=ap/CN=norbert

* password: "secret"
* authentication mechanism: simple
*

if ((rc = om_put(session, OM_REPLACE_ALL, credentials, 0 ,0, 0))
I= OM_SUCCESS)
printf("om_put() error %d\n", rc);

/*

* Bind with credentials to the default GDS server.

* The returned session object is stored in the private object

* variable bound_session and is used for all further XDS

* function calls.

*/

if (ds_bind(session, workspace, &bound_session) != DS_SUCCESS)
printf("ds_bind() error\n");

The program creates a default session object by using the XOM API function
om_create()and alters the default session object by usoamg_put(). The bind
credentials are initialized in the following code fragment from éxample.hheader

file included in the main program module:

/* The following descriptor list specifies
* the bind credentials
*/

static OM_descriptor credentials[]] = {

{DS_REQUESTOR, OM_S_OBJECT, {0, dn_norbert} },
{DSX_PASSWORD, OM_S_OCTET_STRING, OM_STRING("secret")},
{DSX_AUTH_MECHANISM, OM_S_ENUMERATION, {DSX_SIMPLE,0}},
OM_NULL_DESCRIPTOR

I3

6-8 OSF® DCE Application Development Guide — Directory Services

XDS Programming

The credentialsparameter is provided as an input parameter tatheput() function
call to modify the existing session object in the directory service. A private object that
is used for all subsequend directory calls is returned to the workspaoenbgput().

6.2.3 The ds_unbind() Function Call

Theds_unbind() call terminates a directory session and makesstesiorparameter
unavailable for use with other interface functions. However, the unbound session can
be modified by OM functions and used again as a parametés tbind(). When the
sessionparameter is no longer needed, it should be deleted by using OM functions
such asom_delete()

The following code fragment frorexample.cshows how the application closes the
connection to the GDS server by usidg_unbind():

/* Close the connection to the GDS server. */

if (ds_unbind(bound_session) = DS_SUCCESS)
printf("ds_unbind() error\n");

The ds_unbind() call corresponds to thBirectoryUnbind function in the Abstract
Service defined in the X.500 standard.

6.2.4 Automatic Connection Management

The XDS implementation does not support automatic connection management.
A DSA connection is established wheis_bind() is called and released when
ds_unbind() is called.

6.3 XDS Interface Class Definitions

The XDS interface class definitions are described in detail in Chapter 11. The OM
attribute types, syntax, and values and inheritance properties are described for each
OM class.

OSF® DCE Application Development Guide — Directory Services 6-9

GDS Application Programming

6.3.1

6.3.2

6-10

A good way to begin to understand how the OM class hierarchy is structured and the
relationship between OM classes and OM attributes to the service provided by the
directory service package is to look up one of the OM classes listed in Chapter 11.

Example: The DS_C _FILTER Class

For example,DS_C_FILTER inherits the OM attributes from its superclass
OM_C_OBJECT, as do all OM classes. OM_C OBJECT, as defined in
Chapter 19, has one OM attribut®M_CLASS, which has the value of an object
identifier string that identifies the numeric representation of the object's OM class.
DS_C_FILTER, on the other hand, has several OM attributes.

The purpose ofDS_C_FILTER is to select or reject an object on the basis of
information in its directory entry. It has the following OM attributes:

« DS_FILTER_ITEMS
- DS_FILTERS
. DS_FILTER_TYPE

Two of these OM attributesDS _FILTER _ITEMS and DS_FILTERS, have
values that are OM object classes themselves. The value of the OM attribute
DS_FILTER_ITEMS is DS _C FILTER ITEM, which is an OM class.
DS_C _FILTER_ITEM is a component of a filter and defines the nature of the
filter. The value of the OM attribut®S_FILTERS is DS_C_FILTER, an OM
class. Thus,DS_FILTERS defines a collection of filters. The OM attribute
DS_FILTER_TYPE has a value that is an enumerated type, which takes one of the
valuesDS_AND, DS_OR or DS _NOT.

Refer to Figure 6-3 for a description of the relationshipli_C_FILTER to its
superclas©M_C_OBJECT and its attributes.

The DS_C_CONTEXT Parameter

The OM classDS_C_CONTEXT is the second parameter to every directory
service request. DS_C_CONTEXT defines the characteristics of the directory
service interaction that are specific to a particular directory service operation.

OSF® DCE Application Development Guide — Directory Services

XDS Programming

These characteristics are divided into three categories of OM attributes: common
parameters, service controls, and local controls.

Common parameters affect the processing of each directory service operation.

Service controls indicate how the directory service should handle requests. Included
in this category are decisions about whether or not chaining is permitted, the priority
of requests, the scope of referral (to DSAs within a country or within a DMD), and
the maximum number of objects about which a function should return information.

Local controls include asynchronous support and automatic continuation; XDS
does not currently support asynchronous operations from within the same thread.
Applications requiring asynchronous use of the XDS/XOM API should use threads as
defined in Chapter 8.

6.4 Directory Class Definitions

The X.500 standards define a number of attribute types and classes. These definitions
allow the creation and maintenance of directory entries for a humber of common
objects so that the representation of all such objects is the same throughout the
directory. The basic directory contents package contains OM classes and OM
attributes that model the X.500 attribute types and classes.

The X.500 object classes and attributes are defined in the following documents
published by CCITT. These are the objects and the associated attributes that will
be the targets of directory service operations in your application programs:

» The Directory: Selected Attributes Types (Recommendation X.520)
» The Directory: Selected Object Classes (Recommendation X.521)
Table 6-1 describes the OM classes, OM attributes, and their object identifiers that

model the X.500 objects and attributes. (See Chapter 12 for more tables with the
same type of information.)

OSF® DCE Application Development Guide — Directory Services 6-11

GDS Application Programming

Table 6-1. Representation of Values for Selected Attribute Types
Attribute Type OM Value Syntax Value Multi- Matching
Length valued Rules
DS_A ALIASED_ Object{DS_C_NAME) — no E
OBJECT_NAME
DS_A BUSINESS_ StringOM_S_ 1-128 yes E, S
CATEGORY TELETEX_STRING)
DS_A COMMON_ StringOM_S_ 1-64 yes E, S
NAME TELETEX_STRING)
DS_A COUNTRY_ StringOM_S_ 2 no E
NAME PRINTABLE_
STRING)?!
DS_A DESCRIPTION | StringlOM_S_ 1-1024 yes E, S
TELETEX_STRING)
1 As permitted by ISO 3166.

6-12

The tables in Chapter 12 contain similar categories of information as do similar
tables for the attributes defined in the directory service package. These information
categories include the following:

* OM Value Syntax
» Value Length
* Multivalued
» Matching Rules
The OM Value Syntax column describes the structure of the values of an OM attribute.

The Value Length column gives the range of lengths permitted for the string types.
The Multivalued column indicates whether the attribute can have multiple values.

The CCITT standards define matching rules that are used for determining whether two
values are equal, for ordering two values, or for identifying one value as a substring
of another in directory service operations. These are indicated in the Matching Rules
column.

OSF® DCE Application Development Guide — Directory Services

XDS Programming

6.5

6.5.1

6.5.2

The GDS administrator maintains the directory service and determines the structure
of the DIT as defined by the GDS schema. The GDS standard (or default) schema
is based on the recommendations in the CCITT documents mentioned previously.

Recall that the structure rule table (SRT) of the GDS schema defines the structure
of the DIT, the object class table (OCT) defines class inheritance properties, and the
attribute table (AT) defines the mandatory and optional attributes for each class. You
will find it useful to familiarize yourself with the existing schema when developing an
application program that will access the directory. This is because the public objects
that your programs will create (by using OM classes and OM attributes) are modeled
after objects and attributes in the directory.

The GDS Package

The GDS software provides functional extensions to the standard in the following
areas:

» Authentication
» Access control

* DUA cache

Authentication

An instance of OM clas®SX_C_GDS_SESSIONdentifies a particular link from

an application program to a DSA. This additional OM class is necessary if the user
either wants to specify use of an authentication mechanism (for example, a password),
or wants to specify a directory identifier.

Access Control

In addition to authentication (for example, by means of nhame and password), access
protection is required for each object at the attribute level. A telephone number,
for example, is an attribute that generally everybody is allowed to read. However,
an attribute value such asuserpasswordisually has restricted access. In addition,

OSF® DCE Application Development Guide — Directory Services 6-13

GDS Application Programming

6-14

even for attributes that everyone is allowed to read, it may only be acceptable for a
small number of people to have authorization to change the values.

Because there can be a multitude of different attributes in the DIT, it is too
expensive to define a protection mechanism for each individual attribute type. The
directory attributeDSX_A_ACL is present for each entry in the DIT. Its syntax is
ObjectDSX_C_GDS_ACL), referencing the GDS claf3SX_C_GDS_ACL These

OM classes and attributes have been added to the directory service to specify the
category of access to the individual attributes that are granted to users. There are
three categories of access: public, standard, and sensitive.

DSX_C_GDS_ACL has five OM attributes that define the read and modify access
rights for each of these categories (read access is granted to all users; modify access
implicitly grants read access):

+ DSX_MODIFY_PUBLIC
Specifies the user, or group of users, that can modify attributes classified as public
attributes

« DSX_READ_STANDARD
Specifies the user, or group of users, that can read attributes classified as standard
attributes

+ DSX_MODIFY_STANDARD
Specifies the user, or group of users, that can modify attributes classified as
standard attributes

« DSX_READ_SENSITIVE
Specifies the user, or group of users, that can read attributes classified as sensitive
attributes

 DSX_MODIFY_SENSITIVE

Specifies the user, or group of users, that can modify attributes classified as
sensitive attributes

OSF® DCE Application Development Guide — Directory Services

XDS Programming

6.5.3

The ACL of the default schema has no access rights when GDS is configured. Every
user, including the anonymous user, has read and modify access to all attributes in
the schema.

A master entry can be created only by the user who has write access to the naming
attribute of the parent node. Thus, the user can create all attributes of the entry.
Using the ACL class, the user can establish which objects can be accessed. If the
user does not enter an ACL attribute when creating an entry, GDS automatically uses
the ACL attribute of the parent node for the new entry.

A master entry can only be deleted by users who have write access to the naming
attribute of the entry to be deleted.

A shadow entry created by means of shadow handling (refer t®©®ie DCE GDS
Administration Guide and Refererjdeas the same ACL attribute as the corresponding
master entry. This entry can therefore only be modified and deleted by the user who
can also modify and delete the master entry.

DUA Cache

To further optimize access times, frequently requested information is automatically
loaded to a section of memory in the client computer, the DUA cache, and can be
overwritten again if it is not used within a certain interval of time. The cache may
be periodically updated. The GDS administration program specifies the period. It
can also specify that certain data is never written to the cache, or that certain data
that is transferred must under no circumstances be deleted, unless it is deleted by the
user. Because the DUA cache is not subject to any access control, GDS ensures that
only the information that everybody is allowed to read is stored.

The GDS package includes the OM claB$X_C_GDS_CONTEXT to support
additional service controls for caching.DSX_C_GDS_CONTEXT is a subclass

of DS_C_CONTEXT. As such, it inherits all the standard X.500 attributes associated
with DS_C_CONTEXT, in addition to its own OM attributes related to caching.
Refer to Chapter 4 for more information on how to manage the DUA cache by using
XDS.

OSF® DCE Application Development Guide — Directory Services 6-15

GDS Application Programming

6.5.4

6.6

6-16

Advanced Administration Operations

GDS makes use of three operational attributes:

* DSX_A_MASTER_KNOWLEDGE

Contains the distinguished name of the DSA that holds the master copy of a
specific entry

« DSX_A_ACL

Used for GDS access control
» DS_A_USER_PASSWORDattribute of aDS_O_DSAobject class

Used by the GDS shadowing mechanism.

The DSX_A MASTER_KNOWLEDGE and DSX_A_ACL attributes are
present in every GDS entry. When an application requests all attributes,
it may prevent any of these three attributes from being returned by
setting the DSX PREFER_ADM_FUNCS service control (OM class
DSX_C_GDS_CONTEXT) to OM_FALSE. Certain GDS applications, such

as GDS administration, may need these attributes. They can achieve this by setting
this service control t®M_TRUE.

Directory Operation Functions

The X.500 standard defines the operations provided by the directory in a document
called theAbstract Service Definition DCE implements this standard with XDS API
functions calls. The XDS API functions allow an application program to interact
with the directory service. The standard divides these interactions into three general
categories: read, search, and modify.

The XDS API functions correspond to the Abstract Service functions defined in the
X.500 standard, as shown in Table 6-2.

OSF® DCE Application Development Guide — Directory Services

XDS Programming

Table 6-2. Mapping of XDS API Functions to the Abstract Services

XDS Function Call

Equivalent Abstract Service

ds_read()
ds_compare()
ds_list()
ds_search()
ds_add_entry()
ds_remove_entry()
ds_modify_entry()
ds_modify_rdn()

Read
Compare

List

Search
AddEntry
RemoveEntry
ModifyEntry
ModifyRDN

6.7 Directory Read Operations

Read functions retrieve information from specific named entries in the directory where
names are mapped to attributes. This is analogous to looking up some information
about a name in the “White Pages” phone directory.
XDS API implements the following read functions:
» ds_read()
The requestor supplies a distinguished hame and one or more attribute types. The
value(s) of requested attributes or just the attribute type(s) is returned by the DSA.
» ds_compare()
The requestor gives a distinguished hame and an attribute value assertion (AVA).

If the AVA is TRUE for the named entry, a value of TRUE is returned by the
DSA.

For example, a typical read operation could request the telephone number of a
particular employee. A read request would submit the distinguished name of the

OSF® DCE Application Development Guide — Directory Services 6-17

GDS Application Programming

6.7.1

6.7.2

6-18

employee with an indication to return its telephone numbé=us/O=sni/OU=sales/
CN=John Smith.

Reading an Entry from the Directory

The following sections describe a typical read operation by usingdtheead()
function call. They include a description of tasks directly related to the read operation.
They do not include service-related tasks such as initializing the interface, allocating
an OM workspace, and binding to the directory. These tasks are described in Section
6.1. The following sections also do not describe the process of extracting information
from the workspace by using XOM functions. Refer to Chapter 5 for a description
of how to use XOM functions to access the workspace.

A typical read operation involves the following steps:

1. Define the necessary object identifier constants for the OM classes and OM
attributes that will define public objects for input ts_read() by using the
OM_EXPORT macro.

2. Declare the variables that will contain the output from the XDS functions to be
used in the application.

3. Build public objects (descriptor lists) for thameparameter tals_read()

4. Create a descriptor list for treelectionparameter tals_read()that selects the
type and scope of information in your request.

5. Perform the read operation.
These steps are demonstrated in the following code fragmentsexample.c(refer

to Chapter 7 for a complete program listing). The program reads the telephone
numbers of a given target entry.

Step 1: Export Object Identifiers for Required Directory
Classes and Attributes

Most application programs find it convenient to export all the names they use from
the same C source module. In the following code fragment fextample.¢ the

OSF® DCE Application Development Guide — Directory Services

XDS Programming

OM_EXPORT macro allocates memory for the constants that represent the OM
object classes and directory attributes required for the read operation:

/* Define necessary Object Identifier constants
*/

OM_EXPORT(DS_A_COMMON_NAME)
OM_EXPORT(DS_A_COUNTRY_NAME)
OM_EXPORT(DS_A_ORG_NAME)
OM_EXPORT(DS_A_ORG_UNIT_NAME)
OM_EXPORT(DS_A_PHONE_NBR)
OM_EXPORT(DS_C_AVA)
OM_EXPORT(DS_C_DS_DN)
OM_EXPORT(DS_C_DS_RDN)
OM_EXPORT(DS_C_ENTRY_INFO_SELECTION)

The OM_EXPORT macro performs the following steps:

1. It defines a character array call@MP_D_ concatenated with thelass_name
input parameter.

2. It initializes this array to the value of a character string cal@MP_O
concatenated with thelass_naménput parameter. This value has already been
defined in a header file.

3. It defines arOM_string data structure as thdass_nameénput parameter.

4. It initializes theOM_string data structure’s first component to the length of the
array initialized in Step 2, and initializes the second component to a pointer to
the value of the array initialized in Step 2.

6.7.3 Step 2: Declare Local Variables

The local variablesessionresult andinvoke_idare defined in the following code
fragment fromexample.c

int main(void)

{

DS_status error; /* return value from DS functions */
OM_return_code return_code;/* return value from OM functions */
OM_workspace workspace; /* workspace for objects */

OSF® DCE Application Development Guide — Directory Services 6-19

GDS Application Programming

6.7.4

620

OM_private_object session; /* session for directory operations*/
OM_private_object result; /* result of read operation */
OM_sint invoke_id; /* Invoke-ID of the read operation */

OM_value_position total_num; /* Number of Attribute Descriptors */

These data types are defined inypedef statement in thexom.h header file. The
sessiorandresultvariables are defined as data typ®_private_object because they

are returned bys bind() andds_read() respectively, to the workspace as private
objects. Since asynchronous operations (within the same thread) are not supported,
theinvoke_idfunctionality is redundant. Thiavoke_idparameter must be supplied to

the XDS functions as described in txSF DCE Application Development Reference

but its return value should be ignored.

Values inerror andreturn_codeare returned by XOM and XDS functions to indicate
whether a call was successful. Twerkspacevariable is defined a®M_workspace

and is used when establishing an OM workspace. Ot _numvariable is defined
asOM_value_positionto indicate the number of attribute descriptors returned in the
public object byom_get() based on the inclusion and exclusion parameters specified.

Step 3: Build Public Objects

A ds_read()function call can take a public object as an input parameter. A public
object is generated by an application program and contains the information required
to access a target directory object. This information includes the AVAs and RDNs
that make up a distinguished name of an entry in the directory.

A public object is created by using OM classes and OM attributes. These OM classes
and OM attributes model the target object entry in the directory and provide other
information required by the directory service to access the directory. In this case,
the target object entry in the directory is the entry Rater Piper.

Chapter 5 describes how to create the required public objects fodgheead()
function call by using macros and data structures defined in the XDS and XOM
API header files.

The purpose of building the public objects for AVAs and RDNSs is to provide the

public objects that represent a distinguished name. The distinguished name public

OSF® DCE Application Development Guide — Directory Services

XDS Programming

6.7.5

object is stored in the array of descriptors callegime and provided as an input
parameter to thels_read()function call.

Step 4: Create an Entry-Information-Selection Parameter

The distinguished name féteter Piperis an entry in the directory that the application

is designed to access. Thkelectionparameter of thels_read()function call tailors

its results to obtain just part of the required entry. Information on all attributes, no
attributes, or a specific group of attributes can be chosen. Attribute types are always
returned, but the attribute values need not be.

The value of the parameter is a public object (descriptor list) that is an instance of OM
classDS_C_ENTRY_INFO_SELECTION, as shown in the following code fragment
from example.c

/*

* Public Object ("Descriptor List") for

* Entry-Information-Selection

* parameter to ds_read().

*/

OM_descriptor selection[] = {

OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),

{ DS_ALL_ATTRIBUTES, OM_S BOOLEAN, { OM_FALSE, NULL } },
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A PHONE_NBR),
{ DS_INFO_TYPE,OM_S_ENUMERATION,

{ DS_TYPES_AND_VALUES,NULL } },

OM_NULL_DESCRIPTOR

h

DS_C_ENTRY_INFO_SELECTION is a subclass of OM_C_OBJECT.
(This information is supplied in the description of this class in Chapter
11)) As such, DS_C_ENTRY_INFO_SELECTION inherits the OM
attributes of OM_C_OBJECT. The only OM attribute of OM_C_OBJECT

is OM_CLASS. OM_CLASS identifies an object’'s class, which in this case
is DS_C_ENTRY_INFO_SELECTION. DS_C_ENTRY_INFO_SELECTION
identifies information to be extracted from a directory entry and has the following
OM attributes:

* OM_C_CLASS (inherited fromOM_C_OBJECT)

OSF® DCE Application Development Guide — Directory Services 621

GDS Application Programming

6-22

« DS_ALL_ATTRIBUTES
« DS_ATTRIBUTES_SELECTED
« DS_INFO_TYPE

As part of ads_read() or ds_search()function call, DS_ALL_ATTRIBUTES
specifies to the directory service those attributes of a directory entry that are relevant
to the application program. It can take the val@sl_TRUE or OM_FALSE.
These values are defined to be of syn@aM_S BOOLEAN. The valueOM_TRUE
indicates that information is requested on all attributes in the directory entry. The
value OM_FALSE, used in the preceding sample code fragment, indicates that
information is only requested on those attributes that are listed in the OM attribute
DS_ATTRIBUTES_SELECTED.

DS_ATTRIBUTES_SELECTED lists the types of attributes in the entry from
which information is to be extracted. The syntax of the value is specified as
OM_S_OBJECT_IDENTIFIER_STRING .

OM_S OBJECT_IDENTIFIER_STRING contains an octet string of BER-encoded
integers, which are decimal representations of object identifiers of the types of
attributes in the attribute list. In the preceding code fragment, the string value is
the attribute nam®S_A_PHONE_NBR because the purpose of the read call is to
read a list of telephone numbers from the directory.

DS_INFO_TYPE identifies what information is to be extracted from each attribute
identified. The syntax of the value is specified as Erd#&(Information_Type).
DS_INFO_TYPE is an enumerated type that has two possible values:
DS TYPES ONLY and DS_TYPES_AND VALUES DS_TYPES_ONLY
indicates that only the attribute types of the selected attributes in the entry are
returned by the directory service operatioS_TYPES_AND_VALUES indicates

that both the attribute types and the attribute values of the selected attributes in the
entry are returned. The code fragment fremample.cshown previously defines the
value of DS_INFO_TYPE as DS_TYPES_AND_VALUES because the program
wants to get the actual telephone numbers.

OSF® DCE Application Development Guide — Directory Services

XDS Programming

6.7.6 Step 5: Perform the Read Operation

The following code fragment fromaxample.cshows theds_read()function call and
the XDS calls that precede it:

/*

* Perform the Directory operations:

* (1) Initialize the directory service

* and get an OM workspace.

* (2) bind a default directory session.

* (3) read the telephone number of "name".
* (4) terminate the directory session.

*/

CHECK_DS_CALL((OM_object) !(workspace = ds_initialize()));
CHECK_DS_CALL(ds_version(bdcp_package, workspace));

CHECK_DS_CALL(ds_bind(DS_DEFAULT_SESSION, workspace,
&session));

CHECK_DS_CALL(ds_read (session, DS _DEFAULT_CONTEXT,
name, selection, &result, &invoke_id));

CHECK_DS_CALL is an error-checking macro defined in theample.hheader file

that is included byexample.c The ds_read() call returns a return code of type
DS_statusto indicate whether or not the read operation completed successfully. If
the call was successfulls_read()returns the valu®S_SUCCESSIf the call fails,

it returns an error code. (Refer to Chapter 11 for a comprehensive list of error
codes.) CHECK_DS_CALL interprets this return value and returns successfully to
the program or branches to an error-handling routine.

The session input parameter is a private object generated Og_bind()

prior to the ds read() call, as shown in the preceding code fragment.
DS_DEFAULT_CONTEXT describes the characteristics of a directory service
interaction. Most XDS API function calls require these two input parameters
because they define the operating parameters of a session with a GDS server.
(Sessions are described in Section 6.2.1; contexts are described in Section 6.3.2.)

OSF® DCE Application Development Guide — Directory Services 6—23

GDS Application Programming

The result of a directory service request is returned in a private object (in this case,
resul) that is appropriate to the type of operation. The result of the operation is
returned in a single OM object. The components of the result are represented by OM
attributes in the operations result object:

« DS_C_COMPARE_RESULT

Returned byds_compare()

« DS_C_LIST_RESULT

Returned byds_list()
* DS_C_READ_RESULT

Returned byds_read()
* DS_C_SEARCH_RESULT

Returned byds_search()

The OM class returned bgs read() is DS _C_READ_RESULT. The OM class
returned by theds_compare()call is DS_C_COMPARE_RESULT, and so on.
(Refer to the reference pages in t&SF DCE Application Development Reference
for a description of the OM classes associated with a particular function call; refer to
Chapter 11 for full descriptions of the OM attributes, syntaxes, and values associated
with these OM classes.)

The superclasses, subclasses, and OM attribute©®rC_READ_RESULT are
shown in Figure 6-1.

624 OSF® DCE Application Development Guide — Directory Services

XDS Programming

Figure 6-1. Output from ds_read():

|

ds_read(...&result...)

KEY:

'

DS_C_READ_RESULT

DS_C_READ_RESULT
OM_CLASS

DS_ALIASED_DEREFERENCE

[DS_PERFORMER}
— DS_ENTRY

DS_C_ENTRY_INFO
OM_CLASS

S_ATTRIBUTES, ..]
DS_FROM_ENTRY

DS_OBJECT_NAME

OM_CLASS
[DS_RDNS, ..]——

DS_C_ATTRIBUTE
OM_CLASS
DS_ATTRIBUTE_TYPE

[DS_ATTRIBUTE_VALUES, ...]]

DS_C_DS_RDN
OM_CLASS
DS_AVAS,... —

v points to subobjects

BOLD OM class
BOLD and ITALICSabstract OM class

ITALICS inherited OM attribute

[1 optional OM attribute
, ... multi-valued OM attribute

i

DS_C_AVA
OM_CLASS
DS_ATTRIBUTE_TYPE

DS_ATTRIBUTE_VALUES

The result value is returned to the workspace in private implementation-specific
format. As such, it cannot be read directly by an application program, but it requires
a series obm_get()function calls to extract the requested information from it. The
following code fragment fromexample.c shows how a series odm_get() calls
extracts the list of telephone numbers associated with the distinguished name for
Peter Piper. Chapter 5 describes this extraction process in detail.

OSF® DCE Application Development Guide — Directory Services

6-25

GDS Application Programming

/*

* extract the telephone number(s) of "name" from the result
*

* There are 4 stages:

* (1) get the Entry-Information from the Read-Result.

* (2) get the Attributes from the Entry-Information.

* (3) get the list of phone numbers.

* (4) scan the list and print each number.

*/

CHECK_OM_CALL(om_get()(result,
OM_EXCLUDE_ALL_BUT_THESE_TYPES
+ OM_EXCLUDE_SUBOBJECTS,
entry_list, OM_FALSE, 0, 0, &entry,
&total_num));

CHECK_OM_CALL(om_get()(entry->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES
+ OM_EXCLUDE_SUBOBJECTS,
attributes_list, OM_FALSE, 0, 0, &attributes,
&total_num));

CHECK_OM_CALL(om_get()(attributes->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES
+ OM_EXCLUDE_SUBOBJECTS,
telephone_list, OM_FALSE, 0, 0, &telephones,
&total_num));

6.8 Directory Search Operations

Search functions can be used to browse through the Directory Information Tree (DIT).
For example, a search request could supply the distinguished name of an entry and
request a list of the distinguished names of the children of that entry.

XDS API implements the following search operations:

* ds_list()

6—26 OSF® DCE Application Development Guide — Directory Services

XDS Programming

The requestor supplies a distinguished name. The directory service returns a list
of the immediate subordinates of the named entry.

ds_search()

The requestor supplies a search criterion known didtex. The user names

a subtree of the DIT, specifies some target attribute types, and formulates an
expression by combining a number of attributes by using logical AND, OR, or
NOT operators. The directory service returns information from all of the entries
within the specified portion of the DIT that matches the filter. Section 6.8.6
includes a description of how filters are usedati.c.

6.8.1 Searching the Directory

This section describes a typical search operation by usingisheearch()function

call. It only includes the tasks directly related to the search operation and does not
include tasks related to the XDS interface or other directory operations.

A typical search operation involves the following steps:

1. Using theOM_EXPORT macro, define the necessary object identifier constants
for the OM classes and OM attributes that will define public objects for input to
ds_search()

2. Declare the variables that will contain the output from the XDS functions that
will be used in the application.

3. Build public objects (descriptor lists) for theameparameter tals_search()
4. Specify the portion of the DIT to be searched.

5. Create a descriptor list for thidter parameter tads_search()that designates
which entries are to be eliminated from the search.

6. Create a descriptor list for ttemlectionparameter tals_search()that selects the
type and scope of information in your request.

7. Perform the search operation.
These steps are demonstrated in the following code fragments dgdin The

program includes a search operation. In order to perform the operation, the program
assumes the directory contains the subtree shown in Figure 6-2.

OSF® DCE Application Development Guide — Directory Services 627

GDS Application Programming

Figure 6-2. Subtree for the acl.h Sample Program

O c=de
(objectClass=Country,
ACL=(mod-pub: *
mod-std: *
read-std: *
mod-sen: *))

O O=sni
(objectClass=Organization,
ACL=(mod-pub: /C=de/O=sni/OU=ap/*
ACL=(read-std: /C=de/O=sni/OU=ap/CN=stefanie
ACL=(mod-std: /C=de/O=sni/OU=ap/CN-stefanie
ACL=(read-sen: /C=de/O=sni/OU=ap/CN=stefanie
ACL=(mod-sen: /C=de/O=sni/OU=ap/CN-stefanie

D) OU=ap
(objectClass=OrganizationalUnit,
ACL=(mod-pub: /C=de/O=sni/OU=ap/*
ACL=(read-std: /C=de/O=sni/OU=ap/CN=Stefanie
ACL=(mod-std: /C=de/O=sni/OU=ap/CN=Stefanie
ACL=(read-sen: /C=de/O=sni/OU=ap/CN=Stefanie
ACL=(mod-sen: /C=de/O=sni/OU=ap/CN=Stefanie))

O cN=stefanie O CN=ingrid
(objectClass=OrganizationalPerson, (objectClass=OrganizationalPerson,

ACL=(mod-pub: /C=de/O=sni/OU=ap/* ACL=(mod-pub: /C=de/O=sni/OU=ap/*
read-std: /C=de/O=sni/OU=ap/* read-std: /C=de/O=sni/OU=ap/*
mod-std: /C=de/O=sni/OU=ap/CN=Stefanie mod-std: /C=de/O=sni/OU=ap/CN=Stefanie
read-sen: /C=de/O=sni/OU=ap/* read-sen: /C=de/O=sni/OU=ap/*
mod-sen: /C=de/O=sni/OU=ap/CN=Stefanie) mod-sen: /C=de/O=sni/OU=ap/CN=Stefanie)

surname="Schmid" surname="Schmid"

telephone="+49 89 636 0" telephone="+49 89 636 0"
userPassword="secret") userPassword="secret")

O CN=norbert
(objectClass=OrganizationalPerson,
ACL=(mod-pub: /C=de/O=sni/OU=ap/*
read-std: /C=de/O=sni/OU=ap/*
mod-std: /C=de/O=sni/OU=ap/CN=Stefanie
read-sen: /C=de/O=sni/OU=ap/*
mod-sen: /C=de/O=sni/OU=ap/CN=Stefanie)
surname="Schmid"
telephone="+49 89 636 0"
userPassword="secret")

6—28 OSF® DCE Application Development Guide — Directory Services

XDS Programming

6.8.2 Step 1: Export Object Identifiers

Most application programs find it convenient to export all the names they use from
the same C source module. In the followiagl.c fragment, theOM_EXPORT

macro allocates memory for the constants that represent the object OM classes and
OM attributes required for the search operation:

/* The application must export the object identifiers it */
/* requires. */

OM_EXPORT (DS_C_AVA)
OM_EXPORT (DS_C_DS_RDN)
OM_EXPORT (DS_C_DS_DN)
OM_EXPORT (DS_C_ENTRY_INFO_SELECTION)
OM_EXPORT (DS_C_ATTRIBUTE)
OM_EXPORT (DS_C_ATTRIBUTE_LIST)
OM_EXPORT (DS_C_FILTER)
OM_EXPORT (DS_C_FILTER_ITEM)
OM_EXPORT (DSX_C_GDS_SESSION)
OM_EXPORT (DSX_C_GDS_CONTEXT)
OM_EXPORT (DSX_C_GDS_ACL)
OM_EXPORT (DSX_C_GDS_ACL_ITEM)

OM_EXPORT (DS_A_COUNTRY_NAME)
OM_EXPORT (DS_A_ORG_NAME)
OM_EXPORT (DS_A_ORG_UNIT_NAME)
OM_EXPORT (DS_A_COMMON_NAME)
OM_EXPORT (DS_A_LOCALITY_NAME)
OM_EXPORT (DS_A_OBJECT_CLASS)
OM_EXPORT (DS_A_USER_PASSWORD)
OM_EXPORT (DS_A_PHONE_NBR)
OM_EXPORT (DS_A_SURNAME)
OM_EXPORT (DS_A_ACL)
OM_EXPORT (DS_TYPELESS_RDN)

OM_EXPORT (DS_O_TOP)
OM_EXPORT (DS_O_COUNTRY)
OM_EXPORT (DS_O_ORG)
OM_EXPORT (DS_O_ORG_UNIT)
OM_EXPORT (DS_O_PERSON)

OSF® DCE Application Development Guide — Directory Services 6—29

GDS Application Programming

OM_EXPORT (DS_O_ORG__PERSON)
The OM_EXPORT macro takes the OM class name as input and creates two new
data structures: a character string and structure of @bk string. The structure

of type OM_string contains a length and a pointer that are used in Step 3 to initialize
the value of the object identifier.

6.8.3 Step 2: Declare Local Variables

The local variables are defined in the following code fragment femhc:

OM_workspace workspace; /* workspace for objects */
OM_private_object session; /* Session object. */
OM_private_object bound_session; /* Holds the Session object which */

[* is returned by ds_bind() */
OM_public_object context; /* Context object. */
OM_private_object result; /* Holds the search result object. */
OM_sint invoke_id; /* Integer for the invoke id */

/* returned by ds_search(). */

[* (this parameter must be present */

/* even though it is ignored). */
OM_type sinfo_list[] = { DS_SEARCH_INFO, 0 };
OM_type entry_list]] = { DS_ENTRIES, 0 };

[* Lists of types to be extracted */
OM_public_object sinfo; /* Search-Info object from result. */
OM_public_object entry; /* Entry object from search info. */
OM_value_position total_num; /* Number of descriptors returned. */
OM_return_code rc; /* XOM function return code. */
register int i;
char user_name[MAX_DN_LEN];

/* Holds requestor's name. */
char entry_string[MAX_DN_LEN + 7] = "[2r??] *;

/* Holds entry details. */

The data types shown in this code fragment are definediypedef statement in the
xom.h header file. Since asynchronous operations (within the same thread) are not
supported, thinvoke_idfunctionality is redundant. Thiavoke_idparameter must be

6-30 OSF® DCE Application Development Guide — Directory Services

XDS Programming

6.8.4

6.8.5

6.8.6

supplied to the XDS functions as described in @8F DCE Application Development
Referencgbut its return value should be ignored.

Step 3: Build Public Objects for the name Parameter to
ds_search()

The public objects required by the search operation are defined actlicheader file.
Thenameinput parameter in thés_search(¥unction call inacl.cis the representation

of the distinguished name for the root of the DIT. The following code fragment from
acl.c shows how the descriptor list for the distinguished name is initialized:

static OM_descriptor dn_root]] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
OM_NULL_DESCRIPTOR

I8

Step 4: Specify the Portion of the DIT To Be Searched

The ds_search()call requires thesubsetinput parameter. Thesubsetparameter
specifies the portion of the DIT to be searched. It takes the value of one of the
following symbolic constants, which are defined in ttés.h header file:

» DS_BASE_OBJECT, meaning to search just the given object entry

« DS_ONE_LEVEL, meaning to search just the immediate subordinates of the
given object entry

« DS_WHOLE_SUBTREE, meaning to search the given object and all its
subordinates

The subsetparameter iracl.c takes the valu®S_WHOLE_SUBTREE.

Step 5: Create a Filter

The filter input parameter is used to eliminate entries from the search that are not
wanted. Information is only returned on entries that satisfy the filter.

OSF® DCE Application Development Guide — Directory Services 6-31

GDS Application Programming

6-32

DS_C_FILTER inherits the attributes from its supercla®/_C_OBJECT, as do

all OM classes. OM_C_OBJECT (as defined in Chapter 11) has one OM attribute,
OM_CLASS, which has the value of an object identifier string that identifies the
numeric representation of the object's OM clas®DS_C_FILTER, on the other
hand, has several OM attributes.

The purpose ofDS_C _FILTER is to select or reject an object on the basis of
information in its directory entry. It has the following OM attributes:

- DS_FILTER_ITEMS
- DS_FILTERS
« DS_FILTER_TYPE

Two of these OM attributed)S_FILTER_ITEMS andDS_FILTERS, have values
that are OM object classes themselves. The OM attrib8eFILTER_ITEMS has

the value OM clas®S_C_FILTER_ITEM .DS_C _FILTER_ITEM is a component

of a filter and defines the nature of the filter. The OM attrild& FILTERS has the
value of OM clasdDS_C_FILTER and thus defines a collection of filters. The OM
attribute DS_FILTER_TYPE has a value that is an enumerated type, which takes
one of the value®S_AND, DS _OR or DS_NOT.

Figure 6-3 shows the relationship oDS_C FILTER to its superclass
OM_C_OBJECT, and its attibutes.

OSF® DCE Application Development Guide — Directory Services

XDS Programming

Figure 6-3. OM Class DS _C_FILTER

'

DS_C_FILTER
OM_CLASS
— [DS_FILTER_ITEMS, ...]
[DS_FILTERS, ...]
DS_FILTER_TYPE

DS_C_FILTER_ITEM
OM_CLASS
DS_ATTRIBUTE_TYPE

[DS_ATTRIBUTE_VALUES, ..,
DS_FILTER_ITEM_TYPE
[DS_FINAL_SUBSTRING]
[DS_INITAL_SUBSTRING]

KEY:

" ¥ points to subobjects
BOLD OM class
BOLD and ITALICS abstract OM class
ITALICS inherited OM attribute
[l optional OM attribute
multi-valued OM attribute

The DS_NO_FILTER constant can be used as the value of this parameter if all
entries are searched and no entries are eliminated. This corresponds to a filter with
a DS _FILTER_TYPE value of DS_AND, and no values of th®S_FILTERS or
DS_FILTER_ITEMS OM attributes.

The following code fragment froracl.c shows the descriptor list for a filter:

/* The following descriptor list specifies a filter */
[* for search : */
I* (Present: objectClass) */

static OM_descriptor filter_item[] = {

OM_OID_DESC(OM_CLASS, DS_C_FILTER_ITEM),
{DS_FILTER_ITEM_TYPE, OM_S_ENUMERATION, {DS_PRESENT, 0} },

OSF® DCE Application Development Guide — Directory Services 6-33

GDS Application Programming

6.8.7

6.8.8

6-34

OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),
OM_NULL_DESCRIPTOR

I3

static OM_descriptor filter[] = {

OM_OID_DESC(OM_CLASS, DS_C_FILTER),
{DS_FILTER_ITEMS, OM_S_OBJECT, {0, filter_item} },
{DS_FILTER_TYPE, OM_S_ENUMERATION, {DS_AND, 0} },
OM_NULL_DESCRIPTOR

I3

Step 6: Create an Entry-Information-Selection Parameter

Theds_search()call requires aelectioninput parameter to specify what information
from the entry is requested. Tiselectionparameter of thels_search()call in acl.h
requests information on all attributes, as shown in the following code fragment:

static OM_descriptor selection_acl[] = {

OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),
{DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, OM_FALSE},
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DSX_A_ACL),
{DS_INFO_TYPE, OM_S_ENUMERATION, DS_TYPES_AND_VALUES},
OM_NULL_DESCRIPTOR

I3

As shown in the code fragmentDS_ALL ATTRIBUTES has a syntax of
OM_S BOOLEAN that is set toOM_FALSE, indicating that only the requested
attributes of the entry are to be returned. The ACL attribute’s types and values are
selected. DS_INFO_TYPE has a value oDS_TYPES_AND_VALUES indicating

that both the attribute types and the attribute values in the entry are returned.

Step 7: Perform the Search Operation

The following code fragment froracl.c shows theds_search()function call:

OSF® DCE Application Development Guide — Directory Services

XDS Programming

/* Search the whole subtree below root.
* The filter selects entries with an object-class attribute.
* The selection extracts the ACL attribute from each
* selected entry.
* The results are returned in the private object "result".

*

* NOTE: Since every entry contains an object-class attribute the

* filter performs no function other than to demonstrate how
* filters may be used.

*

*/

if(ds_search(bound_session, context, dn_root, DS _WHOLE_SUBTREE,
filter, OM_FALSE, selection_acl, &result, &invoke_id) !'= DS_SUCCESS)
printf("ds_search() error\n");

The ds_search() call returns the valueDS_SUCCESSIf the call successfully
completes. Otherwise, it returns an error code. (Refer to Chapter 11 for a
comprehensive list of error codes.)

The result of the search operation is returned to the workspace in a private object
result. This result is returned as a single OM object. The components of the result
are represented by OM attributes in the operatisa®ult object.

The OM class returned byds_search() is DS_C_SEARCH_RESULT The

superclasses, subclasses, and attributeB®rC_SEARCH_RESULT are shown in
Figure 6-4.

OSF® DCE Application Development Guide — Directory Services 6-35

GDS Application Programming

Figure 6-4. OM Class DS_C_SEARCH_RESULT

‘ KEY:
Y points to subobjects
ds_search(...&result...)
— Y BOLD OM class
DS_C_SEARCH_RESULT BOLD and ITALICS abstract OM class

ITALICS inherited OM attribute
[I optional OM attribute
multi-values OM attribute

OM_CLASS
fDS_SEARCH_INFO]

[DS_UNCORRELATED_
SEARCH_INFO, ...]

DS_C_SEARCH_INFO
OM_CLASS
DS_ALIASED_DEREFERENCED
—[DS_PERFORMER]
[DS_ENTRIES, ...]
[DS_OBJECT_NAME |
[DS_PARTIAL_OUTCOME_QUAL]

Y
DS_C_ENTRY_INFO » DS_C_NAME DS_C_PARTIAL_OUTCOME_QUAL
OM CLASS —®= (refer to Figure 27-1) OM_CLASS
— [DS_ATTRIBUTES, I DS_LIMIT_PROBLEM
DS FROM ENTRY DS_UNAVAILABLE_CRITICAL_EXT
DS OBJECT NAME [DS_UNEXPLORED,]—|
Y DS_C_CONTINUATION_REF
OM_CLASS
DS_C_ATTRIBUTE DS_TARGET_OBJECT
OM_CLASS DS_ACCESS_POINTS, ...
DS_ATTRIBUTE_TYPE ¢ —— DS_OPERATION_PROGRESS
[DS_ATTRIBUTE_VALUES, ..] [DS_RDNS_RESOLVED]
DS_C_ACCESS_POINT DS_ALIASED_RDNS
OM_CLASS
DS_AE_TITLE
l DS_ADDRESS
DS_C_ADDRESS DS_C_OPERATION_PROGRESS
OM_CLASS
DS_%_MPF\’CELiEsl\éTATlON_ADDRESS DS_NAME_RESOLUTION_PHASE
DS N ADDRESSES [DS_NEXT_RDN_TO_BE_RESOLVED]

[DS_P_SELECTOR]
[DS_S_SELECTOR]
[DS_T_SELECTOR]

The result object is returned to the workspace in a private implementation-specific
format. As such, it cannot be read directly by an application program, but requires a
series ofom_get()function calls to extract the requested information.

6—36 OSF® DCE Application Development Guide — Directory Services

XDS Programming

6.9 Directory Modify Operations

Modify functions alter information in the directory. For example, if an employee of
an organizational unit transfers to a new organizational unit, a typical modify request
would modify theOU name attribute in the person’s directory entry to reflect the
change.

XDS API implements the following modify functions:
» ds_modify_entry()
The requestor gives a distinguished name and a list of modifications to the

named entry. The directory service carries out the specified changes if the user
requesting the change has proper access rights.

» ds_add_entry()
The requestor gives a distinguished name and values for a new entry. The entry

is added as a leaf node in the DIT if the user requesting the change has proper
access rights.

» ds_remove_entry()
The requestor gives a distinguished name. The entry with that name is removed
if the user requesting the change has proper access rights.

» ds_modify_rdn()
The requestor gives a distinguished name and a new RDN for the entry. The

directory changes the entry’s RDN if the user requesting the change has proper
access rights.

Note thatds_add_entry() ds_remove_entry() andds_modify_rdn() only apply to
leaf entries. They are not intended to provide a general facility for building and
manipulating the DIT.

6.9.1 Modifying Directory Entries

This section describes a modification and subsequent listing of the DIT by using
theds_add_entry() ds_list(), andds_remove_entry()function calls. It includes a

OSF® DCE Application Development Guide — Directory Services 6-37

GDS Application Programming

description of tasks directly related to these operations and does not include service-
related tasks. It does not includeda_modify_entry() function call. The modify
operation is used in the context of the X.580stract Service Definition

A typical operation to add, remove, or list an entry involves following the same basic
steps that were defined previously for the read and search operations:

1. Using theOM_EXPORT macro, define the necessary object identifier constants

for the OM classes and OM attributes that will define public objects for input to
the function calls.

2. Declare the variables that will contain the output from the XDS functions you
will use in your application.

3. Build public objects (descriptor lists) for theame parameters to the function
calls.

4. Create descriptor lists for the attributes to be added, removed, or listed.

5. Perform the operations.

These steps are demonstrated in the following code fragments. The program adds
two entries to the directory, then a list operation is performed on their superior entry,

and finally the two entries are removed from the directory. The directory tree shown
in Figure 6-5 is used in the program.

T CountryName="ie"
/ OQ"nizationName:"sni"

Figure 6-5. A Sample Directory Tree

CN="brendan" O O CN="sinead"
(ObjectClass=OrganizationalPerson, Top, Person (ObjectClass=OrganizationalPerson, Top, Person
surname="Moloney" surname="Murphy"
telephoneNumber="+49 89 636 0") userPassword="secret")

6-38 OSF® DCE Application Development Guide — Directory Services

XDS Programming

6.9.2 Step 1: Export Object Identifiers for Required Directory
Classes and Attributes

In the following code fragment, th@M_EXPORT macro allocates memory for the
constants that represent the object classes and attributes required for the add, list, and
remove operations:

/* The application has to export the object identifiers */
/* it requires. */

OM_EXPORT (DS_C_AVA)

OM_EXPORT (DS_C_DS_RDN)

OM_EXPORT (DS_C_DS_DN)

OM_EXPORT (DS_C_ENTRY_INFO_SELECTION)
OM_EXPORT (DS_C_ATTRIBUTE)

OM_EXPORT (DS_C_ATTRIBUTE_LIST)

OM_EXPORT (DS_A_COUNTRY_NAME)
OM_EXPORT (DS_A_ORG_NAME)
OM_EXPORT (DS_A_ORG_UNIT_NAME)
OM_EXPORT (DS_A_COMMON_NAME)
OM_EXPORT (DS_A_OBJECT_CLASS)
OM_EXPORT (DS_A_PHONE_NBR)
OM_EXPORT (DS_A_USER_PASSWORD)
OM_EXPORT (DS_A_SURNAME)

OM_EXPORT (DS_O_TOP)

OM_EXPORT (DS_O_PERSON)
OM_EXPORT (DS_O_ORG_PERSON)

6.9.3 Step 2: Declare Local Variables

The local variabledbound_sessigmesult andinvoke_idare defined in the following
sample code fragment:

OM_private_object bound_session; /* Holds the Session object */

/* which is returned by */
[* ds_bind(). */

OSF® DCE Application Development Guide — Directory Services 6-39

GDS Application Programming

OM_private_object result; /* Holds the list result */
/* object. */
OM_sint invoke _id; /* Integer for the invoke id */
/* returned by ds_search(). */
/* This parameter must be */
/* present even though it is */
/* ignored. */

These data types are definedtyipedef statements in th&om.h header file. The
bound_sessiorand result variables are defined as data ty@#_private_object
because they are returned dg_bind() and ds_list() operations to the workspace

as private objects. Since asynchronous operations (within the same thread) are
not supported, thénvoke_idparameter functionality is redundant. Tirevoke_id
parameter must be supplied to the XDS functions as described i©8fe DCE
Application Development Referendsnit its return value should be ignored.

6.9.4 Step 3: Build Public Objects

The public objects required by theds add _entry() ds_list(), and
ds_remove_entry()operations are defined in the following code fragment:

/* Build up descriptor lists for the following distinguished names: */

* C=ie/O=sni *
I* C=ie/O=sni/OU=ap/CN=brendan */
I* C=ie/O=sni/OU=ap/CN=sinead */
static OM_descriptor ava_ie[] = {

OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("ie")},
OM_NULL_DESCRIPTOR

h

static OM_descriptor ava_sni] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING("sni")},
OM_NULL_DESCRIPTOR

6-40 OSF® DCE Application Development Guide — Directory Services

XDS Programming

static OM_descriptor ava_ap[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_UNIT_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING("ap")},
OM_NULL_DESCRIPTOR

h

static OM_descriptor ava_brendan[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COMMON_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING("brendan™)},
OM_NULL_DESCRIPTOR

h

static OM_descriptor ava_sinead[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COMMON_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING("sinead")},
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdn_ie[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, ava_ie}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdn_snif] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, ava_sni}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdn_ap[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, ava_ap}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdn_brendan[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, ava_brendan}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdn_sinead[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

OSF® DCE Application Development Guide — Directory Services 641

GDS Application Programming

6.9.5

642

{DS_AVAS, OM_S_OBJECT, {0, ava_sinead}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor dn_ap[] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,0OM_S_OBJECT,{0,rdn_ie}},
{DS_RDNS,0OM_S_OBJECT,{0,rdn_sni}},
{DS_RDNS,0OM_S_OBJECT,{0,rdn_ap}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor dn_brendan[] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,OM_S_OBJECT,{0,rdn_ie}},
{DS_RDNS,0OM_S_OBJECT,{0,rdn_sni}},
{DS_RDNS,0OM_S_OBJECT {0,rdn_ap}},
{DS_RDNS,OM_S_OBJECT {0,rdn_brendan}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor dn_sinead[] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,0OM_S_OBJECT {0,rdn_ie}},
{DS_RDNS,OM_S_OBJECT {0,rdn_sni}},
{DS_RDNS,0OM_S_OBJECT {0,rdn_ap}},
{DS_RDNS,OM_S_OBJECT {0,rdn_sinead}},
OM_NULL_DESCRIPTOR

Step 4: Create Descriptor Lists for Attributes

The following code fragments show how the attribute lists are created for the attributes
to be added to the directory.

First, initialize the public objecbbject classto contain the representation of the
classes in the DIT that are common to bddinganizational-Person entries, Top,
Person andOrganizational-Person

OSF® DCE Application Development Guide — Directory Services

XDS Programming

/* Build up an array of object identifiers for the */
/* attributes to be added to the directory. */

static OM_descriptor object_class[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_TOP),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_PERSON),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_ORG_PERSON),
OM_NULL_DESCRIPTOR

h

Next, initialize the public objects that represent the attributes to be added. These are
surname and telephonefor the distinguished name of Brendan, aswthame?2and
password for the distinguished name of Sinead:

static OM_descriptor telephone[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_PHONE_NBR),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING,
OM_STRING("+49 89 636 0")},

OM_NULL_DESCRIPTOR

I3

static OM_descriptor surname[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_SURNAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING,
OM_STRING("Moloney")},

OM_NULL_DESCRIPTOR

I3

static OM_descriptor surname?2[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_SURNAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING,
OM_STRING("Murphy")},

OM_NULL_DESCRIPTOR

I§

OSF® DCE Application Development Guide — Directory Services 6-43

GDS Application Programming

static OM_descriptor password[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_USER_PASSWORD),
{DS_ATTRIBUTE_VALUES, OM_S_OCTET_STRING,
OM_STRING("secret")},

OM_NULL_DESCRIPTOR

I3

Finally, initialize the public objects that represent the list of attributes to be added to
the directory. These amtr_listl for the distinguished name Brendan, aaitt_list2
for the distinguished name Sinead:

static OM_descriptor attr_list1[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
{DS_ATTRIBUTES, OM_S_OBJECT, {0, object_class} },
{DS_ATTRIBUTES, OM_S_OBJECT, {0, surname} },
{DS_ATTRIBUTES, OM_S_OBJECT, {0, telephone} },
OM_NULL_DESCRIPTOR

I3

static OM_descriptor attr_list2[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
{DS_ATTRIBUTES, OM_S_OBJECT, {0, object_class} },
{DS_ATTRIBUTES, OM_S_OBJECT, {0, surname2} },
{DS_ATTRIBUTES, OM_S_OBJECT, {0, password} },
OM_NULL_DESCRIPTOR

I3

Theattr_listl variable contains the public objecdsrname andtelephone which are
the C representations of the attributes of the distinguished na@rie/O=sni/OU=ap/
CN=Brendan that are added to the directory. Th#r_list2 variable contains the
public objects firstsurname2 and password which are the C representations of the
attributes of the distinguished nan@=ie/O=sni/OU=ap/CN=Sinead

6.9.6 Step 5: Perform the Operations

The following code fragments show thds_add_entry() ds_list(), and the
ds_remove_entry()calls.

6—44 OSF® DCE Application Development Guide — Directory Services

XDS Programming

First, the twods_add_entry() function calls add the attribute lists contained in
attr_listl and attr_list2 to the distinguished names representeddhybrendan and
dn_sinead respectively:

/* Add two entries to the GDS server. */

if (ds_add_entry(bound_session, DS_DEFAULT_CONTEXT,
dn_brendan, attr_listl,
&invoke_id) = DS_SUCCESS)
printf("ds_add_entry() error\n");

if (ds_add_entry(bound_session, DS_DEFAULT_CONTEXT,
dn_sinead, attr_list2,
&invoke_id) = DS_SUCCESS)
printf("ds_add_entry() error\n™);

Next, list all the subordinates of the object referenced by the distinguished hame
C=ie/O=sni/OU=ap

if (ds_list(bound_session, DS_DEFAULT_CONTEXT, dn_ap,
&result, &invoke_id)
1= DS_SUCCESS)
printf("ds_list() error\n™);

The ds_list() call returns the result in the private objewsult to the workspace.
The components ofesult are represented by OM attributes in the OM class
DS_C_LIST_RESULT (as shown in Figure 6-6) and can only be read by a series of
om_get()calls.

OSF® DCE Application Development Guide — Directory Services 6-45

GDS Application Programming

Figure 6-6. OM Class DS_C_LIST_RESULT

‘ KEY:
. v points to subobjects
ds_list(...&result...) y BOLD OM class
DS C LIST RESULT BOLD and ITALICS abstract OM class
- N ITALICS inherited OM attribute
OM_CLASS 0 optional OM attribute
[IDS_LIST_INFO] multi-values OM attribute
[DS_UNCORRELATED_
LIST_INFO, ...]
DS_C_LIST_INFO
OM_CLASS
DS_ALIASED_DEREFERENCED
[DS_PERFORMER]
[DS_SUBORDINATES, ... |
[DS_OBJECT_NAME |
[DS_PARTIAL_OUTCOME_QUAL]
Y
DS_C_LIST_INFO_ITEM DS_C_NAME DS_C_PARTIAL_OUTCOME_QUAL
OM CLASS (refer to Figure 27-1) OM_CLASS
DS_ALIAS_ENTRY 1 1 DS_LIMIT_PROBLEM
DS_FROM_ENTRY DS_UNAVAILABLE_CRITICAL_EXT
DS_RDN

[DS_UNEXPLORED, ..]| ———

\ 1

DS_C_RELAT|VE_NAME DS_C_CONTINUATION_REF
OM_CLASS
DS_C_DS_RDN DS_TARGET_OBJECT
"OM CLASS ‘ DS_ACCESS_POINTS, ...
DS_AVAS, ... —— DS_OPERATION_PROGRESS
- [DS_RDNS_RESOLVED |
\ DS_C_ACCESS_POINT DS_ALIASED_RDNS
OM_CLASS
DS_C_AVA DS_AE_TITLE Y
OM_CLASS —— DS_ADDRESS
DS _ATTRlBUTE TYPE DS_C_OPERATION_PROGRESS
DS_ATTRIBUTE_VALUES OM_CLASS
DS_NAME_RESOLUTION_PHASE
DS_C_ADDRESS [DS_NEXT_RDN_TO_BE_RESOLVED |

DS_C_PRESENTATION_ADDRESS
OM_CLASS
DS_N_ADDRESSES, ...
[DS_P_SELECTOR]
[DS_S_SELECTOR]
[DS_T_SELECTOR]

Finally, remove the two entries from the directory:

if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT,
dn_brendan, &invoke_id)

6-46 OSF® DCE Application Development Guide — Directory Services

XDS Programming

6.10

1= DS_SUCCESS)
printf("ds_remove_entry() error\n");

if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT,
dn_sinead, &invoke_id)
1= DS_SUCCESS)
printf("ds_remove_entry() error\n");

Return Codes

XDS API function calls return a value of typPS_status with the exception of
ds_initialize() which returns a value of typ©M_workspace If the function is
successful, the®S_statusreturns with a value oDS _SUCCESS If the function
does not complete successfully, th&85_status takes either the error constant
DS_NO_WORKSPACE or one of the private error objects described in Chapter
11.

OSF® DCE Application Development Guide — Directory Services 647

Chapter 7
Sample Application Programs

This chapter contains three sample programs and the header files that are included in
them (in parentheses), as follows:

» example.c(example.h
* acl.c (acl.h)

* teldir.c

Most of the concepts that you will need to know to understand and use these programs
are discussed in previous chapters in this guide. The programs are arranged so that
the simplest programegkample.g is presented first and the most complex program
(teldir.c) is presented last. The three programs demonstrate basic XDS and XOM
API principles and concepts in operation. Tteédir.c program is considerably more
complex and uses a more sophisticated approach. It allows the user to enter values
dynamically; for example, a surname and phone number.

For a sample XDS application that uses threads, please refer to Chapter 8. The

acl.c sample program is presented again in Chapter 9, this time using the XDS/XOM
convenience routines.

OSF® DCE Application Development Guide — Directory Services 7-1

GDS Application Programming

7.1 General Programming Guidelines

Writing an application program by using XDS and XOM APIs involves the following
general steps before you begin coding:

1. Select the interface functions that you will need for your application and determine
the parameters for the function calls.

2. Check for abstract OM classes and superclasses of objects that you will manipulate
for inherited OM attributes in Part 4.

3. Find the correct symbolic constants of the appropriate packages; these can be
found in the header files included with the GDS API, suchxdsbdcp.h

4. Determine the error handling required.

7.2 The example.c Program

The example.c program uses XDS API in synchronous mode to read a telephone
number or numbers of a distinguished name. The program consists of the following
general steps:

1. Define the required object identifier constants.

2. Declare the variables involved with directory service operations (Steps 3, 4, 7, 8,
and 9).

3. Build the distinguished name d&feter Piper as a public object for the input
parameter tals_read()

Build a public object for thaelectionparameter tals_read()

Declare the variables to extract the telephone numbers by asinget()
Initialize the directory service and get an OM workspace.

Pull in the required packages.

Bind to a default directory session.

© © N o g &

Perform the read operation to extract the telephone number of a distinguished
name from the directory.

10. Terminate the directory service session.

7-2 OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

11. Extract the telephone number(s) by using a seriemofget() calls.

12. Release the storage occupied by private and public objects that are no longer
needed.

13. Print the telephone number string.
14. Release the storage occupied by public objects containing telephone numbers.

15. Continue processing and exit.

Step 1 uses th©M_EXPORT macro to allocate memory for the object identifier
constants that represent an OM class or OM attribute. These constants are the OM
attribute values that are used to build the public objects that are required as input to
ds_read()

Step 2 declares the variables for directory service operations and error handling. The
sessionand workspacevariables are required for binding a session to a server and
creating a workspace into whiads_read()can deposit the results of the read operation

on the directory.

Theresultvariable is a pointer that is returned dg_read()to the workspace. The
information stored inresult is in implementation-specific private format that is not
accessible directly by the application program. Subsequmnget()calls extract the
telephone number(s) requested by the program fresalt and store the information
in the variabletelephonegdeclared in Step 5).

The error andreturn_codevariables are used by the program for error handling. The
error variable is used for processing the return code from XDS API function calls.
The return_codevariable is used by the error handling header &kample.h for
processing return codes froom_get()function calls.

Step 3 builds the public object representing the distinguished narRetef Piper.

The program uses statically defined public objects to demonstrate the basic principles
of building public objects. However, a more sophisticated approach is presented in
the last sample program in this chapteidir.c. The teldir.c program dynamically
defines a public object from a user-supplied name in DCE string format.

In the programexample.¢ the process starts with the definition of an array of
descriptor lists as AVAs. These AVAs are public objects that are included in the
definition of RDNs. The RDNSs, in turn, are included in the distinguished name of
Peter Piper stored inname Using the same method of static definition, Step 4

OSF® DCE Application Development Guide — Directory Services 7-3

GDS Application Programming

defines theDS_C_ENTRY_INFO_SELECTION public object and stores it in the
variableselection Thenameandselectionvariables are required as input parameters
to ds_read() This process is described in detail in Chapter 6.

Step 5 declares the variables requiredbiny get()to extract the telephone number(s)
from result The entry_list attributes_list and telephone_listvariables are of type
OM_type and are initialized to the values of the OM attribute tyfi2S ENTRY,
DS_ATTRIBUTES, andDS_ATTRIBUTE_VALUES, respectively. DS_ENTRY
contains the selected list of entrid8S_ATTRIBUTES contains the selected list of
attribute types, anddS_ATTRIBUTE_VALUES contains the actual values of the
telephone numbers.

Theentry, attributes andtelephonewariables are of typ©M_ public_object because

they store the output parametersooh_get() Theom_get()call makes these objects
available to the application program as public object data types. The program must
remove layers of objects and subobjects to get at the actual string data values of the
telephone numbers.

The telephonewariable contains the actual string values of the telephone number(s).
It is a descriptor in the array of descriptors that make up the public object that contains
the actual string data that the program wants to extract from the directory.

Step 6 initializes the directory service and gets an OM workspace in vdsicread()
deposits the result of the read operation.

Step 7 pulls the basic directory contents package into the program because it contains
features that are required by the program but not included in the default package (the
directory service package).

Step 8 binds the session to the default session. An application program can bind with a
specifically tailored session object by using an instance of OM E1&sC_SESSION

In most cases, however, it is sufficient to use the con@&tDEFAULT _SESSION
DS_DEFAULT_SESSION uses the default values ddS_C_SESSIONand the
values of specific OM attributes that are set locally in the cache. These OM attributes
areDS_DSA_ADDRESSthe address of the default DSA) ab& DSA NAME (the
distinguished name of the default DSA). It is the responsibility of local administrators
to make sure that these default values are set correctly in the cache.

Step 9 performs the read operation and deposits the result in the workspaseilin
The Sresultvariable is one of the input parameters for th@_get() function call.

OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

The sessionvariable and thddDS_DEFAULT_CONTEXT constant are theession
and contextparameters required to be present in dise read()function call.

Thenamevariable holds the public object representing the distinguished naPetef
Piper; the selectionvariable contains the public object indicating which attributes and
values are selected by the read operation from the entry. inMo&e_idparameter is
not used by the DCE implementation of XDS and is ignored.

Step 10 terminates the directory session.

Step 11 uses a series ofn_get() calls to extract the telephone number(s). The
first om_get() extracts the information about the entry framsult and puts it in
entry. The secondm_get()extracts the attribute types froemtry and puts them in
attributes The thirdom_get() extracts the actual values of the telephone numbers
from attributesand puts them inelephones The telephonesvariable contains the
string data values of the telephone number(s).

Step 12 releases the storage occupied by the private and public objects that are no
longer needed. The program has the data valuesdéphoneghat it needs to continue
processing. Ads_shutdown()call is issued to shut down the interface established

by ds_initialize().

Step 13 prints out each telephone number associated with the distinguished name
Peter Piper in the directory, or returns an error message if the number is not in the
correct format. It checks for an attribute with tys ATTRIBUTE_VALUES

and a syntax oODM_S_PRINTABLE_STRING, the proper syntax for a telephone
number. The constarf®M_S SYNTAX is used to mask the six high-order bits in

the syntax because they are used internally by the XOM service.

Step 14 releases the storage occupiedebsphonedecause it is no longer needed.

Step 15 continues processing and exits.

7.2.1 The example.c Code

The following code is a listing of thexample.cprogram:

OSF® DCE Application Development Guide — Directory Services 7-5

GDS Application Programming

7-6

/*

* sample application that uses XDS in synchronous mode

*

* This program reads the telephone number(s) of a given target name.
*

#ifdef THREADSAFE
#include <pthread.h>
#endif

#include <stdio.h>

#include <xom.h>
#include <xds.h>
#include <xdsbdcp.h>

#include "example.h" /* possible Error Handling header */

/* Step 1 *

*

* Define necessary Object Identifier constants
*

OM_EXPORT(DS_A_COMMON_NAME)
OM_EXPORT(DS_A_COUNTRY_NAME)
OM_EXPORT(DS_A_ORG_NAME)
OM_EXPORT(DS_A_ORG_UNIT_NAME)
OM_EXPORT(DS_A_PHONE_NBR)
OM_EXPORT(DS_C_AVA)
OM_EXPORT(DS_C_DS_DN)
OM_EXPORT(DS_C_DS_RDN)
OM_EXPORT(DS_C_ENTRY_INFO_SELECTION)

/* Step 2 *

int main(void)

{
DS_status error, /* return value from DS functions */
OM_return_code return_code; /* return value from OM functions */
OM_workspace workspace; /* workspace for objects */
OM_private_object session; [* session for directory operations */

OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

OM_private_object result; /* result of read operation */
OM_sint invoke_id; /* Invoke-ID of the read operation */
OM_value_position total_num; /* Number of Attribute Descriptors */

static DS_feature bdcp_package[] = {
{ OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE },
{ { (OM_uint32)0, (void *)0 }, OM_FALSE },
h

/* Step 3 */

*

* Public Object ("Descriptor List") for Name parameter to ds_read().
* Build the Distinguished-Name of Peter Piper.

*

static OM_descriptor country[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),
{ DS_ATTRIBUTE_VALUES,OM_S_PRINTABLE_STRING,0OM_STRING("'US") },
OM_NULL_DESCRIPTOR
k

static OM_descriptor organization[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_NAME),
{ DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING,
OM_STRING("Acme Pepper Co") },
OM_NULL_DESCRIPTOR
k

static OM_descriptor organizational_unit[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_UNIT_NAME),
{ DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING,OM_STRING("Research") },
OM_NULL_DESCRIPTOR
I

static OM_descriptor common_name[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COMMON_NAME),
{ DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING,0OM_STRING("Peter Piper") },
OM_NULL_DESCRIPTOR

8

OSF® DCE Application Development Guide — Directory Services -7

GDS Application Programming

static OM_descriptor rdnl[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{ DS_AVAS, OM_S_OBJECT, { 0, country } },
OM_NULL_DESCRIPTOR
I

static OM_descriptor rdn2[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{ DS_AVAS, OM_S _OBJECT, { 0, organization } },
OM_NULL_DESCRIPTOR
I

static OM_descriptor rdn3[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{ DS_AVAS, OM_S_OBJECT, { 0, organizational_unit } },
OM_NULL_DESCRIPTOR
I

static OM_descriptor rdn4[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{ DS_AVAS, OM_S_OBJECT, { 0, common_name } },
OM_NULL_DESCRIPTOR
h

OM_descriptor name[] = {

OM_OID_DESC(OM_CLASS, DS_C_DS_DN),
{ DS_RDNS, OM_S_OBJECT, { 0, rdnl } },
{ DS_RDNS, OM_S_OBJECT, { 0, rdn2 } },
{ DS_RDNS, OM_S_OBJECT, { 0, rdn3 } },
{ DS_RDNS, OM_S_OBJECT, { 0, rdn4 } },
OM_NULL_DESCRIPTOR

j

[* Step 4 */

/*
*
* Public Object ("Descriptor List") for
* Entry-Information-Selection parameter to ds_read().
*/
OM_descriptor selection]] = {
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),

7-8 OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

/*

/*

*

{ DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, { OM_FALSE, NULL } },
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A_PHONE_NBR),

{ DS_INFO_TYPE,OM_S_ENUMERATION, { DS_TYPES_AND_VALUES,NULL } },
OM_NULL_DESCRIPTOR

b

Step 5 */

variables to extract the telephone number(s)

*/

/*
*
*
*
*

*

OM_type entry_list[] = { DS_ENTRY, 0 };
OM_type attributes_list[] = { DS_ATTRIBUTES, 0 };
OM_type telephone_list] = { DS_ATTRIBUTE_VALUES, 0 };

OM_public_object entry;

OM_public_object attributes;

OM_public_object telephones;

OM_descriptor *telephone; /* current phone number */

Perform the directory service operations:

(1) Initialize the directory service and get a workspace
(2) bind a default directory session.

(3) read the telephone number of "name".

(4) terminate the directory session.

*

/*

/*

/*

/*

Step 6 */

CHECK_DS_CALL((OM_object) !(workspace=ds_initialize()));

Step 7 */

CHECK_DS_CALL(ds_version(bdcp_package, workspace));

Step 8 */

CHECK_DS_CALL(ds_bind(DS_DEFAULT_SESSION, workspace, &session));

Step 9 */

OSF® DCE Application Development Guide — Directory Services 7-9

GDS Application Programming

CHECK_DS_CALL(ds_read(session, DS_DEFAULT_CONTEXT, name,
selection, &result, &invoke_id));
/*
* NOTE: should check here for Attribute-Error (no-such-attribute)
* in case the "name" doesn't have a telephone.
* Then for all other cases call error_handler
*

/* Step 10 */
CHECK_DS_CALL(ds_unbind(session));
/* Step 11 */

/*

* extract the telephone number(s) of "name" from the result
*

* There are 4 stages:

* (1) get the Entry-Information from the Read-Result.

* (2) get the Attributes from the Entry-Information.

* (3) get the list of phone numbers.

* (4) scan the list and print each number.

*

CHECK_OM_CALL(om_get(result,
OM_EXCLUDE_ALL_BUT_THESE_TYPES
+ OM_EXCLUDE_SUBOBJECTS,
entry_list, OM_FALSE, 0, 0, &entry,
&total_num));

CHECK_OM_CALL(om_get(entry->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES
+ OM_EXCLUDE_SUBOBJECTS,
attributes_list, OM_FALSE, 0, O,
&attributes, &total_num));

CHECK_OM_CALL(om_get(attributes->value.object.object,

OM_EXCLUDE_ALL_BUT_THESE_TYPES
+ OM_EXCLUDE_SUBOBJECTS,

7-10 OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

telephone_list, OM_FALSE, 0, O,
&telephones, &total_num));

/* Step 12 */

/* We can now safely release all the private objects
* and the public objects we no longer need

*
CHECK_OM_CALL(om_delete(session));
CHECK_OM_CALL(om_delete(result));
CHECK_OM_CALL(om_delete(entry));
CHECK_OM_CALL(om_delete(attributes));
CHECK_DS_CALL(ds_shutdown(workspace));

/* Step 13 */

for (telephone = telephones;
telephone->type == DS_ATTRIBUTE_VALUES;
telephone++)

{
if (telephone->type 1= DS_ATTRIBUTE_VALUES

| (telephone->syntax & OM_S_SYNTAX) != OM_S_PRINTABLE_STRING)
{

(void) fprintf(stderr, "malformed telephone number\n");
exit(EXIT_FAILURE);

}

(void) printf("Telephone number: %.*s\n",
telephone->value.string.length,
telephone->value.string.elements);

/* Step 14 */
CHECK_OM_CALL(om_delete(telephones));
/* Step 15 */

/* more application-specific processing can occur here...
*

OSF® DCE Application Development Guide — Directory Services 7-11

GDS Application Programming

7.2.2

7-12

/* ... and finally exit. */
exit(EXIT_SUCCESS);

Error Handling

The example.c program includes the header filexample.h for error handling
of XDS and XOM function calls. Theexample.h program contains two
error-handling functions: CHECK_DS_CALL for handling XDS API
errors, andCHECK_OM_CALL for handling XOM API errors. Note that
CHECK_DS_CALL and CHECK _OM_CALL are created specifically for
example.cand are not part of the XDS or XOM APIs. They are included to
demonstrate a possible method for error handling.

XDS and XOM API functions return a status code. drample.¢ error contains
the status code for XDS API functions. If the call is successful, the function returns
DS_SUCCESSOtherwise, one of the error codes described in Chapter 11 is returned.

The return_codevariable contains the status code for XOM API functions. If the
call is successful, the function retur@M_SUCCESS Otherwise, one of the error
codes described in Chapter 18 is returned.

The contents oéxample.hare as follows:
/*
* define some convenient exit codes

*/

#define EXIT_FAILURE 1
#define EXIT_SUCCESS 0

/*
* declare an error handling function and
* an error checking macro for DS

*/

void handle_ds_error(DS_status error);

OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

#define CHECK_DS_CALL(function_call)
error = (function_call);
if (error = DS_SUCCESS)
handle_ds_error(error);

/*

* declare an error handling function and
* an error checking macro for OM

*

void handle_om_error(OM_return_code return_code);

#define CHECK_OM_CALL(function_call)
return_code = (function_call);
if (return_code != OM_SUCCESS)
handle_om_error(return_code);

/*
* the error handling code
*

* NOTE: any errors arising in these functions are ignored.
*

void handle_ds_error(DS_status error)
{

(void) fprintf(stderr, "DS error has occurred\n");

(void) om_delete((OM_object) error);
/* At this point, the error has been reported and storage cleaned up,
* so the handler could return to the main program now for it to take
* recovery action. But we choose the simple option ...

*/

exit(EXIT_FAILURE);

void handle_om_error(OM_return_code return_code)

{

OSF® DCE Application Development Guide — Directory Services 7-13

GDS Application Programming

7.3

7-14

(void) fprintf(stderr, "OM error %d has occurred\n”, return_code);

/* At this point, the error has been reported and storage cleaned up,
* so the handler could return to the main program now for it to take
* recovery action. But we choose the simple option ...

*

exit(EXIT_FAILURE);

The acl.c Program

The acl.c file is a program that displays the ACLs on each entry in the directory
for a specific user. The permissions are presented in a form similar to UNIX file
permissions. In addition, each entry is flagged as either a master or a shadow copy.

The distinguished name of the user requesting the access permissiGrgésO=sni/
OU=ap/CN=norbert. The results of the request are presented in the following
format:

[ABCD| <entry’s distinguished name

where:

A is one of the following:
* m (master copy)
* s (shadow copy)

B is one of the following:
 r (read access to public attributes)
» w (write access to public attributes)
» - (no access to public attributes)

C is one of the following:

* r (read access to standard attributes)

OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

» w (write access to standard attributes)

» - (no access to standard attributes))
D is one of the following:

 r (read access to sensitive attributes)

* w (write access to sensitive attributes)

* - (no access to sensitive attributes)
For example, the following result means that the efryde/O=sniis a master copy,
and that the user who is making the requéSt=fle/O=sni/OU=ap/CN=norber} has

write access to its public attributes, read access to its standard attributes, and no
accesss to its sensitive attributes:

[mwr-] /C=de/O=sni
The program requires that the user perform an authenticated bind to the directory
service. The user’s credentials must already exist in the directory. For this reason,

the tree of six entries shown in Figure 7-1 is added to the directory each time the
program runs, and is removed again afterward.

OSF® DCE Application Development Guide — Directory Services 7-15

GDS Application Programming

Figure 7-1. Entries With User Credentials Added to the Directory Tree

O c=de
(objectClass=Country,
ACL=(mod-pub: *
mod-std: *
read-std: *
mod-sen: *))

O O=sni
(objectClass=Organization,
ACL=(mod-pub: /C=de/O=sni/OU=ap/*
ACL=(read-std: /C=de/O=sni/OU=ap/CN=stefanie
ACL=(mod-std: /C=de/O=sni/OU=ap/CN-stefanie
ACL=(read-sen: /C=de/O=sni/OU=ap/CN=stefanie
ACL=(mod-sen: /C=de/O=sni/OU=ap/CN-stefanie

D) OU=ap
(objectClass=OrganizationalUnit,
ACL=(mod-pub: /C=de/O=sni/OU=ap/*
ACL=(read-std: /C=de/O=sni/OU=ap/CN=Stefanie
ACL=(mod-std: /C=de/O=sni/OU=ap/CN=Stefanie
ACL=(read-sen: /C=de/O=sni/OU=ap/CN=Stefanie
ACL=(mod-sen: /C=de/O=sni/OU=ap/CN=Stefanie))

O cN=stefanie (O CN=ingrid
(objectClass=OrganizationalPerson, (objectClass=OrganizationalPerson,
ACL=(mod-pub: /C=de/O=sni/OU=ap/* ACL=(mod-pub: /C=de/O=sni/OU=ap/*
read-std: /C=de/O=sni/OU=ap/* read-std: /C=de/O=sni/OU=ap/*
mod-std: /C=de/O=sni/OU=ap/CN=Stefanie mod-std: /C=de/O=sni/OU=ap/CN=Stefanie
read-sen: /C=de/O=sni/OU=ap/* read-sen: /C=de/O=sni/OU=ap/*
mod-sen: /C=de/O=sni/OU=ap/CN=Stefanie) mod-sen: /C=de/O=sni/OU=ap/CN=Stefanie)
surname="Schmid" surname="Schmid"
telephone="+49 89 636 0" telephone="+49 89 636 0"
userPassword="secret") userPassword="secret")

O CN=norbert
(objectClass=OrganizationalPerson,
ACL=(mod-pub: /C=de/O=sni/OU=ap/*
read-std: /C=de/O=sni/OU=ap/*
mod-std: /C=de/O=sni/OU=ap/CN=Stefanie
read-sen: /C=de/O=sni/OU=ap/*
mod-sen: /C=de/O=sni/OU=ap/CN=Stefanie)
surname="Schmid"
telephone="+49 89 636 0"
userPassword="secret")

The program consists of the following steps:

7-16 OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

1. Export the required object identifiers (s&@.h in Section 7.3.2).

N

. Build the descriptor lists for objects required by the program éséé in Section
7.3.2).

. Initialize a workspace.
. Negotiate use of the basic directory contents and GDS packages.
. Add a fixed tree of entries to the directory to permit an authenticated bind.

. Create a default session object.

N o 0o b~ W

. Alter the default session object to include the credentials of the requéState]
O=sni/OU=ap/CN=norbert).

o]

. Bind with credentials to the default GDS server.
9. Create a default context object and alter it to include shadow entries.

10. Search the whole subtree belowot and extract the ACL attribute from each
selected entry.

11. Close the connection to the GDS server.

12. Remove the user’s credentials from the directory.
13. Extract the components from the search result.
14. Examine each entry and print the entry details.
15. Close the XDS workspace.

Step 1 through Step 4, Step 6 through Step 8, Step 12, and Step 15 are similar to
those performed for the previous sample applicagzample.c

Step 5 is included so that the appropriate entries will exist in the directory when the
program attempts to access the access permissions.

The default session object created in Step 9 osescreate()to create an instance of a
default session object, and it usa®_put() to put in the appropriate user credentials.
The credentialsparameter is a descriptor list defineddal.h header file.

Step 10 used the same method as Step 9 to alter the default context to
include shadow entries. Usingm_create() and om_put(), the OM attribute
DS_DONT_USE_COPYis set to a value 0OM_FALSE to indicate that copies of
entries maintained in other DSAs and copies cached locally (that is, shadow copies)

OSF® DCE Application Development Guide — Directory Services 7-17

GDS Application Programming

7.3.1

7-18

can be used. Thase_copyparameter is a descriptor list defined in #ha.h header
file.

Step 11 usesls_search()to search the subtree belowot to find and extract the

ACL attributes from the selected entries defined indbkection_acparameter. The

selection_aclariable is a descriptor list defined &cl.h. The results are returned to
the workspace imesult

Step 13 and Step 14 extract the components fresult and examine each entry by
using a series obm_get()calls, as described in the previous sectiondaample.c

The acl.c Code

The following code is a listing of thacl.c program.

* *

* COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1991 *
* ALL RIGHTS RESERVED *
* *

* This sample program displays the access permissions (ACL) on each
* entry in the directory for a specific user. The permissions are

* presented in a form similar to the UNIX file permissions.

* In addition, each entry is flagged as either a master

* or a shadow copy.

* The distinguished name of the user performing the check is:

* /C=de/O=sni/OU=ap/CN=norbert

* The results are presented in the following format :

* [ABCD] <entry’s distinguished name>

OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

* A: ’'m’ master copy

* 's’ shadow copy

*

* B: 'r read access to public attributes

* 'w' write access to public attributes

* -’ no access to public attributes

*

* C: 'r read access to standard attributes
* ‘W' write access to standard attributes
* -’ no access to standard attributes

*

* D: '’ read access to sensitive attributes
* ‘W' write access to sensitive attributes
* -’ no access to sensitive attributes

* For example, the following result means that the entry '/C=de/O=sni’
* is a master copy and that the requesting user

* (/C=de/O=sni/OU=ap/CN=norbert) has write access to its public

* attributes, read access to its standard

* attributes and no access to its sensitive attributes.

* [mwr-] /C=de/O=sni

* The program requires that the specific user perform an authenticated
* bind to the directory. In order to achieve this the user's

* credentials must already exist in the directory.

* Therefore the following tree of 6 entries is added to the directory

* each time the program runs, and removed again afterwards.

* O C=de
(objectClass=Country,
ACL=(mod-pub: *

I
I
* | read-std:*
* | mod-std: *
* | read-sen:*
* | mod-sen: *))
* I
* I
* O Os=sni
* | (objectClass=Organization,

OSF® DCE Application Development Guide — Directory Services 7-19

GDS Application Programming

7-20

ACL=(mod-pub: /C=de/O=sni/OU=ap/*
read-std:/C=de/O=sni/OU=ap/CN=stefanie
mod-std: /C=de/O=sni/OU=ap/CN=stefanie
read-sen:/C=de/O=sni/OU=ap/CN=stefanie
mod-sen: /C=de/O=sni/OU=ap/CN=stefanie))

(objectClass=0OrganizationalUnit,

ACL=(mod-pub: /C=de/O=sni/OU=ap/*
read-std:/C=de/O=sni/OU=ap/CN=stefanie
mod-std: /C=de/O=sni/OU=ap/CN=stefanie
read-sen:/C=de/O=sni/OU=ap/CN=stefanie

I
I
I
I
I
I
O OuU=ap
I
I
I
I
I
| mod-sen: /C=de/O=sni/OU=ap/CN=stefanie))
I
I

O CNs=ingrid
(objectClass=OrganizationalPerson,
ACL=(mod-pub: /C=de/O=sni/OU=ap/*
read-std:/C=de/O=sni/OU=ap/*
mod-std: /C=de/O=sni/OU=ap/CN=stefanie
read-sen:/C=de/O=sni/OU=ap/*
mod-sen: /C=de/O=sni/OU=ap/CN=stefanie),
surname="Schmid",
telephone="+49 89 636 0",
userPassword="secret")

O CN=norbert
(objectClass=0rganizationalPerson,
ACL=(mod-pub: /C=de/O=sni/OU=ap/*
read-std:/C=de/O=sni/OU=ap/*
mod-std: /C=de/O=sni/OU=ap/CN=stefanie
read-sen:/C=de/O=sni/OU=ap/*
mod-sen: /C=de/O=sni/OU=ap/CN=stefanie),
surname="Schmid",
telephone="+49 89 636 0",
userPassword="secret")

O CNs=stefanie

OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

* (objectClass=OrganizationalPerson,

* ACL=(mod-pub: /C=de/O=sni/OU=ap/*

* read-std:/C=de/O=sni/OU=ap/*

* mod-std: /C=de/O=sni/OU=ap/CN=stefanie
* read-sen:/C=de/O=sni/OU=ap/*

* mod-sen: /C=de/O=sni/OU=ap/CN=stefanie),
* surname="Schmid",

* telephone="+49 89 636 0"

* userPassword="secret")

*

*

*

#ifdef THREADSAFE
#include <pthread.h>
#endif

#include <xom.h>
#include <xds.h>
#include <xdsbdcp.h>
#include <xdsgds.h>
#include <xdscds.h>

#include "acl.h" /* static initialization of data structures. */
void
main(

int argc,

char *argvl[]

{
OM_workspace workspace; /* workspace for objects */
OM_private_object session; /* Session object. */
OM_private_object bound_session; /* Holds the Session object which */
/* is returned by ds_bind() */
OM_private_object context; /* Context object. */
OM_private_object result; /* Holds the search result object. */
OM_sint invoke_id; * Integer for the invoke id */
/* returned by ds_search(). */
/* (this parameter must be present */
/* even though it is ignored). */

OSF® DCE Application Development Guide — Directory Services 7-21

GDS Application Programming

OM_type sinfo_list[] = { DS_SEARCH_INFO, 0 };
OM_type entry_list[] = { DS_ENTRIES, 0 };

/* Lists of types to be extracted */
OM_public_object sinfo; /* Search-Info object from result. */
OM_public_object entry; /* Entry object from search info. */
OM_value_position total_num; /* Number of descriptors returned. */
OM_return_code rc; /* XOM function return code. */
register int i;
char user_name[MAX_DN_LEN];

/* Holds requestor's name. */
char entry_string[MAX_DN_LEN + 7] = "[2r??] *;

/* Holds entry details. */

/* Step 3 (see acl.h program code for Steps 1 and 2)

*

* |Initialise a directory workspace for use by XOM.

*/

if ((workspace = ds_initialize()) == (OM_workspace)0)
printf("ds_initialize() error\n“);

/* Step 4

*

* Negotiate the use of the BDCP and GDS packages.

*/

if (ds_version(features, workspace) '= DS_SUCCESS)
printf("ds_version() error\n");

/* Step 5
*
* Add a fixed tree of entries to the directory in order to permit
* an authenticated bind by: /C=de/O=sni/OU=ap/CN=norbert
*
if (! add_tree(workspace))
printf("add_tree() error\n");

/* Step 6

*

* Create a default session object.
*

7-22 OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

if ((rc = om_create(DSX_C_GDS_SESSION,OM_TRUE,workspace,&session))
I= OM_SUCCESS)
printf("om_create() error %d\n", rc);

/* Step 7
*
* Alter the default session object to include the following
* credentials: requestor: /C=de/O=sni/OU=ap/CN=norbert
* password: "secret"
* authentication mechanism: simple
*
if ((rc = om_put(session, OM_REPLACE_ALL, credentials, 0 ,0, 0))
1= OM_SUCCESS)
printf("om_put() error %d\n", rc);

/* Step 8

*

* Bind with credentials to the default GDS server. The returned

* session object is stored in the private object variable

* bound_session and is used for all further XDS function calls.

*/

if (ds_bind(session, workspace, &bound_session) != DS_SUCCESS)
printf("ds_bind() error\n");

[* Step 9
*
* Create a default context object.
*
if ((rc = om_create(DSX_C_GDS_CONTEXT,OM_TRUE,workspace,&context))
1= OM_SUCCESS)
printf("om_create() error %d\n", rc);

/*
* Alter the default context object to include 'shadow’ entries.
*
if ((rc = om_put(context, OM_REPLACE_ALL, use_copy, 0 ,0, 0))
1= OM_SUCCESS)
printf("om_put() error %d\n", rc);

/* Step 10

OSF® DCE Application Development Guide — Directory Services 7-23

GDS Application Programming

* Search the whole subtree below root. The filter selects
* entries with an object-class attribute. The selection

* extracts the ACL attribute from each selected entry.

* The results are returned in the private object 'result’.

*

* NOTE: Since every entry contains an object-class attribute the

* filter performs no function other than to demonstrate how
* filters may be used.
*

if (ds_search(bound_session, context, dn_root, DS_WHOLE_SUBTREE,
filter, OM_FALSE, selection_acl, &result, &invoke_id)
1= DS_SUCCESS)
printf("ds_search() error\n");

[* Step 11

*

* Close the connection to the GDS server.

*/

if (ds_unbind(bound_session) != DS_SUCCESS)
printf("ds_unbind() error\n");

I* Step 12

*

* Remove the user's credentials from the directory.

*

if (! remove_tree(workspace, session))
printf("remove_tree() error\n");

I* Step 13
*
* Extract components from the search result by means of om_get().
*/
if ((rc = om_get(result,
OM_EXCLUDE_ALL_BUT_THESE_TYPES + OM_EXCLUDE_SUBOBJECTS,
sinfo_list, OM_FALSE, 0, 0, &sinfo, &total_num))
I= OM_SUCCESS)
printf("om_get(Search-Result) error %d\n", rc);

7-24 OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

if ((rc = om_get(sinfo->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES + OM_EXCLUDE_SUBOBJECTS,
entry_list, OM_FALSE, 0, 0, &entry, &total_num))
I= OM_SUCCESS)
printf("om_get(Search-Info) error %d\n", rc);

/*

* Convert the requestor's distinguished name to string format.

*

if (! xds_name_to_string(dn_norbert, user_name))
printf("xds_name_to_string() error\n");

printf("User: %s\nTotal: %d\n", user_name, total_num);

/* Step 14
*
* Examine each entry and print the entry details.
*
for (i = 0; i < total_num; i++) {
if (process_entry_info((entry+i)->value.object.object,
entry_string, user_name))
printf("%s\n", entry_string);

/* Step 15

*

* Close the directory workspace.

*

if (ds_shutdown(workspace) '= DS_SUCCESS)
printf("ds_shutdown() error\n“);

/~k
* Add the tree of entries described above.
*/
int
add_tree(
OM_workspace workspace

OSF® DCE Application Development Guide — Directory Services 7-25

GDS Application Programming

OM_private_object session; /* Holds the Session object which */
[* is returned by ds_bind() */
OM_sint invoke_id; /* Integer for the invoke id */
int error = 0;
/* Bind (without credentials) to the default GDS server. */

if (ds_bind(DS_DEFAULT_SESSION, workspace, &session) != DS_SUCCESS)
error++;

/* Add entries to the GDS server. */

ds_add_entry(session, DS_DEFAULT_CONTEXT, dn_de, alist_C,
&invoke_id);

if (ds_add_entry(session, DS_DEFAULT_CONTEXT, dn_sni, alist_O,
&invoke_id) !'= DS_SUCCESS)
error++;

if (ds_add_entry(session, DS_DEFAULT_CONTEXT, dn_ap, alist OU,
&invoke_id) !'= DS_SUCCESS)
error++;

if (ds_add_entry(session, DS_DEFAULT_CONTEXT, dn_stefanie, alist_OP,
&invoke_id) !'= DS_SUCCESS)
error++;

if (ds_add_entry(session, DS_DEFAULT_CONTEXT, dn_norbert, alist_ OP,
&invoke_id) !'= DS_SUCCESS)
error++;
if (ds_add_entry(session, DS_DEFAULT_CONTEXT, dn_ingrid, alist_ OP,
&invoke_id) !'= DS_SUCCESS)
error++;

/* Close the connection to the GDS server. */

if (ds_unbind(session) != DS_SUCCESS)
error++;

7-26 OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

return (error?0:1);

/*
* Remove the tree of entries described above.
*
int
remove_tree(
OM_workspace workspace,
OM_private_object session

{
OM_private_object bound_session; /* Holds Session object which */
/* is returned by ds_bind() */
OM_sint invoke_id; /* Integer for the invoke id */
int error = 0;
/* Bind (with credentials) to the default GDS server. */
if (ds_bind(session, workspace, &bound_session) != DS_SUCCESS)
error++;
/* Remove entries from the GDS server. */

if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT, dn_ingrid,
&invoke_id) != DS_SUCCESS)
error++;

if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT, dn_stefanie,
&invoke_id) !'= DS_SUCCESS)
error++;

if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT, dn_norbert,
&invoke_id) !'= DS_SUCCESS)
error++;

if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT, dn_ap,

&invoke_id) = DS_SUCCESS)
error++;

OSF® DCE Application Development Guide — Directory Services 7-27

GDS Application Programming

if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT, dn_sni,
&invoke_id) !'= DS_SUCCESS)
error++;

ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT, dn_de,
&invoke_id);

/* Close the connection to the GDS server. */

if (ds_unbind(bound_session) != DS_SUCCESS)
error++;

return (error?0:1);

/*

* Convert a distinguished name in XDS format (OM_descriptor

* lists) to string format.

*

int

xds_name_to_string(
OM_public_object name, /* Xds distinguished name. */
char *string [* String distinguished name. */

register OM_object dn = name;

register OM_object rdn;

register OM_object ava;

register char *sp = string;
int error = 0;

while ((dn->type != OM_NO_MORE_TYPES) && (! error)) {
if ((dn->type == DS_RDNS) &&
((dn->syntax & OM_S_SYNTAX) == OM_S_OBJECT)) {
rdn = dn->value.object.object;

while ((rdn->type != OM_NO_MORE_TYPES) && (! error)) {
if ((rdn->type == DS_AVAS) &&
((rdn->syntax & OM_S_SYNTAX) == OM_S_OBJECT)) {
ava = rdn->value.object.object;

7-28 OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

while ((ava->type != OM_NO_MORE_TYPES) &&
(! error)) {
if ((ava->type == DS_ATTRIBUTE_TYPE) &&
((ava->syntax & OM_S_SYNTAX) ==
OM_S_OBJECT_IDENTIFIER_STRING)) {

*sp++ = T
if (strncmp(ava->value.string.elements,
DS_A_COUNTRY_NAME.elements,
ava->value.string.length) == 0)
*sp++ = 'C’;

else if (strncmp(ava->value.string.elements,
DS_A_ORG_NAME.elements,
ava->value.string.length) == 0)
*sp++ = 'O’

else if (strncmp(ava->value.string.elements,
DS_A_ORG_UNIT_NAME.elements,
ava->value.string.length) == 0)
*sp++ = 'O, *sp++ = 'U’;

else if (strncmp(ava->value.string.elements,
DS_A_COMMON_NAME.elements,
ava->value.string.length) == 0)
*sp++ = 'C’, *sp++ = "N

else if (strncmp(ava->value.string.elements,
DS_A_LOCALITY_NAME.elements,
ava->value.string.length) == 0)
*spt+ = 'L

else if (strncmp(ava->value.string.elements,
DSX_TYPELESS_RDN.elements,
ava->value.string.length) != 0) {
error++;
continue;

OSF® DCE Application Development Guide — Directory Services 7-29

GDS Application Programming

if (*(sp-1) != '1); I* no '=' if typeless*/
*sp++ = =)
}
if (ava->type == DS_ATTRIBUTE_VALUES) {
switch(ava->syntax & OM_S_SYNTAX) {
case OM_S_PRINTABLE_STRING :
case OM_S_TELETEX_STRING :
strncpy(sp, ava->value.string.elements,
ava->value.string.length);
sp += ava->value.string.length;

break;
default:
error++;
continue;
}
}
ava+t+;
}
}
rdn++;
}
}
dn++;
}
*sp = \0’;

return (error?0:1);

/*
* Extract information about an entry from the Entry-Info object:
* whether the entry is a master-copy, its ACL permissions and
* jts distinguished name.
* Build up a string based on this information.
*/
int
process_entry_info(
OM_private_object entry,

7-30 OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

char *entry_string,
char *user_name
)
{
OM_return_code rc; /* Return code from XOM function. */
OM_public_object ei_attrs; /* Components from Entry-Info. */
OM_public_object attr; /* Directory attribute. */
OM_public_object acl; /* ACL attribute value. */
OM_public_object acl_item; /* ACL item component. */
OM_value_position total_attrs; /* Number of attributes returned. */
register int i;
register int interp;
register int error = 0;
register int found_acl = 0;
static OM_type ei_attr_list] = { DS_FROM_ENTRY,
DS_OBJECT_NAME,
DS_ATTRIBUTES,
0%
/* Attributes to be extracted. */
/*
* Extract three attributes from each Entry-Info object.
*/

if ((rc = om_get(entry, OM_EXCLUDE_ALL_BUT_THESE_TYPES,
ei_attr_list, OM_FALSE, 0, 0, &ei_attrs, &total_attrs))
I= OM_SUCCESS) {
error++;
printf("om_get(Entry-Info) error %d, rc);

for (i = 0; ((i < total_attrs) && (! error)); i++, ei_attrs++) {

/*
* Determine if current entry is a master-copy or a shadow-copy.
*
if ((ei_attrs->type == DS_FROM_ENTRY) &&
((ei_attrs->syntax & OM_S_SYNTAX) == OM_S_BOOLEAN))
if (ei_attrs->value.boolean == OM_TRUE)
entry_string[1] = 'm’;
else if (ei_attrs->value.boolean == OM_FALSE)

OSF® DCE Application Development Guide — Directory Services 7-31

GDS Application Programming

entry_string[1] = 's’;
else
entry_string[1]

1

if ((ei_attrs->type == DS_ATTRIBUTES) &&
((ei_attrs->syntax & OM_S_SYNTAX) == OM_S_OBJECT)) {
attr = ei_attrs->value.object.object;

while ((attr->type != OM_NO_MORE_TYPES) && (! error)) {

/*
* Check that the attribute is an ACL attribute.
*
if ((attr->type == DS_ATTRIBUTE_TYPE) &&
((attr->syntax & OM_S_SYNTAX) ==
OM_S_OBJECT_IDENTIFIER_STRING)) {
if (strncmp(attr->value.string.elements,
DSX_A_ACL.elements,
attr->value.string.length) == 0)
found_acl++;

/*

* Examine the ACL. Check each permission for

* the current user.

*/

if ((found_acl) &&
(attr->type == DS_ATTRIBUTE_VALUES) &&
((attr->syntax & OM_S_SYNTAX) == OM_S_OBJECT)) {

acl = attr->value.object.object;
entry_string[2]

entry_string[3]
entry_string[4] = -

o
~

while (acl->type '= OM_NO_MORE_TYPES) {

if ((acl->syntax & OM_S_SYNTAX) == OM_S_OBJECT)
acl_item = acl->value.object.object;

7-32 OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

switch (acl->type) {

case OM_CLASS:
break;

case DSX_MODIFY_PUBLIC:
if (permitted_access(user_name, acl_item))
entry_string[2] = 'w’;
break;

case DSX_READ_STANDARD:
if (permitted_access(user_name, acl_item))
entry_string[3] = 'r’;
break;

case DSX_MODIFY_STANDARD:
if (permitted_access(user_name, acl_item))
entry_string[3] = 'w’;
break;

case DSX_READ_SENSITIVE:
if (permitted_access(user_name, acl_item))
entry_string[4] = 'r’;
break;

case DSX_MODIFY_SENSITIVE:
if (permitted_access(user_name, acl_item))
entry_string[4] = 'w’;
break;

}

acl++;

}

attr++;

/*
* Convert the entry’s distinguished name to a string format.

OSF® DCE Application Development Guide — Directory Services 7-33

GDS Application Programming

*
if ((ei_attrs->type == DS_OBJECT_NAME) &&
((ei_attrs->syntax & OM_S_SYNTAX) == OM_S_OBJECT))
if (I xds_name_to_string(ei_attrs->value.object.object,
&entry_string[7])) {
error++;
printf("xds_name_to_string() error\n");

return (error?0:1);

/*
* Check if a user is permitted access based on the ACL supplied.
*

*/
int
permitted_access(
char *user_name,
OM_public_object acl_item
)
{

char acl_name[MAX_DN_LEN];
int interpretation;

int acl_present = 0O;

int access = 0;

int acl_name_length;

while (acl_item->type = OM_NO_MORE_TYPES) {
switch (acl_item->type) {
case OM_CLASS:
break;
case DSX_INTERPRETATION:

interpretation = acl_item->value.boolean;
break;

7-34 OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

case DSX_USER:

xds_name_to_string(acl_item->value.object.object, acl_name);

if (interpretation == DSX_SINGLE_OBJECT) {

if (strcmp(acl_name, user_name) == 0)
access = 1,
}
else if (interpretation == DSX_ROOT_OF_SUBTREE) {
if ((acl_name_length = strlen(acl_name)) == 0)
access = 1,
else if (strncmp(acl_name,user_name,
acl_name_length) == 0)
access = 1,
}
break;
}
acl_item++;

return (access);

7.3.2 The acl.h Header File

The acl.h header file performs the following:

1. It exports the object identifiers thatl.c requires.

2. It builds the descriptor lists for the following distinguished names:

root

C=de

C=de/O=sni

C=de/O=sni/OU=ap
C=de/O=sni/OU=ap/CN=stefanie
C=de/O=sni/OU=ap/CN=norbert
C=de/O=sni/OU=ap/CN=ingrid

OSF® DCE Application Development Guide — Directory Services

7-35

GDS Application Programming

7.3.3

7-36

It builds the object identifiers for attributes to be added to the directory.

It builds a descriptor list for the attribute types and values that are to be selected.
It builds the descriptor list for bind credentials.

It builds the descriptor list for context.

It builds the descriptor list for optional packages that are to be negotiated.

© N o g k~ w

It builds the descriptor list for search filters.

The acl.h Code

The following code is a listing of thacl.h file:

* *

* COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1991 *
* ALL RIGHTS RESERVED *
* *

#ifndef ACL_HEADER
#define ACL_HEADER

#define MAX_DN_LEN 100
/* max length of a distinguished name in string format*/

/* The application must export the object identifiers it requires. */

OM_EXPORT (DS_C_AVA)

OM_EXPORT (DS_C_DS_RDN)

OM_EXPORT (DS_C_DS_DN)

OM_EXPORT (DS_C_ENTRY_INFO_SELECTION)
OM_EXPORT (DS_C_ATTRIBUTE)

OM_EXPORT (DS_C_ATTRIBUTE_LIST)
OM_EXPORT (DS_C_FILTER)

OM_EXPORT (DS_C_FILTER_ITEM)
OM_EXPORT (DSX_C_GDS_SESSION)
OM_EXPORT (DSX_C_GDS_CONTEXT)

OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

OM_EXPORT (DSX_C_GDS_ACL)
OM_EXPORT (DSX_C_GDS_ACL_ITEM)

OM_EXPORT (DS_A_COUNTRY_NAME)
OM_EXPORT (DS_A_ORG_NAME)
OM_EXPORT (DS_A_ORG_UNIT_NAME)
OM_EXPORT (DS_A_COMMON_NAME)
OM_EXPORT (DS_A_LOCALITY_NAME)
OM_EXPORT (DS_A_OBJECT_CLASS)
OM_EXPORT (DS_A_USER_PASSWORD)
OM_EXPORT (DS_A_PHONE_NBR)
OM_EXPORT (DS_A_SURNAME)
OM_EXPORT (DSX_A_ACL)
OM_EXPORT (DSX_TYPELESS_RDN)

OM_EXPORT (DS_O_TOP)
OM_EXPORT (DS_O_COUNTRY)
OM_EXPORT (DS_O_ORG)
OM_EXPORT (DS_O_ORG_UNIT)
OM_EXPORT (DS_O_PERSON)
OM_EXPORT (DS_O_ORG_PERSON)

/* Build up descriptor lists for the following distinguished names: */
I* root */

I* /C=de *
I* /C=de/O=sni */

I* /C=de/O=sni/OU=ap */

I* /C=de/O=sni/OU=ap/CN=stefanie */

I* /C=de/O=sni/OU=ap/CN=norbert */

I* /C=de/O=sni/OU=ap/CN=ingrid */

static OM_descriptor ava_de[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),
{DS_ATTRIBUTE_VALUES, OM_S PRINTABLE_STRING, OM_STRING("de")},
OM_NULL_DESCRIPTOR

3

static OM_descriptor ava_sni[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),

OSF® DCE Application Development Guide — Directory Services 7-37

GDS Application Programming

7-38

OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING("sni")},
OM_NULL_DESCRIPTOR

h

static OM_descriptor ava_ap[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_UNIT_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING("ap")},
OM_NULL_DESCRIPTOR

h

static OM_descriptor ava_stefanie[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COMMON_NAME),
{DS_ATTRIBUTE_VALUES, OM_S TELETEX_STRING, OM_STRING("stefanie")},
OM_NULL_DESCRIPTOR

h

static OM_descriptor ava_norbert]] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COMMON_NAME),
{DS_ATTRIBUTE_VALUES, OM_S TELETEX_STRING, OM_STRING("norbert")},
OM_NULL_DESCRIPTOR

h

static OM_descriptor ava_ingrid[]] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COMMON_NAME),
{DS_ATTRIBUTE_VALUES, OM_S TELETEX_STRING, OM_STRING("ingrid")},
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdn_de[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, ava_de}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdn_snif] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, ava_sni}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdn_ap[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),

OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

{DS_AVAS, OM_S_OBJECT, {0, ava_ap}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdn_stefanie[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, ava_stefanie}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdn_norbert[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, ava_norbert}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdn_ingrid[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, ava_ingrid}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor dn_root[] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
OM_NULL_DESCRIPTOR

h

static OM_descriptor dn_de[] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,0OM_S_OBJECT,{0,rdn_de}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor dn_sni[] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,0OM_S_OBJECT,{0,rdn_de}},
{DS_RDNS,0OM_S_OBJECT,{0,rdn_sni}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor dn_ap[] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,0OM_S_OBJECT,{0,rdn_de}},
{DS_RDNS,OM_S_OBJECT {0,rdn_sni}},
{DS_RDNS,0OM_S_OBJECT {0,rdn_ap}},
OM_NULL_DESCRIPTOR

OSF® DCE Application Development Guide — Directory Services 7-39

GDS Application Programming

static OM_descriptor dn_stefanie[] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,0OM_S_OBJECT,{0,rdn_de}},
{DS_RDNS,0OM_S_OBJECT,{0,rdn_sni}},
{DS_RDNS,0OM_S_OBJECT {0,rdn_ap}},
{DS_RDNS,0OM_S_OBJECT {0,rdn_stefanie}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor dn_norbert]] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,0OM_S_OBJECT,{0,rdn_de}},
{DS_RDNS,OM_S_OBJECT ({0,rdn_sni}},
{DS_RDNS,OM_S_OBJECT {0,rdn_ap}},
{DS_RDNS,0OM_S_OBJECT ({0,rdn_norbert}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor dn_ingrid[] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,0OM_S_OBJECT {0,rdn_de}},
{DS_RDNS,OM_S_OBJECT ({0,rdn_sni}},
{DS_RDNS,0OM_S_OBJECT {0,rdn_ap}},
{DS_RDNS,OM_S_OBJECT {0,rdn_ingrid}},
OM_NULL_DESCRIPTOR

/* Build up an array of object identifiers for the attributes to be */
/* added to the directory. *

static OM_descriptor obj_class_C[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_TOP),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_COUNTRY),
OM_NULL_DESCRIPTOR

3

static OM_descriptor obj_class_ O[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_TOP),

7-40 OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_ORG),
OM_NULL_DESCRIPTOR

h

static OM_descriptor obj_class_OU[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_TOP),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_ORG_UNIT),
OM_NULL_DESCRIPTOR

h

static OM_descriptor obj_class_OP[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_TOP),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_PERSON),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_ORG_PERSON),
OM_NULL_DESCRIPTOR

static OM_descriptor att_phone_num[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_PHONE_NBR),
{DS_ATTRIBUTE_VALUES, OM_S PRINTABLE_STRING,
OM_STRING("+49 89 636 0")},
OM_NULL_DESCRIPTOR

static OM_descriptor att_password[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_USER_PASSWORD),
{DS_ATTRIBUTE_VALUES, OM_S_OCTET_STRING, OM_STRING("secret")},
OM_NULL_DESCRIPTOR

static OM_descriptor att_surname[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_SURNAME),
{DS_ATTRIBUTE_VALUES, OM_S TELETEX_STRING, OM_STRING("Schmid")},
OM_NULL_DESCRIPTOR

OSF® DCE Application Development Guide — Directory Services 7-41

GDS Application Programming

static OM_descriptor acl_item_root[] = {
OM_OID_DESC(OM_CLASS, DSX_C_GDS_ACL_ITEM),
{DSX_INTERPRETATION, OM_S_ENUMERATION, {DSX_ROOT_OF_SUBTREE, 0}},
{DSX_USER, OM_S_OBJECT, {0, dn_root}},
OM_NULL_DESCRIPTOR

static OM_descriptor acl_item_ap[] = {
OM_OID_DESC(OM_CLASS, DSX_C_GDS_ACL_ITEM),
{DSX_INTERPRETATION, OM_S_ENUMERATION, {DSX_ROOT_OF_SUBTREE, 0}},
{DSX_USER, OM_S_OBJECT, {0, dn_ap}},
OM_NULL_DESCRIPTOR

static OM_descriptor acl_item_stefanie[] = {
OM_OID_DESC(OM_CLASS, DSX_C_GDS_ACL_ITEM),
{DSX_INTERPRETATION, OM_S_ENUMERATION, {DSX_SINGLE_OBJECT, 0}},
{DSX_USER, OM_S_OBJECT, {0, dn_stefanie}},
OM_NULL_DESCRIPTOR

static OM_descriptor acll]] = {
OM_OID_DESC(OM_CLASS, DSX_C_GDS_ACL),
{DSX_MODIFY_PUBLIC, OM_S_OBJECT, {0, acl_item_root}},
{DSX_READ_STANDARD, OM_S_OBJECT, {0, acl_item_stefanie}},
{DSX_MODIFY_STANDARD, OM_S_OBJECT, {0, acl_item_stefanie}},
{DSX_READ_SENSITIVE, OM_S_OBJECT, {0, acl_item_stefanie}},
{DSX_MODIFY_SENSITIVE, OM_S_OBJECT, {0, acl_item_stefanie}},
OM_NULL_DESCRIPTOR

static OM_descriptor acl2[] = {
OM_OID_DESC(OM_CLASS, DSX_C_GDS_ACL),
{DSX_MODIFY_PUBLIC, OM_S_OBJECT, {0, acl_item_ap}},
{DSX_READ_STANDARD, OM_S_OBJECT, {0, acl_item_ap}},
{DSX_MODIFY_STANDARD, OM_S_OBJECT, {0, acl_item_stefanie}},
{DSX_READ_SENSITIVE, OM_S_OBJECT, {0, acl_item_ap}},
{DSX_MODIFY_SENSITIVE, OM_S_OBJECT, {0, acl_item_stefanie}},
OM_NULL_DESCRIPTOR

7-42 OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

static OM_descriptor att_acll]] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_ACL),
{DS_ATTRIBUTE_VALUES, OM_S_OBJECT, {0, acli} },
OM_NULL_DESCRIPTOR

static OM_descriptor att_acl2[]] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DSX_A_ACL),
{DS_ATTRIBUTE_VALUES, OM_S_OBJECT, {0, acl2} },
OM_NULL_DESCRIPTOR

static OM_descriptor alist_ C[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
{DS_ATTRIBUTES, OM_S_OBJECT, {0, obj_class_C} },
OM_NULL_DESCRIPTOR

static OM_descriptor alist_ O] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
{DS_ATTRIBUTES, OM_S_OBJECT, {0, obj_class_O} },
{DS_ATTRIBUTES, OM_S_OBJECT, {0, att_acl1} },
OM_NULL_DESCRIPTOR

static OM_descriptor alist_ OU[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
{DS_ATTRIBUTES, OM_S_OBJECT, {0, obj_class_OU} },
OM_NULL_DESCRIPTOR

static OM_descriptor alist_ OP[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
{DS_ATTRIBUTES, OM_S_OBJECT, {0, obj_class_OP} },
{DS_ATTRIBUTES, OM_S_OBJECT, {0, att_acl2} },
{DS_ATTRIBUTES, OM_S_OBJECT, {0, att_surname} },

OSF® DCE Application Development Guide — Directory Services 7-43

GDS Application Programming

7-44

{DS_ATTRIBUTES, OM_S_OBJECT, {0, att_phone_num} },
{DS_ATTRIBUTES, OM_S_OBJECT, {0, att_password} },
OM_NULL_DESCRIPTOR

/* The following descriptor list specifies what to return from */
/* the entry. The ACL attribute’s types and values are selected. */

static OM_descriptor selection_acl[] = {
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),
{DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, OM_FALSE},
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DSX_A_ACL),
{DS_INFO_TYPE, OM_S_ENUMERATION, DS_TYPES_AND_VALUES},
OM_NULL_DESCRIPTOR

/* The following descriptor list specifies the bind credentials */

static OM_descriptor credentials[] = {
{DS_REQUESTOR, OM_S_OBJECT, {0, dn_norbert} },
{DSX_PASSWORD, OM_S_OCTET_STRING, OM_STRING("secret")},
{DSX_AUTH_MECHANISM, OM_S_ENUMERATION, {DSX_SIMPLE,0}},
OM_NULL_DESCRIPTOR

/* The following descriptor list specifies part of the context */

static OM_descriptor use_copy[] = {
{DS_DONT_USE_COPY, OM_S_BOOLEAN, {OM_FALSE, 0} },
OM_NULL_DESCRIPTOR

/* Build up an array of object identifiers for the optional */
/* packages to be negotiated. */

DS_feature features[] = {
{ OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE },
{ OM_STRING(OMP_O_DSX_GDS_PKG), OM_TRUE },
{0}

OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

/* The following descriptor list specifies a filter for search : */
I* (Present: objectClass) */

static OM_descriptor filter_item[] = {
OM_OID_DESC(OM_CLASS, DS_C_FILTER_ITEM),
{DS_FILTER_ITEM_TYPE, OM_S_ENUMERATION, {DS_PRESENT, 0} },
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),
OM_NULL_DESCRIPTOR

h

static OM_descriptor filter[] = {
OM_OID_DESC(OM_CLASS, DS_C_FILTER),
{DS_FILTER_ITEMS, OM_S_OBJECT, {0, filter_item} },
{DS_FILTER_TYPE, OM_S_ENUMERATION, {DS_AND, 0} },
OM_NULL_DESCRIPTOR

#endif /* ACL_HEADER */

7.4 The teldir.c Program

The sample prograrteldir.c permits a user to add, read, or delete entries in a CDS
or GDS namespace in any local or remote DCE cell, assuming that permissions are
granted by the ACLs. The entry consists of a person’s surname and phone number.
Each entry is of clas®rganizational-Person

The program uses predefined static XDS public objects that are never altered and
partially defined static XDS public objects so that values for the surname and phone
number can be entered dynamically by a user. It also uses dynamic XDS public
objects that are created and filled only as needed by usingtthrgToXdsName
function. These techniques are a departure from those used in the first two sample
programs where all objects are predefined.

OSF® DCE Application Development Guide — Directory Services 7-45

GDS Application Programming

7.4.1 Predefined Static Public Objects

The predefined static object classes and attributes are shown in the following code
fragment:

/*

* To hold the attributes we want to attach to the name being added.

* One attribute is the class of the object (DS_O_ORG_PERSON), the

* rest of the attributes are the surname (required for all objects

* of class DS_O_ORG_PERSON) and phone number. In addition, we need
* an object to hold all this information to pass it into

* ds_add_entry().

*

static OM_descriptor xdsObjectClass[] = {

/* This object is an attribute--an object class. */
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A OBJECT_CLASS),

/* Not only must the class be listed, but also all */

/* its superclasses. */
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_TOP),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_PERSON),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_ORG_PERSON),

/* Null terminator */
OM_NULL_DESCRIPTOR

5

static OM_descriptor xdsAttributesToAdd[] = {

[* This object is an attribute list. */
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),

/* These are "pointers" to the attributes in the list. */

{ DS_ATTRIBUTES, OM_S_OBJECT, { 0, xdsObjectClass } },
{ DS_ATTRIBUTES, OM_S_OBJECT, { 0, xdsSurname } },

{ DS_ATTRIBUTES, OM_S_OBJECT, { 0, xdsPhoneNum } },

/* Null terminator */
OM_NULL_DESCRIPTOR

7-46 OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

/*

* To hold the list of attributes we want to read.
*

static OM_descriptor xdsAttributeSelection] = {

/* This is an entry information selection. */
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),

/* No, we don’t want all attributes. */
{ DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, OM_FALSE },

/* These are the ones we want to read. */
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A_SURNAME),
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A PHONE_NBR),

/* Give us both the types and their values. */
{ DS_INFO_TYPE, OM_S_ENUMERATION, { DS_TYPES_AND_VALUES, NULL } },

/* Null terminator */
OM_NULL_DESCRIPTOR

7.4.2 Partially Defined Static Public Objects

The program partially defines static XDS objects with placeholders so that values for
the surname and telephone number entered by the user can be added later, as shown
in the following code fragment:
static OM_descriptor xdsSurname[] = {

/* This object is an attribute--a surname. */

OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),

OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_SURNAME),

/* No default--so we need a placeholder for the actual surname. */

OSF® DCE Application Development Guide — Directory Services 7-47

GDS Application Programming

OM_NULL_DESCRIPTOR,

/* Null terminator */
OM_NULL_DESCRIPTOR

static OM_descriptor xdsPhoneNum[] = {

/* This object is an attribute--a telephone number. */
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_PHONE_NBR),

/* By default, phone numbers are unlisted. If the user specifies */

/* an actual phone number, it will go into this position. */

{ DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING,
OM_STRING("unlisted") },

/* Null terminator */
OM_NULL_DESCRIPTOR

The program prompts the user for the surname of the person whose number will be
changed and uses tiidLL._OMD_STRING macro to fill in values, as shown in the
following code fragment:

if (operation == 'a’) {
/* add operation requires additional input */
/*
* Get the person’s real name from the user and place it in the
* XDS object already defined at the
* top of the program (xdsSurname).
* We are requiring a name, so we will loop until we get one.
*
do {
printf("What is this person’s surname? ");
gets(newSurname);
} while (*newSurname == \0');
FILL_OMD_STRING(xdsSurname, 2, DS_ATTRIBUTE_VALUES,
OM_S_TELETEX_STRING, newSurname)

7-48 OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

7.4.3 Dynamically Defined Public Objects

The program uses the functi@tringToXdsName to convert the DCE name entered

by a user into an XDS name object of OM claBS C_DS DN which is the
representation of a distinguished name. In the other two sample programs, arrays
of descriptor lists are statically declared to represent the AVAs and RDNs that
make up the public object that represents a distinguished name. The function
stringToXdsName parses the DCE name and dynamically converts it to a public
object.

For example, the following code fragment shows how space @8 aC_AVA object
is allocated and its entries are filled by using #leL_OMD_XOM_STRING and
FILL_OMD_NULL macros:

/*
* Allocate space for a DS_C_AVA object and fill in its entries:

* DS_C_AVA class identifier
* AVA's type

* AVA'’s value

* null terminator

*/

ava = (OM_descriptor *)malloc(sizeof(OM_descriptor) * 4);

if(ava == NULL) /* malloc() failed */

return OM_MEMORY_INSUFFICIENT;

FILL_OMD_XOM_STRING(ava, 0, OM_CLASS, OM_S_OBJECT_IDENTIFIER_STRING,
DS_C_AVA)

splitNamePiece(start, &type, &value);

FILL_OMD_XOM_STRING(ava, 1, DS_ATTRIBUTE_TYPE,
OM_S_OBJECT_IDENTIFIER_STRING, type)

FILL_OMD_STRING(ava, 2, DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING,

value)
FILL_OMD_NULL(ava, 3)

The program uses the same method to build the RDNs that make up the the

distinguished name. The distinguished name is NULL terminated by using the
FILL_OMD_NULL macro, and the location of the new public object is provided

OSF® DCE Application Development Guide — Directory Services 7-49

GDS Application Programming

for the calling routine (main) in the pointexdsNameObj as shown in the following
code fragment:

/* Add the DS_C_RDN object to the DS_C_DS_DN object. */
FILL_OMD_STRUCT(dsdn, index, DS_RDNS, OM_S_OBJECT, rdn)

}

/*

* Null terminate the DS_C_DS_DN, tell the calling routine
* where to find it, and return.

*/

FILL_OMD_NULL(dsdn, index)

*xdsNameObj = dsdn;

return(OM_SUCCESS);

} * end stringToXdsName() */

7.4.4 Main Program Procedural Steps

The program consists of the following general steps:

1. Examine the command-line argument to determine the type of operation (read,
add, or delete entry) that the user wants to perform.

. Initialize a workspace.

. Pull in the packages with the required XDS features.

. Prompt the user for the name entry on which the operation will be performed.
. Convert the DCE-formatted user input string to an XDS object name.

. Bind (without credentials) to the default server.

. Perform the requested operation (read, add, or delete entry).

. Perform error handling.

© 00 N O 0o~ WDN

. Unbind from the server.

[y
o

. Shut down the workspace, releasing resources back to the system.

7-50 OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

7.4.5

Step 1 simply involves determining which of the three optiomgread),a (add), ord
(delete)—the user has entered. Step 2 initializes a workspace, an operation required
by XDS API for every application program. Step 3 is required because additional
features not present in the directory service package need to be used by the application
program. An additional package, the basic directory contents package, is defined in
featureListas a static XDS object earlier in the program.

In Step 4, the user is prompted for the DCE-formatted name, which is the distinguished
name of the person on whose telephone number the operation is to be performed. The
name must be a fully or partially qualified name that begins with eithef.theor /..

prefix. An example of a fully qualified, or global, name/is/C=de/O=sni/OU=ap/
CN=klaus. An example of a partially qualified, or cell, name/igbrad/sni/com.
Additional information is requested in Step 5 if the user requests an add operation.

Step 5 converts the DCE-formatted name to an XDS object name (public object) by
using thestringToXdsName() function call. This function builds an XDS public
object that represents the distinguished name entered by the user.

Step 6 binds the session to the default server without credentials; username and
password are not required.

In Step 7, the requested operation is performed by using XDS API functions calls.
For an add operatiords_add_entry()is performed; for a read operatiods_read()

is performed; and for a delete operatiais_remove_entry()is performed. The

read operation requires a series of XOM Adth_get() function calls to extract the
surname and phone number from the workspace. (For a detailed description of the
XDS and XOM API function calls, refer to Chapters 5 and 6.)

Step 8 and Step 9 are required for every XDS API application program in order to
clean up before the program exits. The session is unbound from the server, and

the public and private objects are released to the system that provided the memory
allocated for them.

The teldir.c Code

The following is a listing of the fildeldir.c:

OSF® DCE Application Development Guide — Directory Services 7-51

GDS Application Programming

7-52

*

This sample program behaves like a simple telephone directory.

It permits a user to add, read or delete entries in a GDS
namespace or to a CDS namespace in any local or remote DCE cell
(assuming that permissions are granted by the ACLs).

Each entry is of class Organizational-Person and simply contains
a person’s surname and their phone number.

The addition of an entry is followed by a read to verify that the
information was entered properly.

All valid names should begin with one of the following symbols:
/... Fully qualified name (from global root).
such as /.../C=de/O=sni/OU=ap/CN=klaus

/. Partially qualified name (from local cell root).
such as /./brad/sni/com
This program demonstrates the following techniques:
- Using completely static XDS public objects (predefined at the top
of the program and never altered). See xdsObjectClass,
xdsAttributesToAdd, and xdsAttributeSelection below.
- Using partially static XDS public objects (predefined at the top
of the program but altered later). See xdsSurname and xdsPhoneNum
below. See also the macros whose names begin with "FILL_OMD_".
- Using dynamic XDS public objects (created and filled in only as
needed). See the function stringToXdsName() below.
- Parsing DCE-style names and converting them into XDS objects. See
the function stringToXdsName() below.
- Getting the value of an attribute from an object read from the
namespace using ds_read(). See the function extractValue() below.
- Getting the numeric value of an error (type DS_status) returned by
one of the XDS calls. See the function handleDSError() below.

#ifdef THREADSAFE
#include <pthread.h>
#endif

#include <stdio.h>

OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

#include <stdlib.h>
#include <string.h>

#include <xom.h>
#include <xds.h>
#include <xdsbdcp.h>
#include <xdsgds.h>
#include <xdscds.h>

OM_EXPORT(DS_A_COMMON_NAME)

OM_EXPORT(DS_A_COUNTRY_NAME)

OM_EXPORT(DS_A_LOCALITY_NAME)

OM_EXPORT(DS_A OBJECT_CLASS)

OM_EXPORT(DS_A_ORG_UNIT_NAME)

OM_EXPORT(DS_A_ORG_NAME)

OM_EXPORT(DS_A_SURNAME)

OM_EXPORT(DS_A_PHONE_NBR)

OM_EXPORT(DS_A_TITLE)

OM_EXPORT(DS_C_ATTRIBUTE)

OM_EXPORT(DS_C_ATTRIBUTE_LIST)

OM_EXPORT(DS_C_AVA)

OM_EXPORT(DS_C_DS DN)

OM_EXPORT(DS_C_DS_RDN)

OM_EXPORT(DS_C_ENTRY_INFO_SELECTION)

OM_EXPORT(DS_O_ORG_PERSON)

OM_EXPORT(DS_O_PERSON)

OM_EXPORT(DS_O_TOP)

OM_EXPORT(DSX_TYPELESS_RDN) /* For "typeless" pieces of a name, as */
/* found in cells with bind-style names*/
/* and in the CDS namespace. *

#define MAX_NAME_LEN 1024

/* These values can be found in */

/* the "Directory Class Definitions" chapter. */

/* (One byte must be added for the null terminator.) */

#define MAX_PHONE_LEN 33
#define MAX_SURNAME_LEN 66

OSF® DCE Application Development Guide — Directory Services 7-53

GDS Application Programming

7-54

* Macros for help filling in static XDS objects.

/
/* Put NULL value (equivalent to OM_NULL_DESCRIPTOR) in object */
#define FILL_OMD_NULL(desc, index)
desc[index].type = OM_NO_MORE_TYPES;
desc[index].syntax = OM_S_NO_MORE_SYNTAXES;
desc[index].value.object.padding = O;
desc[index].value.object.object = OM_ELEMENTS_UNSPECIFIED;

/* Put C-style (null-terminated) string in object */
#define FILL_OMD_STRING(desc, index, typ, syntx, val)
desc[index].type = typ;
descfindex].syntax = syntx;
desc[index].value.string.length = (OM_string_length)
strlen(val);
desc[index].value.string.elements = val;

/* Put XOM string in object */

#define FILL_OMD_XOM_STRING(desc, index, typ, syntx, val)
desc[index].type = typ;
descfindex].syntax = syntx;
desc[index].value.string.length = val.length;
desc[index].value.string.elements = val.elements;

/* Put other value in object */

#define FILL_OMD_STRUCT(desc, index, typ, syntx, val)
desc[index].type = typ;
descfindex].syntax = syntx;
desc[index].value.object.padding = O;
desc[index].value.object.object = val;

/
* Static XDS objects.

/*

* To identify which packages we need for this program. We only need
* the basic package because we are not doing anything fancy with

* session parameters, etc.

*

DS _feature featureList]] = {

OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

*

*

*/

{ OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE 1},
{0}

To hold the attributes we want to attach to the name being added.

One attribute is the class of the object (DS_O_ORG_PERSON), the

rest of the attributes are the surname (required for all objects

of class DS_O_ORG_PERSON) and phone number. In addition, we need
an object to hold all this information to pass it

into ds_add_entry().

static OM_descriptor xdsObjectClass[] = {

/* This object is an attribute--an object class. */
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),

/* Not only must the class be listed, but also all */

/* its superclasses. */
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_TOP),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_PERSON),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_ORG_PERSON),

/* Null terminator */
OM_NULL_DESCRIPTOR

static OM_descriptor xdsSurname[] = {

/* This object is an attribute--a surname. */
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_SURNAME),

/* No default--so we need a placeholder for the actual surname. */
OM_NULL_DESCRIPTOR,

/* Null terminator */
OM_NULL_DESCRIPTOR

OSF® DCE Application Development Guide — Directory Services 7-55

GDS Application Programming

static OM_descriptor xdsPhoneNum[] = {

/* This object is an attribute--a telephone number. */
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_PHONE_NBR),

/* By default, phone numbers are unlisted. If the user specifies */

/* an actual phone number, it will go into this position. */

{ DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING,
OM_STRING("unlisted") },

/* Null terminator */
OM_NULL_DESCRIPTOR

static OM_descriptor xdsAttributesToAdd[] = {

/* This object is an attribute list. */
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),

/* These are "pointers" to the attributes in the list. */

{ DS_ATTRIBUTES, OM_S_OBJECT, { 0, xdsObjectClass } },
{ DS_ATTRIBUTES, OM_S_OBJECT, { 0, xdsSurname } },

{ DS_ATTRIBUTES, OM_S_OBJECT, { 0, xdsPhoneNum } },

/* Null terminator */
OM_NULL_DESCRIPTOR

/*

* To hold the list of attributes we want to read.
*

static OM_descriptor xdsAttributeSelection] = {

/* This is an entry information selection. */
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),

/* No, we don't want all attributes. */
{ DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, OM_FALSE },

7-56 OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

/* These are the ones we want to read. */
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A_SURNAME),
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A PHONE_NBR),

/* Give us both the types and their values. */
{ DS_INFO_TYPE, OM_S_ENUMERATION, { DS_TYPES_AND_VALUES, NULL } },

/* Null terminator */
OM_NULL_DESCRIPTOR

!
* dce_cf_get_cell_name()
* Use this dummy function if CDS is not available.

void

dce_cf_get_cell_name(
char ** cellname,
unsigned long * status

fprintf(stderr, "CDS unavailable: dce_cf_get_cell_name() error\n");
*status = 1;

} I* end dce_cf_get_cell_name() */

/
* showUsage()
* Display "usage" information.

void
showUsage(
char * cmd /* In--Name of command being called */

fprintf(stderr, "\nusage: %s [option]\n\n", cmd);
fprintf(stderr, "option: -a : add an entry\n");

OSF® DCE Application Development Guide — Directory Services 7-57

GDS Application Programming

fprintf(stderr, " -r : read an entry\n");
fprintf(stderr, " -d : delete an entry\n");

} /* end showUsage() */

!
* numNamePieces()
* Returns the number of pieces in a string name.

/

int
numNamePieces(

char * string /* In--String whose pieces are to be counted*/
)
{

int count; /* Number of pieces found */

char * currSep; /* Pointer to separator between pieces */

if(string == NULL) /* If nothing there, no pieces */
return(0);
count = 1; /* Otherwise, there’s at least one */

/*
* |If the first character is a /, it's not really separating
* two pieces so we want to ignore it here.
*
if(*string == 1")
currSep = string + 1;
else
currSep = string;

/* How many pieces are there? */

while((currSep = strchr(currSep, /")) != NULL) {
count++;
currSep++; /* Begin at next character */

return(count);

} /* end numNamePieces() */

7-58 OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

!
* splitNamePiece()
* Divides a piece of a name (string) into its XDS attribute type
* and value.

void
splitNamePiece(

char * string, /* In--String to be broken down */
OM_string * type, /* Out--XDS type of this piece of the name */
char ** value /* Out--Pointer to beginning of the value */
) /* part of string */
{
char * equalSign; /* Location of the = within string */
/*

* If the string contains an equal sign, this is probably a

* typed name. Check for all the attribute types allowed by
* the default schema.

*/

if((equalSign = strchr(string, '=")) != NULL) {

*value = equalSign + 1;

if((strnemp(string, "C=", 2) == 0) ||
(strncmp(string, "c=", 2) == 0))
*type = DS_A_COUNTRY_NAME;

else if((strncmp(string, "O=", 2) == 0) ||
(strnemp(string, "o=", 2) == 0))
*type = DS_A_ORG_NAME;

else if((strncmp(string, "OU=", 3) == 0) ||
(strnecmp(string, "ou=", 3) == 0))
*type = DS_A_ORG_UNIT_NAME;

else if((strncmp(string, "LN=", 3) == 0) ||

(strnemp(string, “In=", 3) == 0))
*type = DS_A_LOCALITY_NAME;

OSF® DCE Application Development Guide — Directory Services 7-59

GDS Application Programming

else if((strncmp(string, "CN=", 3) == 0) ||
(strncmp(string, "cn=", 3) == 0))
*type = DS_A_COMMON_NAME;

/*
* If this did not appear to be a type allowed by the
* default schema, consider the whole string as the
* value (whose type is "typeless").
*
else {
*type = DSX_TYPELESS_RDN;
*value = string;

/*
* |f the string does not contain an equal sign, this is a
* typeless name.
*
else {
*type = DSX_TYPELESS_RDN;
*value = string;

}

} /* end splitNamePiece() */

/
* extractValue()
* Pulls the value of a particular attribute from a private object
* that was received using ds_read().

* Returns:

* OM_SUCCESS If successful.

* OM_NO_SUCH_OBJECT If no values for the attribute
* were found.

* other Any value returned by one of the
* om_get() calls.

OM_return_code

7-60 OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

extractValue(

OM_private_object object, /* In--Object to extract from */
OM_string * attribute, /* In--Attribute to extract */
char * value /* Out--Value found */

OM_public_object attrList;
OM_public_object attrType;
OM_public_object attrValue;
OM_public_object entry;
int i;
OM_return_code omsStatus;
OM_value_position total;
OM_value_position totalAttributes;
OM_type xdslIncludedTypes[] = { O, /* Place holder */
0 }; /* Null terminator*/

/~k

* Get the entry from the object returned by ds_read().

*/

xdslIncludedTypes[0] = DS_ENTRY;

omsStatus = om_get(object, /* Object to extract from */

OM_EXCLUDE_ALL_BUT_THESE_TYPES+OM_EXCLUDE_SUBOBJECTS,
/* Only want what is in */
/* xdsIncludedTypes, don't*/

/* include subobjects */
xdsIncludedTypes, /* What to get */
OM_FALSE, /* Currently ignored */
OM_ALL_VALUES, /* Start with first value */
OM_ALL_VALUES, /* End with last value */
&entry, /* Put the entry here */
&total); /* Put number of attribut */

/* descriptors here */

if(omStatus '= OM_SUCCESS) {
fprintf(stderr, "om_get(entry) returned error %d\n",
omStatus);
return(omStatus);

}

if(total <= 0) {/* Make sure something was returned */
fprintf(stderr,

OSF® DCE Application Development Guide — Directory Services 7-61

GDS Application Programming

"Number of descriptors returned by om_get(entry)
was %d\n", total);
return(OM_NO_SUCH_OBJECT);

/*
* Get the attribute list from the entry.
*/
xdslIncludedTypes[0] = DS_ATTRIBUTES;
omsStatus = om_get(entry->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES+OM_EXCLUDE_SUBOBJECTS,
xdslIncludedTypes, OM_FALSE, OM_ALL_VALUES,
OM_ALL_VALUES, &attrlList, &totalAttributes);
if(omStatus '= OM_SUCCESS) {
fprintf(stderr, "om_get(attrList) returned error %d\n",
omsStatus);
return(omsStatus);

}
if(total <= 0) {/* Make sure something was returned */
fprintf(stderr,
"Number of descriptors returned by om_get(attrList)
was %d\n", total);
return(OM_NO_SUCH_OBJECT);
}

/*
* Search the list for the attribute with the proper type.
*
for(i = 0; i < totalAttributes; i++) {
xdsincludedTypes[0] = DS_ATTRIBUTE_TYPE;
omsStatus = om_get((attrList+i)->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES+OM_EXCLUDE_SUBOBJECTS,
xdsincludedTypes, OM_FALSE, OM_ALL_VALUES,
OM_ALL_VALUES, &attrType, &total);
if(omStatus '= OM_SUCCESS) {
fprintf(stderr, "om_get(attrType) [i = %d] returned
error %d\n", i, omStatus);
return(omsStatus);

}

if(total <= 0) { /* Make sure something was returned */

7-62 OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

fprintf(stderr,
"Number of descriptors returned by om_get(attrType)
[i = %d] was %d\n", i, total);
return(OM_NO_SUCH_OBJECT);
}
if(strncmp(attrType->value.string.elements,
attribute->elements,
attribute->length) == 0)
break; /* If we found a match, quit looking. */
}
if(i == totalAttributes) { /* Verify that we found a match. */
fprintf(stderr,
"%s: extractValue() could not find requested attribute\n");
return(OM_NOT_PRESENT);

/*

* Get the attribute value from the corresponding item in the
* attribute list.

*

xdsIncludedTypes[0] = DS_ATTRIBUTE_VALUES;

omStatus = om_get((attrList+i)->value.object.object,
OM_EXCLUDE_ALL_BUT_THESE_TYPES+OM_EXCLUDE_SUBOBJECTS,

xdsincludedTypes, OM_FALSE, OM_ALL_VALUES,
OM_ALL_VALUES, &attrValue, &total);
if(omStatus '= OM_SUCCESS) {
fprintf(stderr, "om_get(attrValue) returned error %d\n",
omsStatus);
return(omStatus);

}

if(total <= 0) {/* Make sure something was returned */
fprintf(stderr,

"Number of descriptors returned by om_get(attrValue)

was %d\n", total);
return(OM_NO_SUCH_OBJECT);

/*
* Copy the value into the buffer for return to the caller.
*/

OSF® DCE Application Development Guide — Directory Services 7-63

GDS Application Programming

7-64

strncpy(value, attrValue->value.string.elements,
attrValue->value.string.length);

value[attrValue->value.string.length] = "\0’;

/*

* Free up the resources we don't need any more and return.
*

om_delete(attrValue);
om_delete(attrType);
om_delete(attrList);
om_delete(entry);
return(OM_SUCCESS);

} /* end extractValue() */

* stringToXdsName()

*

*

*

*

Converts a string that is a DCE name to an XDS name object (class
DS_C_DS_DN). Returns one of the following:

OM_SUCCESS If successful.
OM_MEMORY_INSUFFICIENT If a malloc fails.
OM_PERMANENT_ERROR If the name is not in a valid format.
OM_SYSTEM_ERROR If the local cell's name cannot

be determined.

Technically, the space obtained here through malloc() needs
to be returned to the system when it is no longer needed.
If this was a more complex application, this function would
probably malloc all the space it needs at once and require
calling routines to free the space when finished with it.

/

OM_return_code
stringToXdsName(

char * origString, /* In--String name to be converted */
OM_object * xdsNameObj /* Out--Pointer to XDS name object */

OM_descriptor * ava; /* DS_C_AVA object */
char * cellName; /* Name of this cell */

OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

OM_object dsdn; /* DS_C_DS_DN object */

char * end; /* End of name piece */

int index; /* Index into DS_C_DS_DN object */
int numberOfPieces; /* Number of pieces in the name */
unsigned long rc; /* Return code for some functions*/
OM_descriptor * rdn; /* DS_C_RDN object */

char * start; /* Beginning of piece of name */
char * string; /* Copy of origString that we can use*/
OM_string type; /* Type of one piece of the name */

char * value; /* Piece of the name */

/*

* A DS_C_AVA object only contains pointers to the strings that

* represent the pieces of the name, not the contents of the

strings themselves. So we’ll make a copy of the string passed
* in to guarantee that these pieces survive in case the programmer
alters or reuses the original string.

*

*

*

In addition, all valid names should begin with one of the
following symbols:

*

* /... Fully qualified name (from global root). For

* these, we need to ignore the /...

* /. Partially qualified name (from local cell root).

* For these, we must replace the /.: with the name
* of the local cell nhame

* |f we see anything else, we’'ll return with an error. (Notice
* that /: is a valid DCE name, but refers to the file system’s
* namespace. Filenames cannot be accessed through
* CDS, GDS, or XDS.)
*
if(strnemp(origString, "/../", 5) == 0) {
string = (char *)malloc(strlen(origString+5) + 1);
if(string == NULL) /* malloc() failed */
return OM_MEMORY_INSUFFICIENT,;
strepy(string, origString+5);
}
else if(strncmp(origString, "/.:/", 4) == 0) {
dce_cf_get_cell_name(&cellName, &rc);
ift rc 1I=0) /* Could not get cell name */
return OM_SYSTEM_ERROR;

OSF® DCE Application Development Guide — Directory Services 7-65

GDS Application Programming

/*
* The cell name will have /../ on the front, so we will
* skip over it as we add it to the string (by always
* starting at its fifth character).
*
string = (char *)malloc(strlen
(origString+4) + strlen(cellName+5) + 2);
if(string == NULL) /* malloc() failed */
return OM_MEMORY_INSUFFICIENT;
strcpy(string, cellName+5);
strcat(string, /");
strcat(string, origString+4);

}

else /* Invalid name format */
return OM_PERMANENT_ERROR,;

/*

* Count the number of pieces in the name that will have to
* be dealt with.

*

numberOfPieces = numNamePieces(string);

/*
* Allocate memory for the DS_C_DS_DN object. We will need an
* OM_descriptor for each name piece, one for the class
* identifier, and one for the null terminator.
*/
dsdn = (OM_object)malloc(
(numberOfPieces + 2) * sizeof(OM_descriptor));
if(dsdn == NULL) /* malloc() failed */
return OM_MEMORY_INSUFFICIENT,;

/*
* |nitialize it as a DS_C_DS_DN object by placing that class
* jdentifier in the first position.
*/
FILL_OMD_XOM_STRING(dsdn, 0, OM_CLASS,
OM_S OBJECT_IDENTIFIER_STRING, DS_C_DS DN)

7-66 OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

/*
* For each piece of string, do the following:

* Break off the next piece of the string

* Build a DS_C_AVA object to show the type and value
* of this piece of the name

* Wrap the DS_C_AVA up in a DS_C_RDN object

* Add the DS_C_RDN to the DS_C_DS_DN object

*
for(start=string, index=1 ; index <= numberOfPieces ;
index++, start=end+1) {

/*
* Find the next delimiter and replace it with a null byte
* so the piece of the name is effectively separated from
* the rest of the string.
*
end = strchr(start, '/’);
if(end = NULL)
*end = \0’;
else /* If this is the last piece, there won't be */
/* a 'l at the end, just a null byte. */
end = strchr(start, \0');

/*

* Allocate space for a DS_C_AVA object and fill in its entries:

* DS_C_AVA class identifier

* AVA's type

* AVA's value

* null terminator

*/

ava = (OM_descriptor *)malloc(sizeof(OM_descriptor) * 4);

ifl ava == NULL) /* malloc() failed */

return OM_MEMORY_INSUFFICIENT,;

FILL_OMD_XOM_STRING(ava, 0, OM_CLASS,
OM_S_OBJECT_IDENTIFIER_STRING, DS_C_AVA)

splitNamePiece(start, &type, &value);

FILL_OMD_XOM_STRING(ava, 1, DS_ATTRIBUTE_TYPE,
OM_S_OBJECT_IDENTIFIER_STRING, type)

FILL_OMD_STRING(ava, 2, DS_ATTRIBUTE_VALUES,

OM_S PRINTABLE_STRING, value)

OSF® DCE Application Development Guide — Directory Services 7-67

GDS Application Programming

FILL_OMD_NULL(ava, 3)

/*

* Allocate space for a DS_C_RDN object and fill in its entries:

* DS_C_RDN class identifier

* AVA it contains

* null terminator

*/
rdn = (OM_descriptor *)malloc(sizeof(OM_descriptor) * 3);
if(rdn == NULL) /* malloc() failed */

return OM_MEMORY_INSUFFICIENT;
FILL_OMD_XOM_STRING(rdn, 0, OM_CLASS,
OM_S_OBJECT_IDENTIFIER_STRING, DS_C_DS_RDN)

FILL_OMD_STRUCT(rdn, 1, DS_AVAS, OM_S_OBJECT, ava)
FILL_OMD_NULL(rdn, 2)

/* Add the DS_C_RDN object to the DS_C_DS_DN object. */
FILL_OMD_STRUCT(dsdn, index, DS_RDNS, OM_S_OBJECT, rdn)

}

/*

* Null terminate the DS_C_DS_DN, tell the calling routine
* where to find it, and return.

*/

FILL_OMD_NULL(dsdn, index)

*xdsNameObj = dsdn;

return(OM_SUCCESS);

} /* end stringToXdsName() */

!
* handleDSError()
* Extracts the error number from a DS_status return code, prints it
* in an error message, then terminates the program.

/

void
handleDSError(
char * header, /* In--Name of function whose return code */
I* is being checked */

7-68 OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

DS_status returnCode /* In--Return code to be checked */

{
OM_type includeDSProblem[] = { DS_PROBLEM,
0%
OM_return_code omsStatus;
OM_public_object problem;
OM_value_position total;
/*
* A DS_status return code is an object. It will be one of the
* subclasses of the class DS_C_ERROR. What we want from it is
* the value of the attribute DS_PROBLEM.
*
omsStatus = om_get(returnCode,
OM_EXCLUDE_ALL_BUT_THESE_TYPES+OM_EXCLUDE_SUBOBJECTS,
includeDSProblem,
OM_FALSE,
OM_ALL_VALUES,
OM_ALL_VALUES,
&problem,
&total);
/~k
* Make sure we successfully extracted the problem number and print
* the error message before quitting.
*
if((omStatus == OM_SUCCESS) && (total > 0))
printf("%s returned error %d\n", header,
problem->value.enumeration);
else
printf("%s failed for unknown reason\n", header);
exit(1);
}

/
* Main program
*/

OSF® DCE Application Development Guide — Directory Services 7-69

GDS Application Programming

void

main(
int argc,
char * argv[]

DS_status
OM_sint

char

char

char
OM_return_code
char

int
OM_private_object
OM_private_object
char

OM_object
OM_workspace

int

/* Step 1

*

dsStatus;
invokelD;
newName[MAX_NAME_LEN];
newPhoneNum[MAX_PHONE_LEN];
newSurname[MAX_SURNAME_LEN];
omsStatus;
phoneNumRead[MAX_PHONE_LEN];
rc = 0;
readResult;
session;
surnameRead[MAX_SURNAME_LEN];
xdsName;
xdsWorkspace;
operation;

* Examine command-line argument.

*

operation = getopt(argc, argv, "rad");
if ((operation == '?") || (operation == EOF)) {
showUsage(argv[0]);

exit(1):

/* Step 2

*

* |Initialize the XDS workspace.

*

xdsWorkspace = ds_initialize();

if(xdsWorkspace

NULL) {

fprintf(stderr, "ds_initialize() failed\n");

exit(1):

7-70

OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

/* Step 3
*
* Pull in the packages that contain the XDS features we need.
*
dsStatus = ds_version(featureList, xdsWorkspace);
if(dsStatus != DS_SUCCESS)
handleDSError("ds_version()", dsStatus);

/* Step 4
*
* Find out what name the user wants to use in the namespace and
* convert it to and XDS object. We do this conversion dynamically
* (not using static structures defined at the top of the program)
* because we don't know how long the name will be.
*
switch(operation) {
case r' :
printf("What name do you want to read? ");
break;
case 'a’ :
printf("What name do you want to add? ");
break;
case 'd :
printf("What name do you want to delete? ");
break;

I* Step 5 */

gets(newName);
omsStatus = stringToXdsName(newName, &xdsName);
if(omStatus != OM_SUCCESS) {
fprintf(stderr, "stringToXdsName() failed with OM error %d\n",
omsStatus);
exit(1);

if (operation == 'a’) {
/* add operation requires additional input */

OSF® DCE Application Development Guide — Directory Services 7-71

GDS Application Programming

/*
* Get the person’s real name from the user and place it in
* the XDS object already defined at the top of the program
* (xdsSurname). We are requiring a name, so we will loop
* until we get one.
*
do {
printf("What is this person’s surname? ");
gets(newSurname);
} while (*newSurname == \0');
FILL_OMD_STRING(xdsSurname, 2, DS_ATTRIBUTE_VALUES,
OM_S_TELETEX_STRING, newSurname)

* Get the person’s phone number from the user and place it
* in the XDS object already defined at the top of the
* program (xdsPhoneNum). A phone number is not required,
* so if none is given we will use the default already
* stored in the structure.
*

printf("What is this person’s phone number? ");

gets(newPhoneNum);

if(*newPhoneNum = "\0") {

FILL_OMD_STRING(xdsPhoneNum, 2, DS_ATTRIBUTE_VALUES,
OM_S _PRINTABLE_STRING, newPhoneNum)
}

/* Step 6
*
* Open the session with the namespace:
* bind (without credentials) to the default server.
*
dsStatus = ds_bind(DS_DEFAULT_SESSION, xdsWorkspace, &session);
if(dsStatus != DS_SUCCESS)
handleDSError("ds_bind()", dsStatus);

I* Step 7 */

7-72 OSF® DCE Application Development Guide — Directory Services

Sample Application Programs

switch(operation) { /* perform the requested operation */

/*
* Add entry to the namespace. The xdsSurname and xdsPhoneNum
* objects are already contained within an attribute list object
* (xdsAttributesToAdd).

*

case 'a’ :
dsStatus = ds_add_entry(session, DS_DEFAULT_CONTEXT, xdsName,

xdsAttributesToAdd, &invokelD);
if(dsStatus != DS_SUCCESS)
handleDSError("ds_add_entry()", dsStatus);

/* FALL THROUGH */

/*

* Read the entry of the name supplied.

*

case r' :

dsStatus = ds_read(session, DS_DEFAULT_CONTEXT, xdsName,
xdsAttributeSelection, &readResult, &invokelD);
if(dsStatus !'= DS_SUCCESS)

handleDSError("ds_read()", dsStatus);

/*
* Get each attribute from the object read and print them.
*
omStatus = extractValue(readResult, &DS_A_SURNAME,
surnameRead);
if(omStatus '= OM_SUCCESS) {
printf("** Surname could not be read\n");
strcpy(surnameRead, "(unknown)");
rc = 1,
}
omStatus = extractValue(readResult, &DS_A_PHONE_NBR,
phoneNumRead);
if(omStatus '= OM_SUCCESS) {
printf("** Phone number could not be read\n");
strcpy(phoneNumRead, "(unknown)");
rc = 1,

OSF® DCE Application Development Guide — Directory Services 7-73

GDS Application Programming

}

printf("The phone number for %s is %s.\n", surnameRead,
phoneNumRead);

break;

/*
* delete the entry from the namespace.
*
case 'd :
dsStatus = ds_remove_entry(session, DS_DEFAULT_CONTEXT,
xdsName, &invokelD);
if(dsStatus != DS_SUCCESS)
handleDSError("ds_remove_entry()", dsStatus);
else
printf("The entry has been deleted.\n");
break;

/*

* Clean up and exit.

*

I* Step 8 */

dsStatus = ds_unbind(session);

if(dsStatus != DS_SUCCESS)
handleDSError("ds_unbind()", dsStatus);

I* Step 9 */
dsStatus = ds_shutdown(xdsWorkspace);
if(dsStatus != DS_SUCCESS)
handleDSError("ds_shutdown()", dsStatus);

exit(rc);

} /* end main() */

7-74 OSF® DCE Application Development Guide — Directory Services

Chapter 8

Using Threads With The XDS/XOM
API

Some programs work well when they are structured as multiple flows of control.
Other programs may show better performance when they are multithreaded, allowing
the multiple threads to be mapped to multiple processors when they are available.

GDS application programs can contain multiple threads of control. For example, a
GDS application can need to query several GDS servers. This can be achieved more
efficiently by using separate threads simultaneously to query the different servers.

GDS supports multithreaded applications. Writing multithreaded applications over
GDS imposes new requirements on programmers: they must manage the threads,
synchronize threads’ access to global resources, and make choices about thread
scheduling and priorities.

This chapter describes a simple GDS application that uses threads. (Refer to the
*(3thr) reference pages for more information on DCE threads.)

OSF® DCE Application Development Guide — Directory Services 8-1

GDS Application Programming

The XDS/XOM API calls do not change when they are making use of DCE threads
in an application program. The service underneath XDS/XOM API is designed to be
both thread-safe to allow multiple threads to safely access shared data,candel-
safe to handle unexpected cancellation of a thread in an application program.

Figure 8-1 shows an example of how an application can issue XDS/XOM calls from
within different threads.

Figure 8-1. Issuing XDS/XOM Calls from Within Different Threads

Thread 3 Thread 4 Thread 5
ds_initialiize
’ ds_read ‘ ‘ ds_list ‘ ‘ ds_compare ‘

The order of thread completion is not defined; however, XDS/XOM has an inherent

ordering. Multithreaded XDS applications must adhere to the following order of
execution:

1. ds_initialize()
2. ds_version()(optional)
3. ds_hind()

8-2 OSF® DCE Application Development Guide — Directory Services

Using Threads With The XDS/XOM API

8.1

4. Other XDS calls in sequence or parallel from multiple threads
5. ds_unbind()
6. ds_shutdown()

Multithreaded XOM applications must adhere to the following order of execution:
1. ds_initialize()
2. XOM calls in sequence or parallel from multiple threads
3. ds_shutdown()

The XDS/XOM API returns an appropriate error code if these sequences are not
adhered to. For example the following errors are returned:

DS_E_BUSY
If ds_unbind() is called while there are still outstanding operations, or
if ds_shutdown()is called before all directory connections have been
released byds_unbind().

OM_NO_SUCH_WORKSPACE
If any XOM API calls are made before callings_initialize(), or if
a call tods_shutdown()completes while there are outstanding XOM
operations on the same workspace. In the latter case, these XOM
operations will not be performed.

Overview of Sample Threads Program

The sample program is callethradd. The thradd program is a multithreaded
XDS application that adds entries to a GDS directory. Each thread performs a
ds_add_entry()call. The information for each entry to be added is read from an
input file.

Thethradd program can also be used to reset the directory to its original state. This
is achieved by invokinghradd with a -d command-line argument. In this case,
thradd uses the same input file and catls_remove_entry()for each entry. The
ds_remove_entry()calls are also done in separate threads.

OSF® DCE Application Development Guide — Directory Services 8-3

GDS Application Programming

8.1.1

To keep the program short and clear, it works with a fixed tree for the upper nbdes (
C=it/O=sni/OU=ap), to which the entries described in the input file are added. This
fixed upper tree is added to the directory thwadd. The input file contains the
common name, the surname, and the phone number of @agdmizational-Person
entry to be added.

For simplicity, only pthread_join() is used for synchronization purposes; mutexes
are not used.
The thradd program can be enhanced to satisfy the following scenarios:

» As a server program for interactive directory actions from different users. The
thradd program simulates a server program that gets requests from different users
to add entries to a directory. In the casetiofadd, the users’ interactive input
is simulated through the entries in the input file. Each line of input represents a
different directory entry, anthradd uses a separate thread for each line.

« Initialization of the directory with data from file. Thiradd program could be
enhanced to read generic attribute information for a variety of directory object
classes from a file, and to add the corresponding entries to the directory.

User Interface

The thradd program is called from the command line as follows:
thradd [-d] [-f file_namé¢

where:

-d Causes the entries in the file and the tf€=it/O=sni/OU=ap to be
deleted; otherwise, they are added.

-f file_name Specifies the name of the input file. If no input file is specified, then a
default filename othradd.dat is used.

OSF® DCE Application Development Guide — Directory Services

Using Threads With The XDS/XOM API

8.1.2

8.1.3

Input File Format

The input file can contain any number of lines. Each line represents a directory entry
of an organizational person. Each line must contain the following three attributes for
each entry:

<common nante <surname <phone number

The attributes must be strings without space characters. Lines containing less than
three strings are rejected by the program; any input on a line after the first three strings
is ignored and can be used for comments. The attributes are separated by one or

more space characters.

The input strings are not verified for their relevant attribute syntax. A wrong attribute
syntax will result in either als_add_entry()error or ads_remove_entry()error.

The following would be a valid input file fothradd:

Anna Meister 010101
Erwin Reiter 020202
Gerhard Schulz 030303
Gottfried Schmid 040404
Heidrun Blum 050505
Hermann Meier 060606
Josefa Fischer 070707
Jutta Arndt 080808
Leopold Huber 090909
Magdalena Schuster 101010
Margot Junge 111111

Program Output

The thradd program writes messages $tdout for every action done by a thread.
The order of the output can differ from the order in the input file; it depends on the
execution of the different threads.

Errors are reported tetderr.

OSF® DCE Application Development Guide — Directory Services 8-5

GDS Application Programming

8.1.4

8.2

86

Prerequisites

The directory must be active before runnittgadd. If you are runningthradd in
addingmode then the directory should not contain a nfitfeit. Thethradd program
should always be invoked twice with the same input file: first without and then with
option-d. This guarantees that the directory is reset to its original state. The GDS
administration prograngdsditadm can be used to verify the directory contents after
adding entries.

Description of Sample Program

The thradd program has a similar structure to the sample XDS programs in the
previous chapter. Therefore, only a short general outline of the program is given
here. The thread specifics are described in detail in the next section.

The static descriptors for the fixed tree (that/G5it/O=sni/OU=ap) are declared in
thethradd.h header file. Listings of both tharadd.c application and théhradd.h
header file are included in later sections of this chapter.

The main routine scans the command-line options, initializes the XDS workspace and,
if working in adding mode, binds to the default GDS server without credentials, adds
the fixed tree of upper nodes, and then unbinds from the directory.

The program then binds to the default GDS server without credentials. Each line of
the input file is processed in turn bywhile loop (until the end of the file is reached).
The while loop contains twdor loops. The firstfor loop creates a separate thread
for each line of the input file, up to a maximum BIAX_THREAD_NO of threads.

The add_or_remove() procedure, which adds or removes an entry to/from the
directory, is the starting point of each thread’s processing.

The secondor loop waits for termination of the threads and then releases the resources
used by the threads.

When the entire input file has been processbhdd closes the connection to the

GDS server and, if working imemovingmode, removes the fixed tree of upper nodes
(that is,/C=it/O=sni/OU=ap).

OSF® DCE Application Development Guide — Directory Services

Using Threads With The XDS/XOM API

Finally, the XDS workspace is closed.
Figure 8-2 shows the program flow.

Figure 8-2. Program Flow for the thradd Sample Program

’ Init routines ‘

’ Bind to GDS server ‘

Create threads

/ N

Thread 1 Thread n

\ /

Wait for threads

Unbind from GDS Server ‘

End routines ‘

OSF® DCE Application Development Guide — Directory Services

87

GDS Application Programming

8.3

8-8

Detailed Description of Thread Specifics

The program consists of the following general steps:
1. Include the header filpthread.h.
. Define a parameter block structure type for the thread start routine.
. Declare arrays for thread handles and parameter blocks.
. Read the input file line by line.
. Update the parameter block.
. Create the thread.
. Wait for the termination of the thread.

. Release the resources used by the thread.

© 00 N OO 00 B~ W N

. Define the thread start routine.

[y
o

. Declare local variables needed for descriptors for the objects read from the input
file.

The following paragraphs describe the corresponding step humbers from the program
listing in the next section:

Step 1 includes the header fii¢hread.h, which is required for thread programming.

Step 2 defines a parameter block structure type for the thread start routine. A
thread start routine must have exactly one parameter. Howatdr,or_remove()
requires three parameters (session object, input line, and operating mode). The
structurepb_add_or_removeis defined as the parameter block for these components.
Therefore, the single parameter block contains the three parameters required by
add_or_remove()

Step 3 declares arrays for thread handles and parameter blocks. The routine that
creates the threadn@in, in this case) must maintain the following information for
each thread:

A thread handle of typpthread_t to identify the thread for join and detach calls.

OSF® DCE Application Development Guide — Directory Services

Using Threads With The XDS/XOM API

A thread-specific parameter block that cannot be accessed by any other thread.
This makes sure that a parameter for one thread is not overwritten by another
thread.

Step 4 reads the input file line by line. A thread is created for each line. A maximum
MAX_THREAD_NO of threads is created in parallel. The program then waits for

the termination of the created threads so that it can release the resources used by these
threads, allowing it to create new threads for remaining input lines (if any).

The absolute maximum number of threads working in parallel depends on system
limits; for thradd, a value of 10 was chosen (s#®add.h), which is well below the
maximum on most systems.

Step 5 updates the parameter block. For each thread, a different element of the array
of parameter blocks is used.

Step 6 creates the thread. The thread is created by using the function
pthread_create() The function has the following parameters:

The thread handle (output) is stored in an element of the array ofptypead_t.

For the thread characteristics, the defgiliread_attr_default is used.

The start routine for this thread &ld_or_remove()

» The parameter passedadd_or_remove()is a pointer to an element of the array
of parameter blocks.

Step 7 waits for the termination of the thread. Tgthread_join() routine is called

with the thread handle as the input parameter. The program waits for the termination
of the thread. If the thread has already terminated, tb#mead_join() returns
immediately. The second parameterpthread_join() contains the return value of

the start function; here it is a dummy value becaadeé or_remove()returns avoid.

The add_or_remove() routine is designed as woid function because the calling
routine does not have to deal with error cases. atie or_remove()routine prints

status messages itself to show the processing order of the threads. Usually, a status
should be returned to the application.

Step 8 releases the resources used by the thread. The thread handle is used as input for

the functionpthread_detach() which releases the resources (for example, memory)
used by the thread.

OSF® DCE Application Development Guide — Directory Services 8-9

GDS Application Programming

8.4

8-10

Step 9 defines the thread start routine. As previously mentioned, the thread start
routine must have exactly one parameter. In this case, it is a pointer to the parameter
block structure defined in Step 2.

Step 10 declares local variables needed for descriptors for the objects read from the
input file. These descriptors are variables and are declared as automatic because
of the reentrancy requirement. In the previous sample programs, descriptors were
generally declared static. For this example, this is only possible for the constant
descriptors declared ithradd.h.

Of course, this example shows only a small part of the possibilities of multithreaded

XDS programming. For example, each thread could make its own bind, which would
be useful if more than one GDS server was involved.

The thradd.c Code

The following code is a listing of théhradd.c program:

/*
* The program operates in two modes; it adds or removes entries of

*

object type organizational person to/from a directory. The
information about the entries is read from a file.

*

* The program requires that a tree exists in the directory.

* Therefore, each time the program runs, the following tree of 3
* entries is added to or removed from the directory, according

* to the operation mode.

* O Cs=it

* | (objectClass=Country)

* I

* O O=sni

* | (objectClass=Organization)

* I

* O OuU=ap

* (objectClass=0rganizationalUnit)

* Information about the organizational persons to be added or

OSF® DCE Application Development Guide — Directory Services

Using Threads With The XDS/XOM API

*

*

removed is read from the input file. It may contain any number
of lines, where each line must have the following syntax:

<common name> <surname> <phone number>
Each item must be a string without a space.

Lines containing less than 3 strings are rejected by the

program. The program does not check to see if the strings conform
to the appropiate attribute syntax; that is a wrong attribute

syntax will lead to a ds_add_entry error, or to a

ds_remove_entry error.

Usage: thradd [-d] [-f<file_name>]
-d If the option -d is set, the entries in the
file and the tree described above are removed,
otherwise they are added.
-f<file_name> The option -f specifies the name of the input
file.If left out, the default "thradd.dat"
is used.

/* Step 1 */

/*

*

*

Header file for thread programming:

#include <pthread.h>

#include <stdio.h>
#include <xom.h>
#include <xds.h>
#include <xdsbdcp.h>
#include <xdsgds.h>
#include <xdscds.h>

#include "thradd.h" /* static data structures. */
/* Step 2 */
/*

*

typedef for parameter block of function add_or_remove

OSF® DCE Application Development Guide — Directory Services

8-11

GDS Application Programming

* (this is necessary because the start function of a thread
* takes only 1 parameter). The following 3 parameters are
* passed to add_or_remove:

* Input - Session object from the ds_bind call
* Input - Buffer with the entry information

* Input - "adding" or "removing" mode ?

*

typedef struct {
OM_private_object session;
char line[MAX_LINE_LEN+1];
int do_remove;

} pb_add_or_remove;

/*

* static constants:

*

* Default name for input file containing entry information.
*

static char fn_default]] = "thradd.dat";

/~k

* function declarations:

*/

char *own_fgets(char *s, int n, FILE *f);
void add_or_remove(pb_add_or_remove *pb);

int

main(
int argc,
char *argvl[]

)

{
OM_workspace workspace; /* workspace for objects */
OM_private_object bound_session; /* Holds the Session */

/* returned by ds_bind() */

FILE *fp; /* pointer for input file*/
int do_remove = FALSE; /* "adding" or "removing"*/
int error = FALSE; /* error in options ? */
int is_eof = FALSE; /* EOF input file reached*/

8-12 OSF® DCE Application Development Guide — Directory Services

Using Threads With The XDS/XOM API

int thread_count; /* no. of created threads*/
char *file_name; /* ptr to input file_name*/

/* Step 3 */
pthread_t threads[MAX_THREAD_NO]; [* thread table */

pb_add_or_remove param_blockMAX_THREAD_NOJ; /* 1 param block*/
[* for start routine per thread */

int dummy;

int (o

int i;

extern char *optarg;/* external variable used by getopt */
extern int optind; /* external variable used by getopt */
/*

* scan options -d and -f

*

file_name = fn_default;

while ((c=getopt(argc, argv, "df:")) != EOF)

{
switch (c)
{
case 'd":
do_remove = TRUE;
break;
case 'f:
file_name = optarg;
break;
default:
error = TRUE;
break;
}
}
if (error)
{
printf("'usage: %s [-d] [-f<file_name>]\n", argv[0]);
return(FAILURE);
}

OSF® DCE Application Development Guide — Directory Services 8-13

GDS Application Programming

if (fp = fopen(file_name, "r")) == (FILE *) NULL)

{
printf(“fopen() error, file name: %s\n", file_name);
return(FAILURE);
}
/*
* |Initialize a directory workspace for use by XOM.
*

if ((workspace = ds_initialize()) == (OM_workspace)0)
printf("ds_initialize() error\n");

/*

* Negotiate the use of the BDCP and GDS packages.

*

if (ds_version(features, workspace) '= DS_SUCCESS)
printf("ds_version() error\n");

/*
* Add the fixed tree of entries, if in adding mode
*
if (do_remove)
if (add_entries(workspace))
printf("add_entries() error\n");

/*

* Bind to the default GDS server.

* The returned session object is stored in the private

* object variable bound_session and is used for further

* XDS function calls.

*/

if (ds_bind(DS_DEFAULT_SESSION, workspace, &bound_session)
1= DS_SUCCESS)
printf("ds_bind() error\n");

I* Step 4 */

/~k
* Add or remove entries described in input file. This is done

8-14 OSF® DCE Application Development Guide — Directory Services

Using Threads With The XDS/XOM API

* in parallel, creating up to MAX_THREAD_NO threads at a time.

*
while (lis_eof)
{
for (thread_count=0; thread_count<MAX_THREAD_NO;
thread_count++)
{
/* Step 5 */
/*
* Prepare parameter block:
*
is_eof = (own_fgets(param_block[thread_count].line,
MAX_LINE_LEN, fp) == NULL);
if (is_eof)
break;
param_block[thread_count].session = bound_session;
param_block[thread_count].do_remove = do_remove;
/* Step 6 */
/*
* Create thread with start routine add_or_remove:
*

if (pthread_create(&threads[thread_count],
pthread_attr_default,
(pthread_startroutine_t) add_or_remove,
(pthread_addr_t) ¶m_block[thread_count])
1= SUCCESS)
printf("pthread_create() error\n");
} /* end for */

/*

* Wait for termination of the created threads and release
* resources:

*/

for (i=0; i<thread_count; i++)

{

OSF® DCE Application Development Guide — Directory Services 8-15

GDS Application Programming

I* Step 7 */

/*

* Wait for termination of thread

* (If thread has terminated already, the function

* returns immediately):

*

if (pthread_join(threads[i], (pthread_addr_t) &dummy)
1= SUCCESS)
printf("pthread_join() error\n");

I* Step 8 */

/*
* Release resources used by the thread:
*
if (pthread_detach(&threads][i]) '= SUCCESS)
printf("pthread_detach() error\n");
} /* end for */
} I* end while */

/*

* Close the connection to the GDS server.

*/

if (ds_unbind(bound_session) != DS_SUCCESS)
printf("ds_unbind() error\n");

if (om_delete(bound_session) != OM_SUCCESS)
printf("om_delete() error\n");

/~k
* Remove the tree from the directory, if removing mode
*/
if (do_remove)
if (remove_entries(workspace))
printf("remove_entries() error\n");

/*
* Close the directory workspace.

8-16 OSF® DCE Application Development Guide — Directory Services

Using Threads With The XDS/XOM API

*
if (ds_shutdown(workspace) = DS_SUCCESS)
printf("ds_shutdown() error\n");

fclose(fp);
return(SUCCESS);
} /* end main() */

/* Step 9 */

/*

* Handle (add or remove) a directory entry
*

void

add_or_remove(

pb_add_or_remove *pb /* parameter information */

/*
* further local variables:
*/

char common_name[MAX_AT_LEN+1];
char phone_num[MAX_AT_LEN+1];
char surname[MAX_AT_LEN+1];
OM_sint invoke_id;

/* Step 10 */

/*

* local variables for descriptors for objects read from file

*

OM_descriptor ava_genop[] = {
OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COMMON_NAME),
OM_NULL_DESCRIPTOR, /* place holder */
OM_NULL_DESCRIPTOR

OM_descriptor rdn_genop[] = {

OSF® DCE Application Development Guide — Directory Services 8-17

GDS Application Programming

OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
OM_NULL_DESCRIPTOR, /* place holder *
OM_NULL_DESCRIPTOR

OM_descriptor dn_genop[] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,0OM_S_OBJECT,{0,rdn_it}},
{DS_RDNS,0OM_S_OBJECT,{0,rdn_sni}},
{DS_RDNS,0OM_S_OBJECT,{0,rdn_ap}},
OM_NULL_DESCRIPTOR, /* place holder */
OM_NULL_DESCRIPTOR

OM_descriptor att_phone_num[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_PHONE_NBR),
OM_NULL_DESCRIPTOR, [* place holder */
OM_NULL_DESCRIPTOR

OM_descriptor att_surname[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_SURNAME),
OM_NULL_DESCRIPTOR, /* place holder */
OM_NULL_DESCRIPTOR

OM_descriptor alist_ OP[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
{DS_ATTRIBUTES, OM_S_OBJECT, {0, obj_class_OP} },
OM_NULL_DESCRIPTOR, /* place holder */
OM_NULL_DESCRIPTOR, /* place holder */
OM_NULL_DESCRIPTOR

rdn_genop[1l].type = DS_AVAS;
rdn_genop[l].syntax = OM_S_OBJECT;
rdn_genop[1].value.object.padding = 0;

8-18 OSF® DCE Application Development Guide — Directory Services

Using Threads With The XDS/XOM API

rdn_genop[1].value.object.object = ava_genop;

dn_genop[4].type = DS_RDNS;
dn_genop[4].syntax = OM_S_OBJECT;
dn_genop[4].value.object.padding = 0;
dn_genop[4].value.object.object = rdn_genop;

alist_OP[2].type = DS_ATTRIBUTES;
alist_OP[2].syntax = OM_S_OBJECT;
alist_OPJ[2].value.object.padding = O;
alist_OPJ[2].value.object.object = att_surname;

alist_OP[3].type = DS_ATTRIBUTES;
alist_OPJ[3].syntax = OM_S_OBJECT;
alist_OPJ[3].value.object.padding = 0;
alist_OPJ[3].value.object.object = att_phone_num;

if (sscanf(pb->line, "%s %s %s", common_name,
surname, phone_num) != 3)

{
printf("invalid input line: >%s<\n", pb->line);
return;
}
/*
* Fill descriptor for common name
*/

ava_genop[2].type = DS_ATTRIBUTE_VALUES;
ava_genop[2].syntax = OM_S_PRINTABLE_STRING;
ava_genop[2].value.string.length =
(OM_string_length)strlen(common_name);
ava_genop[2].value.string.elements = common_name;

if (pb->do_remove) [* add */

{
/*
* Fill descriptors for surname and phone number
*

att_surname[2].type = DS_ATTRIBUTE_VALUES;
att_surname[2].syntax = OM_S_TELETEX_STRING;
att_surname[2].value.string.length =

OSF® DCE Application Development Guide — Directory Services 8-19

GDS Application Programming

8-20

(OM_string_length)strlen(surname);
att_surname[2].value.string.elements = surname;

att_phone_num[2].type = DS_ATTRIBUTE_VALUES;
att_phone_num[2].syntax = OM_S_PRINTABLE_STRING;
att_phone_num[2].value.string.length =
(OM_string_length)strlen(phone_num);
att_phone_num[2].value.string.elements = phone_num;

/*
* add entry
*
if (ds_add_entry(pb->session, DS_DEFAULT_CONTEXT, dn_genop,
alist_OP, &invoke_id) != DS_SUCCESS)
printf("ds_add_entry() error: %s %s %s\n",
common_name, surname, phone_num);
else
printf("entry added: %s %s %s\n",
common_name, surname, phone_num);

}
else /* remove */
{
/*
* remove entry
*/
if (ds_remove_entry(pb->session, DS_DEFAULT_CONTEXT,
dn_genop, &invoke_id) = DS_SUCCESS)
printf("ds_remove_entry() error: %s\n", common_name);
else
printf("entry removed: %s\n", common_name);
} * end if ¥

} ¥ end add_or_remove() */

/*
* Add the tree of entries described above.
*/
int
add_entries(
OM_workspace workspace /* In--XDS workspace */

OSF® DCE Application Development Guide — Directory Services

Using Threads With The XDS/XOM API

OM_private_object bound_session; /* Holds Session object */

/* returned by ds_bind() */
OM_sint invoke_id;
int error = FALSE;

/* Bind (without credentials) to the default GDS server */
if (ds_bind(DS_DEFAULT_SESSION, workspace, &bound_session)
1= DS_SUCCESS)
error = TRUE;
/* Add entries to the GDS server */
if (ds_add_entry(bound_session, DS_DEFAULT_CONTEXT, dn_it,
alist_C, &invoke_id) !'= DS_SUCCESS)
error = TRUE;
if (ds_add_entry(bound_session, DS_DEFAULT_CONTEXT, dn_sni,
alist_O, &invoke_id) != DS_SUCCESS)
error = TRUE;
if (ds_add_entry(bound_session, DS_DEFAULT_CONTEXT, dn_ap,
alist_OU, &invoke_id) !'= DS_SUCCESS)
error = TRUE;

/* Close the connection to the GDS server */

if (ds_unbind(bound_session) != DS_SUCCESS)
error = TRUE;

if (om_delete(bound_session) != OM_SUCCESS)
error = TRUE;

return (error);

/*

OSF® DCE Application Development Guide — Directory Services 8-21

GDS Application Programming

* Remove the tree of entries described above.
*
int
remove_entries(
OM_workspace workspace /* In--XDS workspace */

OM_private_object bound_session; /* Holds Session object */

/* returned by ds_bind() */
OM_sint invoke_id;
int error = FALSE;

/* Bind to the default GDS server */
if (ds_bind(DS_DEFAULT_SESSION, workspace, &bound_session)
1= DS_SUCCESS)
error = TRUE;
/* Remove entries from the GDS server */
if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT,
dn_ap, &invoke_id) != DS_SUCCESS)
error = TRUE;
if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT,
dn_sni, &invoke_id) !'= DS_SUCCESS)
error = TRUE;
if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT,
dn_it, &invoke_id) != DS_SUCCESS)
error = TRUE;

/* Close the connection to the GDS server */

if (ds_unbind(bound_session) != DS_SUCCESS)
error = TRUE;

if (om_delete(bound_session) != OM_SUCCESS)
error = TRUE;

8-22 OSF® DCE Application Development Guide — Directory Services

Using Threads With The XDS/XOM API

return (error);

/*

* read one line with fgets and overwrite new line by
* a null character

*

char *

own_fgets(
char *s, /* OUT--string read */
int n, /* IN---maximum number of chars to be read */
FILE *f /* IN---input file */

)

{

char *result;
int i =0;

result = fgets(s, n, f);
if (result != NULL)

{
i = strlen(s);
if (s[i-1] == "\n’)
sli-1] = "\0’;
}

return (result);

8.5 The thradd.h Header File

The following code is a listing of théhradd.h header file:

#ifndef THRADD_H
#define THRADD_H

#ifndef TRUE
#define TRUE (1)

OSF® DCE Application Development Guide — Directory Services 8-23

GDS Application Programming

8-24

#endif

#ifndef FALSE
#define FALSE (0)

#endif

#define SUCCESS 0

#define FAILURE 1

#define MAX_LINE_LEN 100 /* max length of line in input file */
#define MAX_AT LEN 100 /* max length of an attribute value */
#define MAX_THREAD_NO 10 /* max number of threads created */

/* The application must export the object

identifiers
*/

OM_EXPORT
OM_EXPORT
OM_EXPORT
OM_EXPORT
OM_EXPORT

OM_EXPORT
OM_EXPORT
OM_EXPORT
OM_EXPORT
OM_EXPORT
OM_EXPORT
OM_EXPORT

OM_EXPORT
OM_EXPORT
OM_EXPORT
OM_EXPORT
OM_EXPORT
OM_EXPORT

it requires.

(DS_C_AVA)
(DS_C_DS_RDN)
(DS_C_DS_DN)
(DS_C_ATTRIBUTE)
(DS_C_ATTRIBUTE_LIST)

(DS_A_COUNTRY_NAME)
(DS_A_ORG_NAME)
(DS_A_ORG_UNIT_NAME)
(DS_A_COMMON_NAME)
(DS_A_OBJECT_CLASS)
(DS_A_PHONE_NBR)
(DS_A_SURNAME)

(DS_O_TOP)
(DS_O_COUNTRY)
(DS_O_ORG)
(DS_O_ORG_UNIT)
(DS_O_PERSON)
(DS_O_ORG_PERSON)

/* Build descriptor lists for the following */

OSF® DCE Application Development Guide — Directory Services

Using Threads With The XDS/XOM API

/* distinguished names: */

I* root */
I* /C=it */
I* /C=it/O=sni */
I* /C=it/O=sni/OU=ap */
static OM_descriptor ava_it[] = {

OM_OID_DESC(OM_CLASS, DS _C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING("it")},
OM_NULL_DESCRIPTOR

|3

static OM_descriptor ava_sni[] = {
OM_OID_DESC(OM_CLASS, DS _C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING("sni")},
OM_NULL_DESCRIPTOR

|3

static OM_descriptor ava_ap[] = {
OM_OID_DESC(OM_CLASS, DS _C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORG_UNIT_NAME),
{DS_ATTRIBUTE_VALUES, OM_S_TELETEX_STRING, OM_STRING("ap")},
OM_NULL_DESCRIPTOR

b

static OM_descriptor rdn_it[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, ava_it}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdn_sni[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S_OBJECT, {0, ava_sni}},
OM_NULL_DESCRIPTOR

h

static OM_descriptor rdn_ap[] = {
OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{DS_AVAS, OM_S OBJECT, {0, ava_ap}},
OM_NULL_DESCRIPTOR

J5

static OM_descriptor dn_root[]] = {

OSF® DCE Application Development Guide — Directory Services 8-25

GDS Application Programming

8-26

OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
OM_NULL_DESCRIPTOR

I8

static OM_descriptor dn_it[] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,OM_S_OBJECT {0,rdn_it}},
OM_NULL_DESCRIPTOR

I3

static OM_descriptor dn_sni[] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,OM_S_OBJECT {0,rdn_it}},
{DS_RDNS,0OM_S_OBJECT {0,rdn_sni}},
OM_NULL_DESCRIPTOR

I8

static OM_descriptor dn_ap[] = {
OM_OID_DESC(OM_CLASS,DS_C_DS_DN),
{DS_RDNS,OM_S_OBJECT {0,rdn_it}},
{DS_RDNS,0OM_S_OBJECT {0,rdn_sni}},
{DS_RDNS,0OM_S_OBJECT,{0,rdn_ap}},
OM_NULL_DESCRIPTOR

/* Build up an array of object identifiers for the */
/* attributes to be added to the directory. */

static OM_descriptor obj_class_CJ[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_TOP),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_COUNTRY),
OM_NULL_DESCRIPTOR

I8

static OM_descriptor obj_class_O[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_TOP),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_ORG),
OM_NULL_DESCRIPTOR

OSF® DCE Application Development Guide — Directory Services

Using Threads With The XDS/XOM API

static OM_descriptor obj_class_OU[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_TOP),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_ORG_UNIT),
OM_NULL_DESCRIPTOR

I3

static OM_descriptor obj_class_OP[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_OBJECT_CLASS),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_TOP),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_PERSON),
OM_OID_DESC(DS_ATTRIBUTE_VALUES, DS_O_ORG_PERSON),
OM_NULL_DESCRIPTOR

h

static OM_descriptor alist_ C[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
{DS_ATTRIBUTES, OM_S_OBJECT, {0, obj_class_C} },
OM_NULL_DESCRIPTOR

h

static OM_descriptor alist_ O[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
{DS_ATTRIBUTES, OM_S_OBJECT, {0, obj_class_O} },
OM_NULL_DESCRIPTOR

h

static OM_descriptor alist_OU[] = {
OM_OID_DESC(OM_CLASS, DS_C_ATTRIBUTE_LIST),
{DS_ATTRIBUTES, OM_S_OBJECT, {0, obj_class_OU} },
OM_NULL_DESCRIPTOR

h

/* Build up an array of object identifiers for the */
/* optional packages to be negotiated. */

static DS_feature features[] = {

{ OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE },
{ OM_STRING(OMP_O_DSX_GDS_PKG), OM_TRUE },

OSF® DCE Application Development Guide — Directory Services 8-27

GDS Application Programming

{0}
h

#endif /* THRADD_H */

8-28 OSF® DCE Application Development Guide — Directory Services

Chapter 9

XDS/XOM Convenience Routines

This chapter describes functions that are available to XDS/XOM programmers to
help simplify and speed up the development of XDS applications. The convenience
functions target two main areas, as follows:

The following six convenience functions are provided:

Filling, comparing, and extracting objects

Converting objects to and from strings

dsX_extract_attr_values()
omX_fill()

omX_fill_oid()
omX_extract()
omX_string_to_object()

omX_object_to_string()

OSF® DCE Application Development Guide — Directory Services

9-1

GDS Application Programming

9.1

9-2

Refer to the*(3xds) and* (3xom) reference pages for detailed descriptions of these
functions.

To demonstrate the power of the convenience functionsathe sample program
from Chapter 7 is presented again here, after being modified to make use of these
functions. The modified sample program is calsd?.c

String Handling

The convenience functions provide the ability to specify OM objects in string format
by means of abbreviations. These abbreviations are defined in the XOM object
information file xoischema

X.500 attribute types can be specified as abbreviations or object identifier strings. The
mapping of the attribute abbreviations and object identifier strings to BER encoded
object identifiers and the associated attribute syntaxes is determined by the XOM
object information module with the help of theischemafile. For valid attribute
abbreviations, please refer to tkeischemafile in the following directory:

dce_local_path>/var/adm/directory/gds/adm

It is important that any schema changes to the DSA are reflected iroikehema
file.

The convenience functions are able to handle strings with special syntax. The strings
can be broadly classified into the following:

* Strings representing GDS attribute information

* Strings representing structured GDS attribute information

« Strings representing a structured GDS attribute value

* Strings representing a distinguished name (DN)

» Strings representing expressions

OSF® DCE Application Development Guide — Directory Services

XDS/XOM Convenience Routines

9.11

9.1.2

Strings Representing GDS Attribute Information

Strings that represent GDS attribute information are used to associate the attributes
with their values. They are of the form:

attribute_type= attribute_value

The attribute types can either be specified as abbreviations or object identifier strings.
An object identifier string is defined as a series of digits separated by tlidot)
character. |If attribute abbreviations are used, they are case insensitive. For example,
cn=schmid or 85.4.3=schmid

In the case of attributes witbM_S OBJECT_IDENTIFIER syntax, the attribute
value can also be specified as an abbreviation string. For example, an object class
for Residential Personcan be specified @CL=REP or OCL="\x55\x06\x0A’

All leading and trailing whitespace (surrounding the attribute type, the = (equal sign),
and the attribute value) is ignored.
The following are the reserved characters for such strings:

' Used to enclose the attribute values. If this character is used, all other
reserved characters within the quoted string except the \ (backslash) are
not interpreted. For examplen=henry mueller

; Separates multiple values of a recurring attribute. All leading and
trailing whitespace (surrounding the semicolon) is ignored. For
example, TN=899898;979779

= Associates the attribute with its value.

\xnn Specifies hexadecimal data. The two charactersare read as the
hexadecimal value.

\ Used to escape any of the other reserved characters.
Strings Representing Structured GDS Attribute Information

Strings that represent structured GDS attribute information are used to associate the
structured attribute and its components with their values. They are of the form:

OSF® DCE Application Development Guide — Directory Services 9-3

GDS Application Programming

structured_attribute_type {Compl= Valug Comp2= Value ..}

The structured attribute type can be specified as abbreviations or object identifier
strings. An object identifier string is defined as a series of digits separated by dots.
If attribute abbreviations are used, they are case insensit@empl Comp2 and

so on, are the components of the structured attribute. They should be specified as
abbreviations, as in the following example:

TXN={TN=977999, CC=345, AB=8444}

Recurring values for structured attributes can be specified with the help of the
semicolon. An example follows:

TXN={TN=977999, CC=345, AB=8444};{TN=123444,CC=345, AB=8444}
Recurring values for the components should be specified as follows:
TXN={TN=977999; 274424, CC=345, AB=8444}

If any of the components are further structured, they should be enclosed within braces
as follows:

FTN={PA={FR=1,TD=1}, PN=67899}

All leading and trailing whitespace, which surrounds the structured attribute type, the
component abbreviation, the equal sign, the { (left brace),, tttwmma), and the }
(right brace), is ignored.

Attributes and components with DN syntax should be specified as follows:

AON={/c=de/o=sni/ou=apll/cn=mueller}
ACL={MPUB={INT=0, USR={/c=de/o=sni/cn=mueller, sn=schmid}}}

In the case of attributes witbM_S OBJECT_IDENTIFIER syntax, the attribute
value can also be specified as an abbreviation string, as shown in the following:

SG={OCL=REP}
SG={OCL="\x55\x06\x0A"}

OSF® DCE Application Development Guide — Directory Services

XDS/XOM Convenience Routines

Attributes of type presentation address (OM class
DS_C_PRESENTATION_ADDRESS are handled specially,
using the PSAP macro utility. The value for such an attribute can be specified as
follows:

PSA={TS=Server, NA="TCP/IPlinternet=127.0.0.1+port=12345"}

The local_string parameter should be set @M_TRUE in the convenience function
being used. Here, the network address (NA) is specified with a special syntax. Refer
to the OSF DCE GDS Administration Guide and Referefarefurther information.

The following are the reserved characters for strings with structured attribute
information:

' Used to enclose the attribute values. If this character is used, all other
reserved characters within the quoted string except the backslash are not
interpreted. For examplen="henry mueller’

/ Specifies an attribute value with DN syntax. For exampl®N = {/
c=de/o=sni/ou=ap22/cn=mayer}

{ Indicates the start of a structured attribute value block.

} Indicates the end of a structured attribute value block.

, Separates the components of a structured attribute. For example,
TN=977999, CC=345, AB=8444
It can also be used to specify multiple AVAs in the case of attributes
with DN syntax.

; Separates multiple values of a recurring attribute or the recurring
components of the structured attribute. All leading and trailing
whitespace (surrounding the attribute type, the equal sign, the left and
right braces, the component abbreviation, the component value and the
semicolon) is ignored. The following is an example:

TXN={TN=977999,CC=345,AB=8444},{TN=53533,CC=242,AB=44242}

= Associates the components with their values, and associates the
components to the structured attribute.

OSF® DCE Application Development Guide — Directory Services 9-5

GDS Application Programming

9.1.3

9-6

\xnn Used to specify hexadecimal data. The two charaaterare read as
the hexadecimal value.

\ Used to escape any of the other reserved characters.

Strings Representing a Structured GDS Attribute Value

Strings are used to represent the structured GDS attribute value. Only one structured
attribute value can be specified.

They are of the form:

Compl = ValugComp2 = Value.....

Compl Comp2 and so on, are the components of the structured attribute. They
should be specified as abbreviations. For example, to specify a value for
DS_C_TELEX_NBR class, the string format is the following:

TN=977999, CC=345, AB=8444

Recurring values for the components can be specified as shown in the following:

TN=977999; 274424, CC=345, AB=8444

If any of the components are further structured, they should be enclosed within braces
as follows:

FTP={FR=1,TD=1}, PN=67899

Components with DN syntax can be specified as follows:

MPUB={INT=0, USR={/c=de/o=sni/cn=mueller, sn=schmid}}

Components of type presentation address (OM class
DS_C_PRESENTATION_ADDRESS are handled specially, using the PSAP

macro utility. The value for the components can be specified as follows:

TS=Server, NA="TCP/IP!internet=127.0.0.1+port=12345’

OSF® DCE Application Development Guide — Directory Services

XDS/XOM Convenience Routines

9.14

The local_string parameter should be set @M_TRUE in the convenience function
being used. Here, the NA is specified with a special syntax. Refer t98eDCE
GDS Administration Guide and Refererfoe further information.

The reserved characters for such strings are the same as those for strings representing
structured attribute information (Section 9.1.2).

Strings Representing a Distinguished Name

Strings are used to represent the DN of the object. They are of the form:
/attribute_type= naming_attribute_value..

or

/attribute_valuéattribute_value....

The attribute types can be specified as abbreviations or object identifier strings. An
object identifier string is defined as a series of digits separated by dots. If attribute
abbreviations are used, they are case insensitive. Multiple AVAs are represented by
separating the naming attribute values with commas.

The first RDN can also be specified as the DCE global root sttingwhich is a
sequence of the slash followed by three dots. In this case,.thestring is simply
ignored and the rest of the string is processed. Three examples follow:

/c=de/o=sni/ou=ap1l1, I=munich/85.4.3=schmid
/c=us/o=o0sf/ou=abc/subsystems/server/xyz
/...Ic=us/o=o0sf/ou=abc/subsystems/server/xyz

The first nonspace character should always be the slash. All leading and trailing
whitespace (surrounding the slash, the attribute type, the equal sign and the attribute
value) is ignored.

The following are the reserved characters:

' Used to enclose the naming attribute values. If this character is used, all
other reserved characters within the quoted string except the backslash
are not interpreted. For examplE="henry mueller’.

OSF® DCE Application Development Guide — Directory Services 9-7

GDS Application Programming

/ Used as a delimiter between RDNSs.

, Specifies multiple AVAs. All leading and trailing whitespace
surrounding the comma is ignored. An example follows:

/c=de/o=dbp/ou=dapl1/cn=schmid, ou=apll

= Associates the object with its naming attribute value.

\xnn Used to specify hexadecimal data. The two charaaterare read as
the hexadecimal value.
\ Used to escape any of the other reserved characters.
9.1.5 Strings Representing Expressions

Strings are used to specify an SQL-like expression in a search operation. For example,
consider the following:

(CN~=schmid) && (OCL=ORP || OCL=REP) && !(SN=ronnie)

This is used to search for anybody who is an organizational person or a residential
person, whose name approximately matceremid but whose surname is nagnnie.

Object identifiers can also be used instead of attribute abbreviations. The object
identifier string is a series of numbers separated by dots.

All leading and trailing whitespace (surrounding the attribute types, the operators, and
the attribute values) is ignored.

If spaces are part of the attribute value, then the complete attribute value must be
enclosed in quotes.

Additionally, the presence of an attribute can also be tested in either of the following
ways:

c =de && cn
c=de&&cn=*

The following are the reserved characters:

9-8 OSF® DCE Application Development Guide — Directory Services

XDS/XOM Convenience Routines

' Used to indicate the start/end of an attribute value string. Can be used
when spaces are part of the data. If this character is used, all other
reserved characters within the quoted string except the backslash are not
interpreted. An example follows:

OU=sni && cn="Henri Mueller’ && tn=89989
/ Used to specify an attribute value with DN syntax. An example follows:
AON = {/c=de/o=sni/ou=ap22/cn=mayer}

= Used to associate the attribute with its value.
&& Used to logically AND two conditions.

Il Used to logically OR two conditions.

! Used to logically NEGATE a condition.

= Used to specify phonetic matching during a search operation.

> Used to match values greater than a specified value.

>= Used to match values greater than or equal to a specified value.
< Used to match values less than a specified value.

<= Used to match values less than or equal to a specified value.

* Used to specify substrings during search.

(Used for nesting of filters.

) Used for nesting of filters.

{ Indicates the start of a structured attribute value block.

} Indicates the end of a structured attribute value block.

, Separates the components of a structured attribute. For example,
TN=977999, CC=345, AB=8444t can also be used to specify multiple
AVAs in the case of attributes with DN syntax.

\xnn Used to specify hexadecimal data. The two charaaterare read as
the hexadecimal value.

\ Used to escape any of the other reserved characters.

OSF® DCE Application Development Guide — Directory Services 9-9

GDS Application Programming

9.2

9-10

During evaluation of complex expressions during search operations, the following
precedence of operators prevail:

1 ()
2.1
3. &&
4|

The () operators have the highest precedence, and || the lowest.

The acl2.c Program

The acl2.cfile is a program that performs the same functionalityaakc described

in Chapter 7. Please refer to Chapter 7 for a complete description of the program’s
functionality, including outputs. The purpose a¢l2.c and acl2.h is to show how

the XDS/XOM convenience functions can be used to reduce the complexity of a real
application.

The program consists of the following steps:

1. Export the required object identifiers. (See #2.h description in Section
9.2.2))

2. Define the string expressions for the directory entry hames and their attributes.
(See theacl2.h description in Section 9.2.2.)

3. Initialize a workspace.

4. Negotiate use of the basic directory contents and GDS packages.

5. Build the name objects for the entries to be added to the directory.

6. Build the attribute objects for the entries to be added to the directory.

7. Add the fixed tree of entries to the directory in order to permit an authenticated
bind.

8. Create a default session object.

9. Alter the default session object to include the credentials of the requéState]
O=sni/OU=ap/CN=norbert).

OSF® DCE Application Development Guide — Directory Services

XDS/XOM Convenience Routines

10.
11.
12.

13.

14.
15.
16.
17.
18.
19.

Bind with credentials to the default GDS server.
Create a default context object and alter it to include shadow entries.

Build filter, name, and entry information selection objects to be used for the search
process.

Search the whole subtree belosot and extract the ACL attribute from each
selected entry.

Close the connection to the GDS server.

Remove the user’s credentials from the directory.
Release the memory used for application-created objects.
Extract the components from the search result.

Examine each entry and print the entry details.

Close the XDS workspace.

In comparison to thacl.cprogram in Chapter 7, the following points should be noted:

Step 1 has not changed significantly. The number of object identifiers, which
the acl2.cneeds to be exported, has been reduced.

Step 2 has been completely revised. In fact, the header file has been reduced
substantially. This is as a result of removing all the static descriptor lists for the
directory names and attributes and replacing them with string expressions.

Steps 3 and 4 are the same as before.

Steps 5 and 6 are new steps that make use of the convenience functions
omX_string_to_object() omX_fill_oid(), andomX_fill().

Steps 7 through 10 are the same as Steps 5 through 8.

Step 11 is the same as Step 9, but with an additional call to build an object
to specify the use of shadow entries. A convenience function is used for this
purpose. This replaces a static descriptor list definition from the old header file.

Step 12 is new. It calls several convenience functions to create objects that are
used byds_search() These objects were statically declared in the header file.

Steps 13 through 15 are the same as Steps 10 through 12 from the old code.

Step 16 is a new step to release memory that has been allocated by the convenience
functions when creating objects.

OSF® DCE Application Development Guide — Directory Services 9-11

GDS Application Programming

9.2.1

9-12

» Step 17 replaces Step 13 from the old program with a call to the convenience
functionomX_extract() to extract the required components from the search result.

» Step 18 is the same as Step 14 in the old program, but with an additional call to
free the memory allocated liymX_extract() in the previous step.

» Step 19 is the same as Step 15 in the old code.

The acl2.c Code

The following code is a listing of thacl2.c program:

* *

* COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1991 *
* ALL RIGHTS RESERVED *
* *

* This sample program displays the access permissions (ACL) on each
* entry in the directory for a specific user. The permissions are

* presented in a form similar to the UNIX file permissions. In

* addition, each entry is flagged as either a master or a shadow copy.
* The distinguished name of the user performing the check is:

* /C=de/O=sni/OU=ap/CN=norbert

* The results are presented in the following format:

* [ABCD] <entry’s distinguished name>

*

* A: 'm’ master copy

* 's’ shadow copy

*

* B: 'r'" read access to public attributes
* 'w' write access to public attributes

OSF® DCE Application Development Guide — Directory Services

XDS/XOM Convenience Routines

* -’ no access to public attributes

*

* C: 'r read access to standard attributes
* ‘W' write access to standard attributes
* ' no access to standard attributes

*

* D: 'r read access to sensitive attributes
* ‘W' write access to sensitive attributes
* ' no access to sensitive attributes

* For example, the following result means that the entry

* '/C=de/O=sni’ is a master copy and that the requesting user

* (/C=de/O=sni/OU=ap/CN=norbert) has write access to its public
* attributes, read access to its standard attributes and no access
* to its sensitive attributes.

* [mwr-] /C=de/O=sni

* The program requires that the specific user perform an authenticated
* bind to the directory. In order to achieve this the user's

* credentials must already exist in the directory. Therefore the

* following tree of 6 entries is added to the directory each time the

* program runs, and removed again afterwards.

* O C=de
(objectClass=Country,
ACL=(mod-pub: *
read-std:*
mod-std: *
read-sen:*
mod-sen: *))

I
I
I
I
I
I
I
I
* O Os=sni
| (objectClass=Organization,
| ACL=(mod-pub: /C=de/O=sni/OU=ap/*
| read-std:/C=de/O=sni/OU=ap/CN=stefanie
| mod-std: /C=de/O=sni/OU=ap/CN=stefanie
| read-sen:/C=de/O=sni/OU=ap/CN=stefanie
| mod-sen: /C=de/O=sni/OU=ap/CN=stefanie))

OSF® DCE Application Development Guide — Directory Services 9-13

GDS Application Programming

I
O OuU=ap
* | (objectClass=OrganizationalUnit,
| ACL=(mod-pub: /C=de/O=sni/OU=ap/*
| read-std:/C=de/O=sni/OU=ap/CN=stefanie
| mod-std: /C=de/O=sni/OU=ap/CN=stefanie
| read-sen:/C=de/O=sni/OU=ap/CN=stefanie
| mod-sen: /C=de/O=sni/OU=ap/CN=stefanie))
I

O CNs=ingrid
(objectClass=OrganizationalPerson,
ACL=(mod-pub: /C=de/O=sni/OU=ap/*
read-std:/C=de/O=sni/OU=ap/*
mod-std: /C=de/O=sni/OU=ap/CN=stefanie
read-sen:/C=de/O=sni/OU=ap/*
mod-sen: /C=de/O=sni/OU=ap/CN=stefanie),
surname="Schmid",
telephone="+49 89 636 0",
userPassword="secret")

O CN=norbert
(objectClass=0rganizationalPerson,
ACL=(mod-pub: /C=de/O=sni/OU=ap/*
read-std:/C=de/O=sni/OU=ap/*
mod-std: /C=de/O=sni/OU=ap/CN=stefanie
read-sen:/C=de/O=sni/OU=ap/*
mod-sen: /C=de/O=sni/OU=ap/CN=stefanie),
surname="Schmid",
telephone="+49 89 636 0",
userPassword="secret")

I
I
I
I
I
I
I
I
I
I
I
* I
I
I
I
I
I
I
I
I
I
I
I

* O CN=stefanie

* (objectClass=0OrganizationalPerson,

* ACL=(mod-pub: /C=de/O=sni/OU=ap/*

* read-std:/C=de/O=sni/OU=ap/*

* mod-std: /C=de/O=sni/OU=ap/CN=stefanie
* read-sen:/C=de/O=sni/OU=ap/*

* mod-sen: /C=de/O=sni/OU=ap/CN=stefanie),

9-14 OSF® DCE Application Development Guide — Directory Services

XDS/XOM Convenience Routines

*

*

surname="Schmid",
telephone="+49 89 636 0",
userPassword="secret")

* In this version of the program, instead of providing client-generated
* public objects, the XOM Convenience Functions are used for creating

* objects. They are also used for extracting information from service
* generated objects.

*/

#ifdef THREADSAFE

#include
#endif

#include
#include
#include
#include
#include
#include
#include
#include
#include

void
main(
int

<pthread.h>

<stdio.h>

<xom.h>

<xds.h>

<xdsbdcp.h>

<xdsgds.h>

<xdscds.h>

<xdsext.h> /* convenience functions header file */
<xomext.h> /* convenience functions header file */
"acl2.h"

argc,

char *argvl[]

{

OM_workspace workspace; /* Workspace for objects */
OM_private_object session; /* Session object. */
OM_private_object bound_session; /* Holds the Session object which */

/* is returned by ds_bind() */
OM_private_object context; /* Context object. */
OM_private_object result; /* Holds the search result object.*/
OM_sint invoke_id; * Integer for the invoke id */

/* returned by ds_search(). */

/* (this parameter must be present*/

OSF® DCE Application Development Guide — Directory Services 9-15

GDS Application Programming

9-16

/* even though it is ignored). */
OM_type navigation_path[] = { DS_SEARCH_INFO, 0 };
/* List of OM types to the target */
/* object - of the search result */

OM_type entry_list]] = { DS_ENTRIES, 0 };

/* List of types to be extracted */
OM_public_object entry; /* Entry object from search info. */
OM_value_position total_num; /* Number of descriptors returned.*/
OM_return_code rc; /* XOM function return code. */
register int i;
char user_name[MAX_DN_LEN] = DN_NORBERT;

/* Holds the requestor's name - */

[* "/C=de/O=sni/OU=ap/CN=norbert" */
char entry_stringifMAX_DN_LEN + 7] = "[?r??] ",

/* Holds entry details. */
struct entry entry_array[6];/* List of entry names and attrs */
OM_object credentials; /* Credentials part of session obj*/

OM_object use_copy; I* Specifies whether to use shadow*/
/* entries, in context object */
OM_object filter; /* Filter - for search operation */
OM_object dn_root; /* Name object for "/" */
OM_object selection_acl; /* Entry Information */
/* Selection obj */
static char *name_list]] =

{ DN_DE, DN_SNI, DN_AP, DN_STEFANIE,
DN_NORBERT, DN_INGRID };
/* Array of names to be added */

static char *C_attr_list] = { OBJ_CLASS _C };

static char *O_attr_list] = { OBJ_CLASS_O, ATT_ACL1 };
static char *OU_attr_list[] = { OBJ_CLASS_OU };

static char *OP_attr_list[] = { OBJ_CLASS_OP, ATT_ACL2,

ATT_SURNAME, ATT_PHONE_NUM, ATT_PASSWORD };

/* Attribute lists, in string fmt */

static char *dn_root_str = DN_ROOT;
static char *filter_str = FILTER;
/* Step 3

OSF® DCE Application Development Guide — Directory Services

XDS/XOM Convenience Routines

*

* |Initialize a directory workspace for use by XOM.

*

if ((workspace = ds_initialize()) == (OM_workspace)0)
printf("ds_initialize() error\n");

/* Step 4

*

* Negotiate the use of the BDC and GDS packages.

*

if (ds_version(features, workspace) != DS_SUCCESS)
printf("ds_version() error\n");

/* Step 5
*
* Build name objects for entries to be added to the directory.
*/
for (i = 0; i < NO_OF_ENTRIES; i++)
if (! build_name_object(workspace,name_list]i],
&(entry_array[i].name)))
printf("build_name_object() error\n");

I* Step 6
*
* Build attribute objects for entries to be added to the directory
*/
if ((! build_attr_list_object(workspace, NO_C_ATTRS, C_attr_list,
&entry_array[0].attr_list)) ||
(! build_attr_list_object(workspace, NO_O_ATTRS, O_attr_list,
&entry_array[1].attr_list)) ||
(! build_attr_list_object(workspace, NO_OU_ATTRS, OU_attr_list,
&entry_array[2].attr_list)) ||
(! build_attr_list_object(workspace, NO_OP_ATTRS, OP_attr_list,
&entry_array[3].attr_list)))
printf("build_attr_list_object() error\n");

/*

* These entries also have the OP attribute list.
*/

entry_array[4].attr_list = entry_array[3].attr_list;

OSF® DCE Application Development Guide — Directory Services 9-17

GDS Application Programming

entry_array[5].attr_list = entry_array[3].attr_list;

/* Step 7

*

* Add a fixed tree of entries to the directory in order to permit

* an authenticated bind by: /C=de/O=sni/OU=ap/CN=norbert

*

if (! add_tree(workspace, entry_array, NO_OF_ENTRIES))
printf("add_tree() error\n");

/* Step 8
*
* Create a default session object.
*
if ((rc = om_create(DSX_C_GDS_SESSION,OM_TRUE,workspace,&session))
I= OM_SUCCESS)
printf("om_create() error %d\n", rc);

/* Step 9
*
* Build an object with the following credentials:
* requestor: /C=de/O=sni/OU=ap/CN=norbert

* password: "secret"”
* authentication mechanism: simple
*

if (! build_credentials_object(entry_array[4].name,&credentials))
printf("build_credentials_object() error\n");

/*
* Alter the default session object to include the credentials
*
if ((rc = om_put(session, OM_REPLACE_ALL, credentials, 0 ,0, 0))
I= OM_SUCCESS)
printf("om_put() error %d\n", rc);

/* Step 10
*
* Bind with credentials to the default GDS server. The
* returned session object is stored in the private object variable
* bound_session and is used for all further XDS function calls.

9-18 OSF® DCE Application Development Guide — Directory Services

XDS/XOM Convenience Routines

*
if (ds_bind(session, workspace, &bound_session) != DS_SUCCESS)
printf("ds_bind() error\n");

/* Step 11

*

* Create a default context object.
*/

if ((rc = om_create(DSX_C_GDS_CONTEXT,OM_TRUE,workspace,&context))

I= OM_SUCCESS)

printf("om_create() error %d\n", rc);

/*

* Build an object specifying that shadow entries should be used.

*

if (! build_use_copy_object(&use_copy))
printf("build_use_copy_object() error\n“);

/*

* Alter the default context object to include 'shadow’ entries.

*

if ((rc = om_put(context, OM_REPLACE_ALL, use_copy, 0 ,0, 0))

1= OM_SUCCESS) printf("om_put() error %d\n", rc);

/* Step 12

*

* Build a filter object, specifying presence of object class attr.

*/

if (! build_filter_object(workspace, filter_str, &filter))
printf("build_filter_object() error\n");

/~k

* Build a root name object, name = "/"

*/

if (! build_name_object(workspace, dn_root_str, &dn_root))
printf("build_name_object() error\n");

/*

* Build an entry information selection object,
* selecting acl attributes.

OSF® DCE Application Development Guide — Directory Services

9-19

GDS Application Programming

9-20

*
if (! build_selection_object(&selection_acl))
printf("build_selection_object() error\n");

/* Step 13
*
* Search the whole subtree below root. The filter selects entries
* with an object-class attribute. The selection extracts the ACL
* attribute from each selected entry. The results are returned in
* the private object 'result’.

*

* NOTE: Since every entry contains an object-class attribute the

* filter performs no function other than to demonstrate how
* filters may be used.
*

if (ds_search(bound_session, context, dn_root, DS_WHOLE_SUBTREE, filter,
OM_FALSE, selection_acl, &result, &invoke_id) = DS_SUCCESS)
printf("ds_search() error\n");

/* Step 14

*

* Close the connection to the GDS server.

*/

if (ds_unbind(bound_session) != DS_SUCCESS)
printf("ds_unbind() error\n");

I* Step 15

*

* Remove the user's credentials from the directory.

*

if (! remove_tree(workspace, session, entry_array, NO_OF_ENTRIES))
printf("remove_tree() error\n");

I* Step 16

*

* Free the name and attribute objects
* which make up the directory entries.
*/

if (! free_entry_list(entry_array))

OSF® DCE Application Development Guide — Directory Services

XDS/XOM Convenience Routines

printf(“free_entry_list() error\n");

/*

* Free public objects which were created.
*

free(selection_acl);

free(use_copy);

free(credentials);

if ((om_delete(filter) = OM_SUCCESS) ||
(om_delete(dn_root) = OM_SUCCESS))
printf("om_delete() error\n");

[* Step 17
*
* Extract components from the search result by means of the XOM
* Convenience Function, omX_extract()
*
if ((rc = omX_extract(result, navigation_path,
OM_EXCLUDE_ALL_BUT_THESE_TYPES + OM_EXCLUDE_SUBOBJECTS,
entry_list, OM_FALSE, 0, 0, &entry, &total_num))
1= OM_SUCCESS)
printf("omX_extract(Search-Result) error %d\n", rc);

/*

* Requestor's name = "/C=de/O=sni/OU=ap/CN=norbert"
*

printf("User: %s\nTotal: %d\n", user_name, total_num);

/* Step 18
*
* Examine each entry and print the entry details.
*
for (i = 0; i < total_num; i++) {
if (process_entry_info((entry+i)->value.object.object,
entry_string, user_name))
printf("%s\n", entry_string);

/*

OSF® DCE Application Development Guide — Directory Services 9-21

GDS Application Programming

* Now free the entry object (returned from omX_extract()).
*
if (om_delete(entry) != OM_SUCCESS)

printf("om_delete() error\n");

/* Step 19

*

* Close the directory workspace.

*

if (ds_shutdown(workspace) = DS_SUCCESS)
printf("ds_shutdown() error\n");

}
/*
* Add the tree of entries described above.
*/
int
add_tree(
OM_workspace workspace,
struct entry elist[],
int no_entries
)
{
OM_private_object session; /* Holds the Session object which */
/* is returned by ds_bind() */
OM_sint invoke_id; I* Integer for the invoke id */
int error = 0;
int i;
/~k
* Bind (without credentials) to the default GDS server.
*/
if (ds_bind(DS_DEFAULT_SESSION, workspace, &session) != DS_SUCCESS)
error++;
/*
* Add entries to the GDS server.
*/

for (i = 0; i < no_entries; i++)
if (ds_add_entry(session, DS_DEFAULT_CONTEXT, elist[i].name,

9-22 OSF® DCE Application Development Guide — Directory Services

XDS/XOM Convenience Routines

elist[i].attr_list, &invoke_id) != DS_SUCCESS) {
[* Ignore error if adding country - possibly already there */
if (i '= 0) error++;

/*

* Close the connection to the GDS server.

*/

if (ds_unbind(session) != DS_SUCCESS)
error++;

return (error?0:1);

}
/*
* Remove the tree of entries described above.
*
int
remove_tree(
OM_workspace workspace,
OM_private_object session,
struct entry elist[],
int no_entries
)
{

OM_private_object bound_session; /* Holds the Session object which */

/* is returned by ds_bind()

OM_sint invoke_id; /* Integer for the invoke id

int i;

int error = 0;

/~k

* Bind (without credentials) to the default GDS server.

*/

if (ds_bind(session, workspace, &bound_session) != DS_SUCCESS)
error++;

/~k

* Remove entries from the GDS server.

*/

OSF® DCE Application Development Guide — Directory Services

9-23

GDS Application Programming

for (i = no_entries-1; i >= 0; i--)
if (ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT,
elistil.name, &invoke_id) != DS_SUCCESS) {
[* Ignore error if removing country - possibly has entries */

/* below it */
if (i '= 0) error++;
}
/*
* Close the connection to the GDS server.
*/
if (ds_unbind(bound_session) != DS_SUCCESS)
error++;

return (error?0:1);

/*
* Extract information about an entry from the Entry-Info object: whether
* the entry is a master-copy, its ACL permissions and its distinguished
* name. Build up a string based on this information.
*
int
process_entry_info(
OM_private_object entry,

char *entry_string,
char *user_name

)

{
OM_return_code rc; /* Return code from XOM function. */
OM_public_object ei_attrs; /* Components from Entry-Info. */
OM_public_object attr; /* Directory attribute. */
OM_public_object acl; /* ACL attribute parts. */
OM_public_object acl_vals; /* ACL attribute value. */
OM_public_object acl_item; /* ACL item component. */
OM_value_position total_attrs; /* Number of attributes returned. */
OM_value_position total_acls; /* Number of acl values returned. */
register int i;
register int interp;
register int error = 0;

9-24 OSF® DCE Application Development Guide — Directory Services

XDS/XOM Convenience Routines

register int

static OM_type
DS_OBJECT_NAME,

0}
/* Attributes to be extracted. */

found_acl = 0;
ei_attr_list] = { DS_FROM_ENTRY,

OM_string entry_str;

/*
* Extract occurrences of DS_FROM_ENTRY, and DS_OBJECT_NAME

* from each Entry-Info object.

*
if ((rc = om_get(entry, OM_EXCLUDE_ALL_BUT_THESE_TYPES,
ei_attr_list, OM_FALSE, 0, 0, &ei_attrs, &total_attrs))
I= OM_SUCCESS) {

error++;
printf("om_get(Entry-Info) error %d\n", rc);

for (i = 0; ((i < total_attrs) && (! error)); i++, ei_attrs++) {

/~k
* Determine if current entry is a master-copy or a shadow-copy.

*
if ((ei_attrs->type == DS_FROM_ENTRY) &&
((ei_attrs->syntax & OM_S_SYNTAX) == OM_S_BOOLEAN))
if (ei_attrs->value.boolean == OM_TRUE)
entry_string[1] = 'm’;
else if (ei_attrs->value.boolean == OM_FALSE)

entry_string[1] = 's’;

else
entry_string[1] = '?’

/~k
* Convert the entry’s distinguished name to a string format.

*/

entry_str.elements = &entry_string[7];

entry_str.length = MAX_DN_LEN;

if ((ei_attrs->type == DS_OBJECT_NAME) &&
((ei_attrs->syntax & OM_S_SYNTAX) == OM_S_OBJECT))

omX_object_to_string(ei_attrs->value.object.object,

if ((rc =
9-25

OSF® DCE Application Development Guide — Directory Services

GDS Application Programming

OM_FALSE, &entry_str)) = OM_SUCCESS) {
error++;
printf("omX_object_to_string() error\n");

/*

* Now extract occurences of attributes, where the attribute
* type is ACL from the Entry-Info object.

*

dsX_extract_attr_values(entry, DSX_A_ACL, OM_TRUE,
&acl_vals, &total_acls);

for (i = 0; ((i < total_acls) && (! error)); i++) {
acl = acl_vals[i].value.object.object;

/*
* Examine the ACL. Check each permission for the current user.
*

entry_string[2]
entry_string[3]
entry_string[4]

([T
~

while (acl->type !'= OM_NO_MORE_TYPES) {

if ((acl->syntax & OM_S_SYNTAX) == OM_S_OBJECT)
acl_item = acl->value.object.object;

switch (acl->type) {

case OM_CLASS:
break;

case DSX_MODIFY_PUBLIC:
if (permitted_access(user_name, acl_item))
entry_string[2] = 'w’;

break;

case DSX_READ_STANDARD:

9-26 OSF® DCE Application Development Guide — Directory Services

XDS/XOM Convenience Routines

if (permitted_access(user_name, acl_item))
entry_string[3] = 'r’;
break;

case DSX_MODIFY_STANDARD:
if (permitted_access(user_name, acl_item))
entry_string[3] = 'w’;
break;

case DSX_READ_SENSITIVE:
if (permitted_access(user_name, acl_item))
entry_string[4] = 'r’;
break;

case DSX_MODIFY_SENSITIVE:
if (permitted_access(user_name, acl_item))
entry_string[4] = 'w’;

break;
}
acl++;
}
}
/*
* Now free acl_vals.
*

if (total_acls > 0)

if ((rc = om_delete(acl_vals)) !'= OM_SUCCESS) {
error++;
printf("om_delete() error, rc = %d\n", rc);

return (error?0:1);

/*
* Check if a user is permitted access based on the ACL supplied.
*
int
permitted_access(
char *user_name,

OSF® DCE Application Development Guide — Directory Services 9-27

GDS Application Programming

OM_public_object acl_item

)
{
char acl_name[MAX_DN_LEN];
OM_string acl_name_str;
int interpretation;
int acl_present = 0;
int access = 0;
int acl_name_length;
OM_return_code rc;

while (acl_item->type = OM_NO_MORE_TYPES) {

switch (acl_item->type) {
case OM_CLASS:
break;

case DSX_INTERPRETATION:
interpretation = acl_item->value.boolean;
break;

case DSX_USER:
acl_name_str.elements = acl_name;
if ((rc = omX_object_to_string(acl_item->value.object.object,
OM_FALSE, &acl_name_str)) == OM_SUCCESS) {
if (interpretation == DSX_SINGLE_OBJECT) {

if (strcmp(acl_name, user_name) == 0)
access = 1,
}
else if (interpretation == DSX_ROOT_OF_SUBTREE) {
if ((acl_name_length = strlen(acl_name)) == 0)
access = 1;
else if (strncmp(acl_name,user_name,acl_name_length)
== 0)
access = 1;
}
}
break;
}
acl_item++;

9-28 OSF® DCE Application Development Guide — Directory Services

XDS/XOM Convenience Routines

return (access);

/*

* Build a name object from a name string using the XOM
* Convenience Function omX_string_to_object().

*
int
build_name_object(

OM_workspace workspace,

char *name,
OM_private_object *name_obj
)
{
OM_integer err_pos;
OM_integer err_type;
OM_return_code rc;
OM_string name_str;
int error = 0;
name_str.length = strlen(name);
name_str.elements = name;

if ((rc = omX_string_to_object(workspace, &name_str, DS_C_DS_DN,

error++;

return (error?0:1);

/*

OM_TRUE, name_obj, &err_pos, &err_type)) = OM_SUCCESS)

* Build an attribute list object given a list of attribute strings.

*

*

*

Use the XOM Convenience Function omX_string_to_object() to build
an attribute object from an attribute string, and omX_fill() to
create the other OM descriptor required.

*

int

build_attr_list_object(

OSF® DCE Application Development Guide — Directory Services

9-29

GDS Application Programming

9-30

OM_workspace workspace,

OM_integer no_attrs,

char *attr_str_array[],
OM_object *attr_list_obj
OM_integer err_pos;
OM_integer err_type;
OM_object attr;
OM_object alist;
OM_string attr_str;
OM_return_code rc;
OM_descriptor null_desc = OM_NULL_DESCRIPTOR;
int error = 0;
int i;

/*

* Allocate space for class descriptor, null descriptor and
* one descriptor for each attribute.

*
if ((alist =

(OM_descriptor *)malloc((2+no_attrs) * sizeof(OM_descriptor)))

error++;

== 0)

if (rc = omX_fill_oid(OM_CLASS, DS_C_ATTRIBUTE_LIST, &alist[0]))

error++,;

I= OM_SUCCESS)

for (i = 1; i <= no_attrs; i++) {

attr_str.length = strlen(attr_str_array[i-1]);
attr_str.elements = attr_str_array[i-1];
if ((rc = omX_string_to_object(workspace, &attr_str, DS_C_ATTRIBUTE,

OM_TRUE, &attr, &err_pos, &err_type)) != OM_SUCCESS)
error++;

if (rc = omX_fil(DS_ATTRIBUTES, OM_S_OBJECT, 0, attr, &alist[i]))

I= OM_SUCCESS)
error++;

OSF® DCE Application Development Guide — Directory Services

XDS/XOM Convenience Routines

alisti] = null_desc;

*attr_list_obj = alist;
return (error?0:1);

/*

* Build an entry info selection object using the XOM Convenience
* Functions omX_fill() and omX_fill_oid() to fill the OM descriptors.
*/
int
build_selection_object(

OM_object *selection_obj

{
OM_integer err_pos;
OM_integer err_type;
OM_object desc;
OM_object sel;
OM_return_code rc;
OM_descriptor null_desc = OM_NULL_DESCRIPTOR;
int error = 0;
/*

* Allocate space for class descriptor, null descriptor and one

* descriptor for each attribute.

*

if ((sel = (OM_descriptor *)malloc((5) * sizeof(OM_descriptor))) == 0)
error++;

if ((rc = omX_fill_oid(OM_CLASS, DS_C_ENTRY_INFO_SELECTION, &sel[0]))
I= OM_SUCCESS)
error++;

if (rc = omX_fil(DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, OM_FALSE, 0,

&sel[l])) '= OM_SUCCESS)
error++;

OSF® DCE Application Development Guide — Directory Services

9-31

GDS Application Programming

if ((rc = omX_fill_oid(DS_ATTRIBUTES_SELECTED, DSX_A_ACL,
&sel[2])) != OM_SUCCESS)
error++;

if ((rc = omX_fil(DS_INFO_TYPE, OM_S_ENUMERATION, DS_TYPES_AND_VALUES,
0, &sel[3])) != OM_SUCCESS)
error++;

sel[4] = null_desc;

*selection_obj = sel;
return (error?0:1);

}

/*

* Build a credentials object using the XOM Convenience Function
* omX_fill().

*/

int

build_credentials_object(
OM_object name,

OM_object *credentials_obj
)
{
OM_integer err_pos;
OM_integer err_type;
OM_object cred;
OM_return_code rc;
OM_descriptor null_desc = OM_NULL_DESCRIPTOR,;
int error = 0;
/*

* Just allocate space for a null descriptor and two other descriptors,

* no class descriptor required.

*

if ((cred = (OM_descriptor *)malloc((4) * sizeof(OM_descriptor))) == 0)
error++;

if ((c = omX_fil(DS_REQUESTOR, OM_S_OBJECT, 0, name, &cred[0]))

9-32 OSF® DCE Application Development Guide — Directory Services

XDS/XOM Convenience Routines

I= OM_SUCCESS)
error++;

if ((rc = omX_fil(DSX_PASSWORD, OM_S_OCTET_STRING, (sizeof(PASSWD)-1),
PASSWD, &cred[1])) = OM_SUCCESS)

if ((rc = omX_fil(DSX_AUTH_MECHANISM, OM_S_ENUMERATION, DSX_SIMPLE,
0, &cred[2])) '= OM_SUCCESS)
error++;

cred[3] = null_desc;
*credentials_obj = cred;

return (error?0:1);

/*
* Build an object setting DS_DONT_USE_COPY to FALSE, using the
* XOM Convenience Function omX_fill().

*

int

build_use_copy_object(
OM_object *use_copy_obj
OM_integer err_pos;
OM_integer err_type;
OM_object desc;
OM_object copy;
OM_return_code rc;
OM_descriptor null_desc = OM_NULL_DESCRIPTOR,;
int error = 0;
/*

* Just allocate space for a null descriptor and one other

* descriptor, no class descriptor required.

*/

if ((copy = (OM_descriptor *)malloc((2) * sizeof(OM_descriptor))) == 0)
error++;

OSF® DCE Application Development Guide — Directory Services

9-33

GDS Application Programming

if ((rc = omX_fill(DS_DONT_USE_COPY, OM_S_BOOLEAN, OM_FALSE, 0,
©[0])) !'= OM_SUCCESS)
error++;

copy[1l] = null_desc;

*use_copy_obj = copy;
return (error?0:1);

/*
* Build a filter object from a filter string using the XOM Convenience
* Function omX_string_to_object().
*
int
build_filter_object(
OM_workspace workspace,
char *filter,
OM_object *filter_obj

{
OM_integer err_pos;
OM_integer err_type;
OM_string filter_str;
OM_return_code rc;
int error = 0;
filter_str.length = strlen(filter);
filter_str.elements = filter;
if ((rc = omX_string_to_object(workspace, &filter_str, DS_C_FILTER,
OM_TRUE, filter_obj, &err_pos, &err_type)) = OM_SUCCESS)
error++;
return (error?0:1);
}
/*

* Free the name and attribute list objects in the entry list. Objects

9-34 OSF® DCE Application Development Guide — Directory Services

XDS/XOM Convenience Routines

* which have been created using the XOM Convenience Function
* omX_string_to_object() must be deleted using om_delete().

*/
int
free_entry_list(
struct entry entry_array[]
)
{
OM_object attr_list_obj;
int i, j;
int error = 0O;

for (i = 0; i < NO_OF_ENTRIES; i++) {

/*

* Delete the service generated public name object .

*

if (om_delete(entry_array[i].name) != OM_SUCCESS)
error++;

/*
* The last two attribute lists were the same as the 4th one.
*/
if (i < NO_OF_ENTRIES-2) {
attr_list_obj = entry_arrayf[i].attr_list;
for (j = O; attr_list_obj[jl.type '= OM_NO_MORE_TYPES; j++) {
if (attr_list_obj[j].type == DS_ATTRIBUTES)

/~k
* Delete the service generated public attribute object.
*/
if (om_delete(attr_list_obj[j].value.object.object)
I= OM_SUCCESS)
error++;

/~k

* Free the whole attribute list object.
*

free(attr_list_obj);

OSF® DCE Application Development Guide — Directory Services

9-35

GDS Application Programming

9.2.2

9-36

return (error?0:1);

The acl2.h Header File

The acl2.h header file performs the following:

1. It exports the object identifiers thatl2.crequires.

. It declares a structure to contain the name and attributes of directory entries.

2
3. It defines abbreviated names for the directory entries.
4. It defines abbreviated names for the directory attributes.
5

. It builds the descriptor list for optional packages that are to be negotiated.

The following code is a listing of thacl2.h file:

* *

* COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1991 *
* ALL RIGHTS RESERVED *
* *

#ifndef _ACL2_H
#define _ACL2_H

#define MAX_DN_LEN 100 /* max length of a distinguished name in */
[* string format. */

/* Step 1 */

/* The application must export the object identifiers it requires. */

OSF® DCE Application Development Guide — Directory Services

XDS/XOM Convenience Routines

OM_EXPORT (DS_C_DS_DN)
OM_EXPORT (DS_C_ENTRY_INFO_SELECTION)
OM_EXPORT (DS_C_ATTRIBUTE)

OM_EXPORT (DS_C_ATTRIBUTE_LIST)
OM_EXPORT (DS_C_FILTER)

OM_EXPORT (DSX_C_GDS_SESSION)
OM_EXPORT (DSX_C_GDS_CONTEXT)
OM_EXPORT (DSX_A_ACL)

/* Structure to contain the name and attribute list */
/* of a directory entry. */

struct entry {
OM_private_object name;

OM_object attr_list;
} Entry;
/* Step 2 */

/*
* Names of directory entries, in string format.
*

#define DN_ROOT "

#define DN_DE "/C=de"

#define DN_SNI "/C=de/O=sni"

#define DN_AP "/C=de/O=sni/OU=ap"

#define DN_STEFANIE "/C=de/O=sni/OU=ap/CN=stefanie"
#define DN_NORBERT "/C=de/O=sni/OU=ap/CN=norbert"
#define DN_INGRID "/C=de/O=sni/OU=ap/CN=ingrid"

/*

* Attributes, in string format.

*

#define OBJ_CLASS_C "OCL = TOP; C"

#define OBJ_CLASS_O "OCL = TOP; ORG"
#define OBJ_CLASS_OU "OCL = TOP; OU"
#define OBJ_CLASS_OP "OCL = TOP; PER; ORP"
#define ATT_PHONE_NUM "TN = '+49 89 636 0" "
#define ATT_PASSWORD "UP = secret"

#define ATT_SURNAME "SN = Schmid"

#define ATT_ACL1 "ACL={MPUB = {INT = 1L,USR = {/}}, \

OSF® DCE Application Development Guide — Directory Services 9-37

GDS Application Programming

9.2.3

9-38

RSTD = {INT = 0,USR = {/C=de/O=sni/OU=ap/CN=stefanie}},\
MSTD = {INT = O,USR = {/C=de/O=sni/OU=ap/CN=stefanie}},\
RSEN = {INT = O,USR = {/C=de/O=sni/OU=ap/CN=stefanie}},\
MSEN = {INT = 0,USR = {/C=de/O=sni/OU=ap/CN=stefanie}}}"
#define ATT_ACL2 "ACL={MPUB = {INT = 1,USR = {/C=de/O=sni/OU=ap}},\

RSTD = {INT = 1,USR = {/C=de/O=sni/OU=ap}}\

MSTD = {INT = O,USR = {/C=de/O=sni/OU=ap/CN=stefanie}},\
RSEN = {INT = 1,USR = {/C=de/O=sni/OU=ap}}\

MSEN = {INT = 0,USR = {/C=de/O=sni/OU=ap/CN=stefanie}}}"

/* Other strings. */
#define PASSWD "secret"
#define FILTER "OCL"
#define NO_OF_ENTRIES /* 6 entries to be added */
#define NO_C_ATTRS /* 1 attr in Country attribute list */

/* 2 attr in Org attribute list */

#define NO_OU_ATTRS
#define NO_OP_ATTRS

6
1
#define NO_O_ATTRS 2
1 /* 1 attr in Org-Unit attribute list */
5 /* 5 attr in Org-Person attribute list*/
/* Build up an array of object identifiers for the optional */
/* packages to be negotiated. */
DS_feature features[] = {
{ OM_STRING(OMP_O_DS_BASIC_DIR_CONTENTS_PKG), OM_TRUE },
{ OM_STRING(OMP_O_DSX_GDS_PKG), OM_TRUE },
{0}

#endif /* _ACL2_H */

Example Strings

This section contains examples of input string®hoX_string_to_object() and some

examples of strings that can be returneddoyX_object_to_string().

OSF® DCE Application Development Guide — Directory Services

XDS/XOM Convenience Routines

9.23.1 Input Strings tomX_string_to_object()

The following are examples of strings that can be handled by the
omX_string_to_object() function.

9.23.11 Example 1

To create aDS_C_DS_DNobiject (root), use strings like the following:

/
/...

9.2.3.1.2 Example 2

To create otheDS_C_DS_DNobjects, use strings like the following:
/c=de/o=sni/ou=apl1l/cn=naik,sh=naik
/c=de/o=sni/ou=ap11/85.4.3=naik,sn=naik
/c=de/o=sni/ou=apl1l/cn=naik,sh=na\x69k
/c=de/o=sni/ou=apl1/cn=naik,loc=Muenchen\,8000

/c=de/o=sni/ou=apl1/cn=naik,loc="Muenchen,8000’
/ C =de /O =sni/ Ou = apll/CN=naik, SN=naik

9.2.3.1.3 Example 3

To create aDS_C_DS_DNobject (DCE name), use a string like the following:

/...Ic=us/o=o0sf/ou=abc/subsystems/server/xyz

9.23.14 Example 4

To create aDS_C_DS_RDNobject, use strings like the following:

cn=naik,sn=naik
cn=naik,sn=na\x69k

OSF® DCE Application Development Guide — Directory Services 9-39

GDS Application Programming

9-40

CN = naik, SN = naik

9.2.3.15 Example 5

To create aDS_C_DS_RDNobject (DCE name), use a string like the following:

server

9.2.3.1.6 Example 6

To create DS _C_ATTRIBUTE object (containing, for exampl&€ommon-Nams,
use strings like the following:

cn=bhavesh naik
CN = bhavesh naik
85.4.3=bhavesh nai\x69k

9.2.3.1.7 Example 7

To create aDS_C_ATTRIBUTE object (containing an object class with multiple
values of Residential-Person and Organizational-Persor), use strings like the
following:

OCL=REP;ORP
OCL = "\x55\x06\x0a’ ; "\x55\x06\x07’

9.2.3.1.8 Example 8

To create aDS_C_ATTRIBUTE object (containing a GDS structured attribute like
Telex-Number or Owner), use strings like the following:

TXN={TN=12345,CC=678,AB=90}

TXN = { TN = 12345, CC = 678, AB = 90}
own={/c=de/o=sni/ou=apl1},{/c=de/o=sni/ou=ap22}
pa={pa="Wilhelm Riehl Str.85';’Munich’}

OSF® DCE Application Development Guide — Directory Services

XDS/XOM Convenience Routines

9.2.3.1.9 Example 9

To create DSX_C_GDS_ACL object, use a string like the following:

MPUB={INT=0, USR={/c=de/o=sni/cn=naik, sn=bhavesh}}

9.2.3.1.10 Example 10

To create aDS_C_PRESENTATION_ADDRESS object, use a string like the
following:

TS=Server,NA="TCP/IP!internet=127.0.0.1+port=25015’

9.2.3.1.11 Example 11

To create aDS_C_FILTER object, use strings like the following:

c

Ic

C = de && CN = 'bha\x76esh naik’

c=de&&cn "=mueller

c=de&& (cn="a*||cn=b*| cn=c*)
ACL={MPUB={INT=0,USR={/c=de/o=sni/cn=naik, sn=bhavesh}}}

¢ = de || cn = *aa*bb*cc*

(cn " =naik)&&((OCL=0ORP)||(OCL=REP))&& !(SN="bhavesh naik’)&&(L=%*)

9.2.3.1.12 Example 12
The following is an example of the error return when an erroneous string is supplied:
/c=de/o=sni,=de
The OM_return_code would beOM_WRONG_VALUE_MAKEUP .
The error_type would beOMX_MISSING_ABBRYV .

The error_position would be 13.

OSF® DCE Application Development Guide — Directory Services 9-41

GDS Application Programming

9.2.3.2 Strings Returned liymX_object_to_string()

The following are examples of strings returned by thX_object to_string()
function.
9.2.3.21 Example 1

If a DS_C_DS_DNobject is supplied, the following might be returned:
/
/C=de/O=sni/OU=ap11/CN=naik,SN=naik
/C=de/O=sni/OU=ap11/CN=naik,LOC=Muenchen\,8000

9.2.3.2.2 Example 2
If a DS_C_DS_RDNobject is supplied, the following might be returned:
CN=naik,SN=naik
server

9.2.3.2.3 Example 3
If a DS_C_ATTRIBUTE object is supplied, the following might be returned:
CN=bhavesh naik
OCL=REP;ORP
TXN={AB=90,CC=678,TN=12345}
OWN={/C=de/O=sni/OU=ap11};{/C=de/O=sni/OU=ap22}

9.2.3.24 Example 4

If a DSX_C_GDS_ACL object is supplied, the following might be returned:

MPUB={INT=0,USR={/C=de/O=sni/CN=naik,SN=bhavesh}}

9-42 OSF® DCE Application Development Guide — Directory Services

XDS/XOM Convenience Routines

9.2.3.25 Example 5

If a DS_C_NAME_ERROR object is supplied with DS PROBLEM of

DS_E_NO_SUCH_OBJECT the following might be returned:

The specified name does not match the name of any object
in the directory

9.2.3.2.6 Example 6
If a DS_C_ATTRIBUTE_ERROR object
with DS_C_ATTRIBUTE_PROBLEM
DS_E_ATTRIBUTE_OR_VALUE_EXISTS, the following

be returned:

An attempt is made to add an attribute or value that already
exists. Violating Attribute - Telephone-Number

OSF® DCE Application Development Guide — Directory Services

supplied
containing
might

9-43

Part 4

XDS/XOM Supplementary
Information

Part 4 contains reference material for the X/Open Object Management (XOM)
programming interface.

Chapter 10

XDS Interface Description

The XDS interface comprises a humber of functions, together with many OM classes
of OM objects, which are used as the parameters and results of the functions. Both
the functions and the OM objects are based closely on the abstract service that is
specified in the standards (s€ke Directory: Abstract Service Definitiplf5O 9594-

3, CCITT X.511).

The interface models the directory interactions as service requests made through a
number of interface functions, which take a number of input parameters. Each valid
request causes an operation within the directory service, which eventually returns a
status and any result of the operation.

All interactions between the user and the directory service belong to a session, which is
represented by an OM object passed as the first parameter to most interface functions.

The other parameters to the functions include a context and various service-specific

parameters. The context includes a number of parameters that are common to many
functions, and that seldom change from operation to operation.

OSF® DCE Application Development Guide — Directory Services 10-1

XDS/XOM Supplementary Information

10.1

10-2

Each of the components of this model are described in the following sections in this
chapter along with other features of the interface, such as security.

XDS Conformance to Standards

The XDS interface defines an API that application programs can use to access the
functionality of the underlying directory service. The DCE XDS API conforms to
the X/Open CAE Specification, API to directory services (X[M)vember 1991).

The DCE XDS implementation supports the following features:

» A synchronous interface. Asynchronous functionality can be achieved by using
threads as described in Chapter 8.

» All synchronous interface functions are supported. The two asynchronous-
specific functions are handled as follows:

— ds_abandon()

This call does not issue a directory service abandon operation. It returns with
aDS_C_ABANDON_FAILED (DS_E_TOO_LATE) error. For details on
abandoning operations see Section 10.10.3.

— ds_receive_result()

If there are any outstanding operations (when multiple
threads issue XDS calls in parallel), this function returns
DS_SUCCESS with the completion_flag_return parameter set to

DS_OUTSTANDING_OPERATIONS. If no XDS calls are outstanding,

this function returns DS_SUCCESS with the completion_flag_return

parameter set t&S_NO_OUTSTANDING_OPERATION.

» Automatic connection management is not provided. Td bind() and
ds_unbind() functions always try, respectively, to set up and release directory
service connections immediately.

» The DS_FILE_DESCRIPTOR attribute of theDS_C_SESSIONobject is not
used.

 The default values for OM attributes in théS C CONTEXT and
DS_C_SESSIONobjects are described in Chapter 11.

OSF® DCE Application Development Guide — Directory Services

XDS Interface Description

» Support for local strings. XDS supports the mapping from/to local string formats.
The programmer can request this feature when using the following XDS/XOM
functions:

— dsX_extract_attr_values()

— omX_extract()

— omX_object_to_string()

— omX_string_to_object()

— om_get()

— om_read()

The programmer controls this mapping through tleeal_strings Boolean

parameter. To request conversion, set this parameteDNb TRUE. The
mappings currently suported are as follows:

— T.61 String to/from ISO 8859-1 (that is, LATIN-1)

For details on these mappings, refer to @8F DCE GDS Administration Guide
and Reference

On input, when requesting conversion of LATIN-1 characters to T.61 format, you
should only use the T.61 subset; otherwise, an error is returned.

DCE XDS supports five packages, of which one is mandatory and four are optional.
Use of the optional packages is negotiated by usimgversion() The packages are
as follows:

» The directory service package (as defined in Chapter 11), which also includes the
errors. This package is mandatory.

» The basic directory contents package (as defined in Chapter 12). This package
is optional.

» The strong authentication package (as defined in Chapter 13). This package is
optional.

* The message handling system directory user package (as defined in Chapter 14).
This package is optional.

* The GDS package (as defined in Chapter 15). This package is optional.

OSF® DCE Application Development Guide — Directory Services 10-3

XDS/XOM Supplementary Information

10.2

10-4

None of the OM classes defined in these five packages are encodable. Thus,
DCE XDS application programmers do not require the use of the XOM functions
om_encode()andom_decode() which are not supported by the DCE XOM API.

The XDS Functions

As mentioned already, the standards define abstract services that requestors use to
interact with the directory. Each of these abstract services maps to a single function
call, and the detailed specifications are given in the XDS reference pages. The
services and the function calls to which they map are as follows:

DirectoryBind
Maps tods_bind()

DirectoryUnbind
Maps tods_unbind()

Read Maps tods_read()
Compare Maps tods_compare()
Abandon Maps tods_abandon()
List Maps tods_list()
Search Maps tods_search()
AddEntry Maps tods_add_entry()

RemoveEntry
Maps tods_remove_entry()

ModifyEntry Maps tods_modify_entry()

ModifyRDN Maps tods_modify_rdn()

There is a function calledls_receive_result() which has no counterpart in the
abstract service. It is used with asynchronous operations. (See&lshétro(3xds)

reference page for information on how the asynchronous functisnabandon()and
ds_receive_result()are handled by the DCE XDS API.)

The ds_initialize(), ds_shutdown() andds_version()functions are used to control
the XDS API and do not initiate any directory operations.

OSF® DCE Application Development Guide — Directory Services

XDS Interface Description

Table 10-1.

The interface functions are summarized in Table 10-1.

The XDS Interface Functions

Name

Description

ds_abandon()

Abandons the result of a pending asynchrond
operation. This function is not supported. S
xds_intro(3xds)

9%
D

ds_add_entry()

Adds a leaf entry to the DIT.

ds_bind()

Opens a session with a DUA (Directory User
Agent), which in turn connects to a DSA.

ds_compare()

Compares a purported attribute value with th¢

attribute value stored in the DIB for a particul
entry.

pr

ds_initialize()

Initializes the XDS interface.

ds_list()

Enumerates the names of the immediate
subordinates of a particular directory entry.

ds_modify_entry()

Atomically performs modification to a director
entry.

ds_modify_rdn()

Changes the RDN of a leaf entry.

ds_read()

Queries information on a particular directory
entry by name.

ds_receive_result()

Retrieves the result of an asynchronously
executed function. Seeds_intro(3xds)

ds_remove_entry()

Removes a leaf entry from the DIT.

ds_search()

Finds entries of interest in a portion of the DI

ds_shutdown()

Discards a workspace.

ds_unbind()

Unbinds from a directory session.

ds_version()

Negotiates features of the interface and servi

OSF® DCE Application Development Guide — Directory Services

10-5

XDS/XOM Supplementary Information

10.3

10.4

10-6

The XDS Negotiation Sequence

The interface has an initialization and shutdown sequence that permits the
negotiation of optional features. This involves tts initialize(), ds_version()
andds_shutdown()functions.

Every application program must first cas_initialize(), which returns a workspace.
This workspace supports the standard directory service package (see Chapter 11).

The workspace can be extended to support the optional basic directory contents
package (see Chapter 12), the strong authentication package (see Chapter 13), the
GDS package (see Chapter 15), or the MHS directory user package (see Chapter
14). These packages are identified by means of OSI object identifiers, and these
object identifiers are supplied @s_version()to incorporate the extensions into the
workspace.

After a workspace with the required features is negotiated in this way, the application
can use the workspace as required. It can create and manipulate OM objects by using
the OM functions, and it can start one or more directory sessions by dsirtgnd().

After completing its tasks, terminating all its directory sessions by usgnginbind(),
and releasing all its OM objects by usiogn_delete() the application needs to ensure
that resources associated with the interface are freed by cakinghutdown()

It is possible to retain access to service-generated public objectslaftehutdown()
is called, or to start another cycle by callitg_initialize() if so required by the
application design.

The session Parameter

A session identifies the DUA and the suite of DSAs to which a particular
directory operation is sent. It contains so@ectoryBindArguments, such as
the distinguished name of the requestor. Fhesiorparameter is passed as the first
parameter to most interface functions.

A session is described by an OM object of OM clad3§_C_SESSION 1t is
created, and appropriate parameter values can be set with the OM functions. A

OSF® DCE Application Development Guide — Directory Services

XDS Interface Description

directory session then starts witts_bind() and later terminates witds_unbind().
A session with default parameters can be started by passing the constant
DS_DEFAULT_SESSIONas theDS_C_SESSIONparameter tals_bind().

The ds_bind() function must be called beforBS_C_SESSIONcan be used as a
parameter to any other function in this interface. Aftés unbind() is called,
ds_bind() must be called again if another session is to be started.

The interface supports multiple concurrent sessions so that an application implemented
as a single process, such as a server in a client/server model, can interact with
the directory by using several identities, and a process can interact directly and
concurrently with different parts of the directory.

Details of the OM clas®S_C_SESSIONare given in Chapter 11.

10.5 The context Parameter

The context defines the characteristics of the directory interaction that are specific to
a particular directory operation; nevertheless, the same characteristics are often used
for many operations. Since these parameters are presumed to be relatively static for
a given directory user during a particular directory interaction, these parameters are
collected into an OM object of OM claddS_C_CONTEXT, which is supplied as

the second parameter of each directory service request. This reduces the number of
parameters passed to each function.

The context includes many administrative details, such aCdrmonArguments
defined in the abstract service, which affect the processing of each directory
operation. These details include a number SfrviceControls which allow
control over some aspects of the service. TerviceControls include options
such as preferChaining, chainingProhibited, localScope dontUseCopy and
dontDereferenceAliases together with priority , timeLimit, sizeLimit, and
scopeOfReferral Each of these is mapped onto an OM attribute in the context (see
Chapter 11).

The effect of passing theontextparameter is as if its contents were passed as a group
of additional parameters for every function call. The value of each component of
the context is determined when the interface function is called, and it remains fixed
throughout the operation.

OSF® DCE Application Development Guide — Directory Services 10-7

XDS/XOM Supplementary Information

10.6

10.6.1

10-8

All OM attributes in the clas®S_C_CONTEXT have default values, some of which

are administered locally. The constdd_DEFAULT_CONTEXT can be passed

as the value of théS_C_CONTEXT parameter to the interface functions, and it
has the same effect as a context OM object created with default values. The context
must be a private object, unless its&s_DEFAULT_CONTEXT.

(See Chapter 11 for detailed specifications of the OM dSsC_CONTEXT.)

The XDS Function Arguments

The abstract service defines specific parameters for each operation. These are mapped
onto corresponding parameters to each interface function, which are alsoinplied
parameters Although each service has different parameters, some specific parameters
recur in several operations and these are briefly introduced here. (For complete details
of these parameters, see Chapter 11.)

All parameters that are OM objects can generally be supplied to the interface functions
as public objects (that is, descriptor lists) or as private objects. Private objects must be
created in the workspace that is returneddsy initialize(). In some cases, constants
can be supplied instead of OM objects.

Note: Wherever a function can accept an instance of a particular OM class as the
value of a parameter, it also accepts an instance of any subclass of the OM
class. For example, most functions havaameparameter, which accepts
values of OM clas®S_C_NAMEIt is always acceptable to supply an instance
of the subclas®S_C_DS_DNas the value of the parameter.

Attribute and Attribute Value Assertion

Each directory attribute is represented in the interface by an OM object of OM
class DS_C_ATTRIBUTE. The type of the directory attribute is represented
by an OM attribute,DS_ATTRIBUTE_TYPE, within the OM object. The
values of the directory attribute are expressed as the values of the OM attribute
DS_ATTRIBUTE_VALUES.

OSF® DCE Application Development Guide — Directory Services

XDS Interface Description

The representation of the attribute value depends on the attribute type and is
determined as indicated in the following list. The list describes the way in which
an application program must supply values to the interface; for example, in the
changegparameter tas_modify_entry(). The interface follows the same rules when
returning attribute values to the application; for example, indberead() result.

» The first possibility is that the attribute type and the representation of the
corresponding values can be defined in a package; for example, the selected
attribute types from the standards that are defined in the basic directory contents
package in Chapter 12 and the strong authentication package in Chapter 13.
In this case, attribute values are represented as specified. Additional directory
attribute types and their OM representations are defined by the GDS package.

« If the attribute type is not known and the value is an ASN.1 simple type such
asintegerType, the representation is the corresponding type specified in Chapter
17.

* If the attribute type is not known and the value is an ASN.1 structured type,
the value is represented in the Basic Encoding Rules (BER) with OM syntax
StringOM_S_ENCODING_STRING).

Note: The distinguished encoding specified in the standards (see Clause 8.7 of
The Directory: Authentication FramewarkSO 9594-8, CCITT X.500)
must be used if the request is to be signed.

Where attribute values have OM syntax Strifjg€hey can be long segmented strings,
and the function®m_read() and om_write() need to be used to access them.

An attribute value assertion (AVA) is an assertion about the value of an attribute of
an entry, and it can be TRUE, FALSE, or undefined. It consists of an attribute type
and a single value. In general, the AVA is TRUE if one of the values of the given

attribute in the entry matches the given value. An AVA is represented in the interface
by an instance of OM clad8S_C_AVA, which is a subclass @S_C_ATTRIBUTE

and can only have one value.

Information used byls add_entry()to construct a new directory entry is represented
by an OM object of OM classDS_C_ATTRIBUTE_LIST, which contains a
single multivalued OM attribute whose values are OM objects of OM class
DS_C_ATTRIBUTE.

OSF® DCE Application Development Guide — Directory Services 10-9

XDS/XOM Supplementary Information

10.6.2

10.6.3

10-10

The selection Parameter

Theselectionparameter of thes_read()andds_search(operations tailors its results

to obtain just part of the required entry. Information on all attributes, no attributes,
or a specific group of attributes can be chosen. Attribute types are always returned,
but the attribute values are not necessarily returned.

The value of the parameter is an instance of OM class
DS_C_ENTRY_INFO_SELECTION, but one of the constants in the following list
can be used in simple cases:

» To verify the existence of an entry for the purported name, use the constant
DS_SELECT_NO_ATTRIBUTES.

e To return just the types of all attributes, use the constant
DS_SELECT_ALL_TYPES.

» To return the types and values of all attributes, use the constant
DS_SELECT_ALL_TYPES_AND_VALUES.

To choose a particular set of attributes, create a new instance of the OM class
DS_C_ENTRY_INFO_SELECTION and set the appropriate OM attribute values
by using the OM functions.

The name Parameter

Most operations take aameparameter to specify the target of the operation. The
name is represented by an instance of one of the subclasses of the OM class
DS_C_NAME. The DCE XDS API defines the subclaB$_C_DS_DNto represent
distinguished names and other names.

For directory interrogations, any aliases in the name are dereferenced, unless prohibited
by the DS_DONT_DEREFERENCE_ALIASES service control. However, for
modify operations, this service control is ignored if set, and aliases are never
dereferenced.

RDNs are represented by an instance of one of the subclasses of the OM

class DS _C_RELATIVE_NAME . The DCE XDS API defines the subclass
DS_C_DS_RDNto represent RDNs.

OSF® DCE Application Development Guide — Directory Services

XDS Interface Description

10.7 XDS Function Call Results

All XDS functions return aDS_status which is the C function result; most return
data in aninvoke_id parameter, which identifies the particular invocation, and the
interrogation operations each return data in tesult parameter. Thenvoke_id

and result values are returned using pointers that are supplied as parameters of the
C function. These three types of function results are introduced in the following
subsections.

All OM objects returned by interface functions (results and errors) are private objects
in the workspace returned ls_initialize().

10.7.1 The invoke id Parameter

All interface functions that invoke a directory service operation returinaoke_id
parameter, which is an integer that identifies the particular invocation of an operation.
Since asynchronous operations (within the same thread) are not supported, the
invoke_id return value is no longer relevant for operations. DCE application
programmers must still supply this parameter as described in the XDS reference pages,
but they should ignore the value returned.

10.7.2 The result Parameter

Directory service interrogation operations returmegult value only if they succeed.
All errors from these operations, including directory access protocol (DAP) errors, are
reported inDS_status(see Section 10.7.3), as are errors from all other operations.

The result of an interrogation is returned in a private object whose OM class is
appropriate to the particular operation. The format of directory operation results is
driven by the abstract service. To simplify processing, the result of a single operation
is returned in a single OM object, which corresponds to the abstract result defined in
the standards. The components of the result of an operation are represented by OM
attributes in the operation’s result object. All information contained in the abstract
service result is made available to the application program. The result is inspected
using the functions provided in the object management ARI, get()

OSF® DCE Application Development Guide — Directory Services 10-11

XDS/XOM Supplementary Information

10.7.3

10.8

10-12

Only the interrogation operations produce results, and each type of interrogation has
a specific OM class of OM object for its result. These OM classes are as follows
(see Chapter 11 for their definitions):

DS_C_COMPARE_RESULT
DS_C_LIST_RESULT

« DS_C_READ_RESULT

« DS_C_SEARCH_RESULT

The results of the different operations share several common components, including
the CommonResultsdefined in the standards (s&ée Directory: Abstract Service
Definition 1ISO 9594-3, CCITT X.511) by inheriting OM attributes from the superclass
DS_C_COMMON_RESULT8&n additional common component is the full DN of the
target object, after all aliases are dereferenced.

The actual OM class of the result can always be a subclass of that named in order to
allow flexibility for extensions. Thusym_instance()always needs to be used when
testing the OM class.

Any attribute values in the result are represented as discussed in Section 10.6.1.

The DS_status Return Value

Every interface function returns BS_statusvalue, which is either the constant
DS_SUCCESSor an error. Errors are represented by private objects whose OM
class is a subclass @fS_C_ERRORDetails of all errors are given in Chapter 11.

Other results of functions are not valid unless the status result has the value
DS_SUCCESS

Synchronous Operations

Since asynchronous use of the interface (within the same thread) is not supported, the
value of theDS_ASYNCHRONOUS OM attribute inDS_C_CONTEXT is always
OM_FALSE, causing all operations within the same thread to be synchronous.

OSF® DCE Application Development Guide — Directory Services

XDS Interface Description

10.9

10.10

In synchronous mode, all functions wait until the operation is complete before
returning. The thread of control is blocked within the interface after calling a function,
and it can use the result immediately after the function returns.

Implementations define a limit on the number of asynchronous operations that can
be outstanding at any one time on any one session. The limit is given by
the implementation-defined constdd§_MAX_OUTSTANDING_OPERATIONS.

It always has the value 0 (zero) because asynchronous operations within the same
thread are not supported.

All errors occurring during a synchronous request are reported when the function
returns. (See Chapter 11 for complete details of error handling.)

The DS_FILE_DESCRIPTOR OM attribute ofDS_C_SESSIONs not used by the
DCE XDS API and is always set tOS_NO_VALID_FILE_DESCRIPTOR.

Security and XDS

The X/Open XDS specifications do not define a security interface because this can
put constraints on security features of existing directory implementations.

DCE GDS provides an extension to the XDS API for security support. This is
achieved at the XDS API level through a n®8X_C_GDS_SESSIONession object

that contains information on the security mechanism that should be used. Simple
authentication through the use of name and password, and external authentication
based on DCE security, are supported. (See Chapter 15 for additional information.)

Other Features of the XDS Interface

The following subsections describe these features of the interface:
» Automatic Connection Management

» Automatic Continuation and Referral Handling

OSF® DCE Application Development Guide — Directory Services 10-13

XDS/XOM Supplementary Information

10.10.1

10.10.2

10-14

Automatic Connection Management

An implementation can provide automatic management of the association or
connection between the user and the directory service, making and releasing
connections at its discretion.

The DCE XDS implementation does not support automatic connection management.
A DSA connection is established wheis_bind() is called and released when
ds_unbind() is called.

Automatic Continuation and Referral Handling

The interface provides automatic handling of continuation references and referrals in
order to reduce the burden on application programs. These facilities can be inhibited
to meet special needs.

A continuation referencdescribes how the performance of all or part of an operation
can be continued at a different DSA or DSAs. A single continuation reference
returned as the entire response to an operation is calledearal and is classified

as an error. One or more continuation references can also be returned as part
of DS_PARTIAL_OUTCOME_QUAL returned from ads_list() or ds_search()
operation.

A DSA returns a referral if it has administrative, operational, or
technical reasons for preferring not to chain. It can return a referral if
DS_CHAINING_PROHIB is set in theDS_C_CONTEXT, or it can report a
service errorDS_E_CHAINING_REQUIRED) instead.

By default, the implementation uses any continuation references it receives to try to
contact the other DSA or DSAs, enabling it to make further progress in the operation,
whenever practical. It only returns the result, or an error, to the application after it
has made this attempt. Note that continuation references can still be returned to the
application; for example, if the relevant DSA cannot be contacted.

The default behavior is the simplest for most applications but, if necessary, the
application can cause all continuation references to be returned to it. It does this
by setting the value of the OM attribu2S_ AUTOMATIC_CONTINUATION in

the DS_C_CONTEXT to OM_FALSE.

OSF® DCE Application Development Guide — Directory Services

XDS Interface Description

10.10.3 Abandoning Operations

The XDS user can abandon a directory operation when operating in multithreaded
mode. An operation is abandoned by calliptihread_cancel()to cancel the thread
that issued the directory operation. General cancelability must be enabled; otherwise,
the cancelability will be ignored.
XDS will react as follows, depending on when the cancel is delivered:
» Before interaction with the DSA
— Nothing is sent to the DSA.
— The exceptiompthread_cancel_eis reraised.
* While waiting for a response from the DSA
— An ABANDON message is sent to the DSA.

— The exceptiompthread_cancel_eis reraised.

 After the result has arrived, but before a point has been reached when it is
committed to be passed back to the user

— The result is thrown away.
— The exceptiorpthread_cancel_eis reraised.
« After the point where result return is committed place
— The cancel is ignored.
— The result is returned normally.

It is the responsibility of the user to handle the cancel exception in the last case and,
if necessary, to discard the result.

OSF® DCE Application Development Guide — Directory Services 10-15

Chapter 11

XDS Class Definitions

11.1

When referring to classes and attributes in the directory service, the chapters in Parts 3
and 4 make a clear distinction between OM classes and directory classes, and between
OM attributes and directory attributes. In both cases, the former is a construct of the
closely associated Object Management interface, while the latter is a construct of the
directory service to which XDS provides access. The tavbjsct classaandattribute
indicate the directory constructs, while the phradSé4 classandOM attributeindicate

the Object Management constructs.

Introduction to OM Classes

This chapter defines, in alphabetical order, the OM classes that constitute the directory
service package. This package incorporates the OM classes for the errors that may
be returned at the XDS interface. The object identifier associated with this package

is

{iso(1) identified-organization(3) icd-ecma(0012) member-company(2)
dec(1011) xopen(28) dsp(0)}

OSF® DCE Application Development Guide — Directory Services 11-1

XDS/XOM Supplementary Information

11.2

11-2

It takes the following encoding:
\X2B\XC\x2\x87\x73\x1C\x0
This object identifier is represented by the consfaBt SERVICE_PKG.

The object management notation is briefly described in the following text. See
Chapters 17 through 19 for more information on object management.

Each OM class is described in a separate section, which identifies the OM attributes
specific to that OM class. The OM classes and OM attributes for each OM class

are listed in alphabetical order. The OM attributes that can be found in an instance

of an OM class are those OM attributes specific to that OM class, as well as those

inherited from each of its superclasses (see Chapter 5). The OM class-specific OM
attributes are defined in a table. The table indicates the name of each OM attribute,
the syntax of each of its values, any restrictions on the length (in bits, octets (bytes),

or characters) of each value, any restrictions upon the number of values, and the value,
if any, om_create()supplies.

The constants that represent the OM classes and OM attributes in the C binding are
defined in thexds.h(4xds)header file.

XDS Errors

Errors are reported to the application program by meanB®fstatus which is a
result of every function. (Th®S_statusis the function result in the C language
binding for most functions.) A function that completes successfully returns the value
DS_SUCCESS$S whereas one that is not successful returns an error. The error is a
private object containing details of the problem that occurred. The error constant
DS_NO_WORKSPACE can be returned by all directory service functions, except
ds_initialize(). DS_NO_WORKSPACE s returned ifds_initialize() is not invoked
before calling any other directory service function.

Errors are classified into ten OM classes. The standardg {seBirectory: Abstract
Service Definition ISO 9594-3, CCITT X.511) classify errors into eight different
groups, as follows:

» Abandoned

OSF® DCE Application Development Guide — Directory Services

XDS Class Definitions

Abandon Failed
Attribute Error

* Name Error

Referral

Security Error

» Service Error

Update Error

The directory service interface never returns an Abandoned error. The interface also
defines three more kinds of errors, as follows:

« DS_C_LIBRARY_ERROR
« DS_C_COMMUNICATIONS_ERROR
« DS_C_SYSTEM_ERROR

Each of these kinds of errors is represented by an OM class. These OM classes
are detailed in subsequent sections of this chapter. All of them inherit the OM
attribute DS_PROBLEM from their superclas®S_C_ERRORwhich is described

in this chapter. The values thBYS_PROBLEM can take are listed in the relevent
subsections of this chapter. For a description of these errors, refer ©SReDCE
Problem Determination Guide The error OM classes defined in this chapter are part

of the directory service package.

The ds_bhind() operation returns a Security Error or a Service Error. All other
operations can also return the same errordsadind(). Such errors can arise in the
course of following an automatic referral list.

DS _C_REFERRAL is not a real error, and it is not a subclassi3 C_ERROR
although it is reported in the same way as @S_status result. A

DS C _ATTRIBUTE_ERROR, also not a subclass ofDS C ERROR is
special because it can report several problems at once. Each one is reported in
DS_C_ATTRIBUTE_PROBLEM, which is a subclass dS_C_ERROR

OSF® DCE Application Development Guide — Directory Services 11-3

XDS/XOM Supplementary Information

11.3

114

OM Class Hierarchy

This section shows the hierarchical organization of the OM classes defined in this
chapter and, as a result, shows which OM classes inherit additional OM attributes from
their superclasses. In the following list, subclassification is indicated by indentation,
and the names of abstract classes are in italics. Thus, for example, the concrete
classDS_C_PRESENTATION_ADDRESSis an immediate subclass of the abstract
classDS_C_ADDRESSwhich in turn is an immediate subclass of the abstract class
OM_C_OBJECT(OM_C_OBJECTis defined in Chapter 19 of this guide.)

OM_C_OBJECT

DS_C_ACCESS_POINT
DS_C_ADDRESS

— DS_C_PRESENTATION_ADDRESS
DS_C_ATTRIBUTE

— DS_C_AVA

— DS_C_ENTRY_MOD

— DS_C_FILTER_ITEM
DS_C_ATTRIBUTE_ERROR
DS_C_ATTRIBUTE_LIST

— DS_C_ENTRY_INFO
DS_C_COMMON_RESULTS

— DS_C_COMPARE_RESULT
— DS_C_LIST_INFO

— DS_C_READ_RESULT

— DS_C_SEARCH_INFO
DS_C_CONTEXT
DS_C_CONTINUATION_REF

— DS_C_REFERRAL
DS_C_ENTRY_INFO_SELECTION

OSF® DCE Application Development Guide — Directory Services

XDS Class Definitions

« DS_C_ENTRY_MOD_LIST
« DS_C_ERROR
— DS_C_ABANDON_FAILED
— DS_C_ATTRIBUTE_PROBLEM
— DS_C_COMMUNICATIONS_ERROR
— DS_C_LIBRARY_ERROR
— DS_C_NAME_ERROR
— DS_C_SECURITY_ERROR
— DS_C_SERVICE_ERROR
— DS_C_SYSTEM_ERROR
— DS_C_UPDATE_ERROR
« DS_C_EXT
« DS_C_FILTER
« DS_C_LIST_INFO_ITEM
« DS_C_LIST RESULT
« DS_C_NAME
— DS_C_DS_DN
« DS_C_OPERATION_PROGRESS
« DS_C_PARTIAL_OUTCOME_QUAL
« DS_C_RELATIVE_NAME
— DS_C_DS_RDN
« DS_C_SEARCH_RESULT
» DS_C_SESSION
None of the classes in the preceding list are encodable wsimgencode()and
om_decode() The application is not permitted to create or modify instances of

some OM classes because these OM classes are only returned by the interface and
never supplied to it. These OM classes are as follows:

OSF® DCE Application Development Guide — Directory Services 11-5

XDS/XOM Supplementary Information

11.4

11-6

« DS_C_ACCESS POINT

« DS_C_ATTRIBUTE_ERROR

+ DS_C_COMPARE_RESULT

» DS_C_CONTINUATION_REF
 All subclasses obDS_C_ERROR

* DS_C_LIST_INFO

* DS_C_LIST_INFO_ITEM

* DS_C_LIST_RESULT

» DS_C_OPERATION_PROGRESS
« DS_C_PARTIAL_OUTCOME_QUAL
« DS_C_READ_RESULT

« DS_C_REFERRAL

« DS_C_SEARCH_INFO

« DS_C_SEARCH_RESULT

DS_C_ABANDON_FAILED

An instance of OM clasBS_C_ABANDON_FAILED reports a problem encountered
during an attempt to abandon an operation.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercla€ddsC OBJECT
andDS_C_ERRORand no additional OM attributes.

The OM attribute DS_PROBLEM, which is inherited from the superclass
DS_C_ERRORdentifies the problem. Its value is one of the following:

* DS_E_CANNOT_ABANDON

 DS_E_NO_SUCH_OPERATION

 DS_E_TOO_LATE

OSF® DCE Application Development Guide — Directory Services

XDS Class Definitions

A ds_abandon() XDS call always returns é&S_E_TOO_LATE error for the
DS_C_ABANDON_FAILED OM class. Refer to Chapter 10 for information on
abandoning directory operations.

115 DS_C_ACCESS POINT

An instance of OM clas®S_C_ACCESS_POINTIidentifies a particular point at
which a DSA can be accessed.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercass,C_OBJECT
in addition to the OM attributes listed in Table 11-1.

Table 11-1. OM Attributes of DS_C_ACCESS_POINT

OM Attribute Value Syntax Value Value Value
Length Number | Initially
DS_ADDRESS Objec{DS_C_ — 1 —
ADDRESS)
DS_AE_TITLE Objec{DS_C_NAME) — 1 —

» DS_ADDRESS

This attribute indicates the address of the DSA to be used when communicating
with it.

« DS_AE_TITLE

This attribute indicates the name of the DSA.

11.6 DS_C_ADDRESS

The OM clasDS_C_ADDRESE&:presents the address of a particular entity or service,
such as a DSA.

OSF® DCE Application Development Guide — Directory Services 11-7

XDS/XOM Supplementary Information

It is an abstract class that has the OM attributes of its supercddsC OBJECT
and no other OM attributes.

An address is an unambiguous name, label, or number that identifies the location of
the entity or service. All addresses are represented as instances of some subclass of
this OM class.

The only subclass defined by the DCE XDS API is

DS_C_PRESENTATION_ADDRESS which is the presentation address of an OSI
application entity used for OSI communications with this subclass.

11.7 DS_C_ATTRIBUTE

An instance of OM clasBS_C_ATTRIBUTE is an attribute of an object, and is thus
a component of its directory entry.

An instance of this OM class has the OM attributes of its superd2igs,C_OBJECT
in addition to the OM attributes listed in Table 11-2.

Table 11-2. OM Attributes of DS_C_ATTRIBUTE

OM Attribute Value Syntax Value Value Value
Length Number | Initially

DS _ATTRIBUTE_ | StringOM_S_ — 1 —
TYPE OBJECT_

IDENTIFIER_

STRING)
DS _ATTRIBUTE_ Any — 0 or more| —
VALUES

» DS_ATTRIBUTE_TYPE

The attribute type that indicates the class of information given by this attribute.

» DS_ATTRIBUTE_VALUES

11-8 OSF® DCE Application Development Guide — Directory Services

XDS Class Definitions

11.8

Table 11-3.

OSF® DCE Application Development Guide — Directory Services

The attribute values. The OM value syntax and the number of values allowed for
this OM attribute are determined by the value of b8 ATTRIBUTE_TYPE

OM attribute in accordance with the rules given in Chapter 10.

If the values of this OM attribute have the syntax Stringthe strings can be
long and segmented. For this reasom_read() and om_write() need to be
used to access all String(values.

Note:

A directory attribute must always have at least one value, although it is

acceptable for instances of this OM class not to have any values.

DS_C_ATTRIBUTE_ERROR

An instance of OM clas®S_C_ATTRIBUTE_ERROR reports an attribute-related

directory service error.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercass,C_OBJECT
in addition to the OM attributes listed in Table 11-3.

OM Attributes of DS_C_ATTRIBUTE_ERROR

OM Attribute Value Syntax Value Value Value
Length Number | Initially
DS_OBJECT_ Objec{DS_C_NAME) — 1 —
NAME
DS PROBLEMS Objec{DS_C _ — 1 or more| —
ATTRIBUTE_
PROBLEM)

 DS_OBJECT_NAME

This attribute contains the name of the directory entry to which the operation is
applied when the failure occurs.

» DS_PROBLEMS

11-9

XDS/XOM Supplementary Information

This attribute documents the attribute-related problems encountered. Uniquely,
a DS _C_ATTRIBUTE_ERROR can report several problems at once. All
problems are related to the preceding object.

11.9 DS_C_ATTRIBUTE_LIST

An instance of OM clas®S_C_ATTRIBUTE_LIST s a list of directory attributes.

An instance of this OM class has the OM attributes of its superd2igs,C_ OBJECT
in addition to the OM attribute listed in Table 11-4.

Table 11-4. OM Attribute of DS_C_ATTRIBUTE_LIST

OM Attribute Value Syntax Value Value Value
Length Number | Initially
DS_ATTRIBUTES | Objec{DS_C_ — 0 or more| —
ATTRIBUTE)

* DS_ATTRIBUTES

This attribute indicates the attributes that constitute a new object’s directory entry,
or those selected from an existing entry.

11.10 DS_C_ATTRIBUTE_PROBLEM

An instance of OM clasBS_C_ATTRIBUTE_PROBLEM documents one attribute-
related problem encountered while performing an operation as requested on a particular
occasion.

An application is not permitted to create or modify instances of this OM class. An

instance of this OM class has the OM attributes of its supercla€ddsC OBJECT
andDS_C_ERRORIn addition to the OM attributes listed in Table 11-5.

11-10 OSF® DCE Application Development Guide — Directory Services

XDS Class Definitions

Table 11-5. OM Attributes of DS_C_ATTRIBUTE_PROBLEM

VALUE

OM Attribute Value Syntax Value Value Value
Length Number | Initially
DS_ATTRIBUTE_ | StringOM_S_ — 1 —
TYPE OBJECT_
IDENTIFIER_
STRING)
DS_ATTRIBUTE_ | Any — Oor1l —

* DS_ATTRIBUTE_TYPE

This attribute identifies the type of attribute with which the problem is associated.

» DS_ATTRIBUTE_VALUE

This attribute specifies the attribute value with which the problem is associated.
Its syntax is determined by the value BIS_ATTRIBUTE_TYPE. This OM
attribute is present if it is necessary to avoid ambiguity.

The OM attribute DS_PROBLEM, which is inherited from the superclass
DS_C_ERRORdentifies the problem. Its value is one of the following:

 DS_E_ATTRIBUTE_OR_VALUE_EXISTS

DS_E_CONSTRAINT_VIOLATION
DS_E_INAPPROP_MATCHING
DS_E_INVALID_ATTRIBUTE_SYNTAX

« DS_E_NO_SUCH_ATTRIBUTE_OR_VALUE

11.11 DS_C_AVA

DS_E_UNDEFINED_ATTRIBUTE_TYPE

An instance of OM clas®S_C_AVA (attribute value assertion) is a proposition

concerning the values of a directory entry.

OSF® DCE Application Development Guide — Directory Services

11-11

XDS/XOM Supplementary Information

11.12

Table 11-6.

11-12

An instance of this OM class has the OM attributes of its superclasses,
OM_C _OBJECTand DS _C ATTRIBUTE, and no other OM attributes. An
additional restriction on this OM class is that there must be exactly one value of the
OM attributeDS_ATTRIBUTE_VALUES . The DS_ATTRIBUTE_TYPE remains
single valued. The OM value syntax BiS_ATTRIBUTE_VALUES must conform

to the rules outlined in Chapter 10.

DS _C_COMMON_RESULTS

The OM classDS_C_COMMON_RESULT&mprises results that are returned by,
and are common to, the directory interrogation operations.

It is an abstract OM class, which has the OM attributes of its superclass,
OM_C_OBJECTIn addition to the OM attributes listed in Table 11-6.

OM Attributes of DS_C_COMMON_RESULTS
OM Attribute Value Syntax Value Value Value
Length Number | Initially
DS_ALIAS OM_S_ BOOLEAN | — 1 —
DEREFERENCED
DS _PERFORMER | Objec{DS_C_NAME) — Oor1l —

» DS_ALIAS_DEREFERENCED

This attribute indicates whether the name of the target object that is passed as a
function argument includes an alias that is dereferenced to determine the DN.

* DS_PERFORMER
When present, this attribute gives the DN of the performer of a particular
operation. It can be present when the result is signed, and it holds the name

of the DSA that signed the result. The DCE directory service does not support
the optional feature of signed results; therefore, this OM attribute is never present.

OSF® DCE Application Development Guide — Directory Services

XDS Class Definitions

11.13

11.14

Table 11-7.

DS_C_COMMUNICATIONS_ERROR

An instance of OM clas®S_C_COMMUNICATIONS_ERROR reports an error
occurring in the other OSI services supporting the directory service.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercla€dsC OBJECT
andDS_C_ERRORand no additional OM attributes.

Communications errors include those arising in remote operation, association control,
presentation, session, and transport.

The OM attribute DS_PROBLEM, which is inherited from the
superclass DS_C_ERROR identifies the problem. Its value is
DS_E_COMMUNICATIONS_PROBLEM .

DS_C_COMPARE_RESULT

An instance of OM clas®S_C_COMPARE_RESULT comprises the results of a
successful call tals_compare()

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercla€ddsC OBJECT
andDS_C_COMMON_RESULT® addition to the OM attributes listed in Table 11-
7.

OM Attributes of DS_C_COMPARE_RESULT

OM Attribute Value Syntax Value Value Value
Length Number | Initially
DS_FROM_ENTRY | OM_S_ BOOLEAN | — 1 —
DS_MATCHED OM_S_ BOOLEAN | — 1 —
DS_OBJECT_NAME| Objec{DS_C_NAME) — Oor1l —

- DS_FROM_ENTRY

OSF® DCE Application Development Guide — Directory Services 11-13

XDS/XOM Supplementary Information

This attribute indicates whether the assertion is tested against the specified object’s
entry, rather than a copy of the entry.

DS_MATCHED
This attribute indicates whether the assertion specified as an argument returns the

valueOM_TRUE. It takes the valu®M_TRUE if the values are compared and
matched; otherwise, it takes the valO®1_FALSE.

DS_OBJECT_NAME
This attribute contains the DN of the target object of the operation. It is present if

the OM attributeDS_ALIAS_DEREFERENCED, inherited from the superclass
DS C_COMMON_RESULT& OM_TRUE.

11.15 DS_C_CONTEXT

An instance of OM clas®S_C_CONTEXT comprises per-operation arguments that

are

accepted by most of the interface functions.

An instance of this OM class has the OM attributes of its superd2igs,C_ OBJECT
in addition to the OM attributes listed in Table 11-8.

Table 11-8. OM Attributes of DS_C_CONTEXT

OM Attribute Value Syntax Value | Value | Value Initially
Length | Number
Common Arguments
DS_EXT ObjectDS_C_ EXT) | — 0 or —
more
DS_OPERATION_ Objec(DS_C_ — 1 DS_ OPERATION_
PROGRESS OPERATION_ NOT_STARTED
PROGRESS)
DS_ALIASED_ OM_S_ INTEGER — Oorl |O
RDNS
Service Controls
11-14 OSF® DCE Application Development Guide — Directory Services

XDS Class Definitions

OM Attribute Value Syntax Value | Value | Value Initially
Length | Number

DS_CHAINING_ OM_S_ BOOLEAN — 1 OM_TRUE
PROHIB
DS_DONT_ OM_S_ BOOLEAN — 1 OM_FALSE
DEREFERENCE_
ALIASES
DS_DONT_ OM_S_ BOOLEAN — 1 OM_TRUE
USE_COPY
DS_LOCAL_ SCOPE | OM_S_ BOOLEAN — 1 OM_FALSE
DS_PREFER_ OM_S_ BOOLEAN — 1 OM_FALSE
CHAINING
DS_PRIORITY Enum(DS_Priority) — 1 DS_MEDIUM
DS SCOPE_ EnumDS__ Scope__ — Oorl |—
OF REFERRAL of Referral)
DS_SIZE_ LIMIT OM_S_INTEGER — Qorl |—
DS_TIME_ LIMIT OM_S_ INTEGER — Qorl |—

Local Controls
DS_ OM_S_ BOOLEAN — 1 OM_FALSE
ASYNCHRONOUS
DS_AUTOMATIC_ OM_S_ BOOLEAN — 1 OM_TRUE
CONTINUATION

The context gathers several arguments passed to interface functions, which are
presumed to be relatively static for a given directory user during a particular directory
interaction. The context is passed as an argument to each function that interrogates or
updates the directory. Although it is generally assumed that the context is changed
infrequently, the value of each argument can be changed between every operation

if required. TheDS_ASYNCHRONOUS argument must not be changed.

argument is represented by one of the OM attributes ofitBe C_ CONTEXT OM

class.

OSF® DCE Application Development Guide — Directory Services

11-15

Each

XDS/XOM Supplementary Information

The context contains the common arguments defined in the standardsTt{see
Directory: Abstract Service DefinitignlSO 9594-3, CCITT X.511), except that

all security information is omitted for reasons discussed in Chapter 10. These
are made up of a number of service controls explained in the following text,
possible extensions in theS_EXT OM attribute, and operation progress and alias
dereferencing information in thBS_OPERATION_PROGRESSOM attribute. It

also contains a number of arguments that provide local control over the interface.

The OM attributes of th®S_C_CONTEXT OM class are as follows:
* Common Arguments
— DS_EXT
This attribute represents any future standardized extensions that need to be

applied to the directory service operation. The DCE XDS implementation
does not evaluate this optional OM attribute.

— DS_OPERATION_PROGRESS

This attribute represents the state that the directory service assumes at the
start of the operation. This OM attribute normally takes its default value,
which is the valueDS_OPERATION_NOT_STARTED described in the
DS_C_OPERATION_PROGRESSOM class definition.

— DS_ALIASED_RDNS
This attribute indicates to the directory service that the object component of
the operationparameter is created by dereferencing of an alias on an earlier

operation attempt. This value is set in the referral response of the previous
operation.

» Service Controls
— DS_CHAINING_PROHIB
This attribute indicates that chaining and other methods of distributing the
request around the directory service are prohibited.
— DS_DONT_DEREFERENCE_ALIASES

11-16 OSF® DCE Application Development Guide — Directory Services

XDS Class Definitions

This attribute indicates that any alias used to identify the target entry of an
operation is not dereferenced. This allows interrogation of alias entries.
(Aliases are never dereferenced during updates.)

— DS_DONT_USE_COPY

This attribute indicates that the request can only be satisfied by accessing
directory entries, and not by using copies of entries. This includes both
copies maintained in other DSAs by bilateral agreement, and, copies cached
locally.

— DS_LOCAL_SCOPE

This attribute indicates that the directory request will be satisfied locally.
The meaning of this option is configured by an administrator. This option
typically restricts the request to a single DSA or DMD.

— DS_PREFER_CHAINING
This attribute indicates that chaining is preferred to referrals when necessary.

The directory service is not obliged to follow this preference and can return
a referral even if it is set.

— DS_PRIORITY
This attribute indicates the priority, relative to other directory requests,
according to which the directory service attempts to satisfy the request. This

is not a guaranteed service since there is no queuing throughout the directory.
Its value must be one of the following:

DS_LOW
DS_MEDIUM
DS_HIGH
— DS_SCOPE_OF_REFERRAL
This attribute indicates the part of the directory to which referrals are limited.

This includes referral errors and partial outcome qualifiers. Its value must
be one of the following:

DS_COUNTRY, meaning DSAs within the country in which the request
originates.

OSF® DCE Application Development Guide — Directory Services 11-17

XDS/XOM Supplementary Information

DS_DMD, meaning DSAs within the DMD in which the request
originates.

DS_SCOPE_OF_REFERRALIis an optional attribute. The lack of this
attribute in aDS_C_CONTEXT object indicates that the scope is not limited.

— DS_SIZE_LIMIT

If present, this attribute indicates the maximum number of objects about
which ds_list() or ds_search()needs to return information. If this limit

is exceeded, information is returned about exactly this number of objects.
The objects that are chosen are not specified because this can depend on the
timing of interactions between DSAs, among other reasons.

— DS_TIME_LIMIT

If present, this attribute indicates the maximum elapsed time, in seconds,
within which the service needs to be provided (not the processing
time devoted to the request). If this limit is reached, a service error
(DS_E_TIME_LIMIT_EXCEEDED) is returned, except for thds_list()

or ds_search() operations, which return an arbitrary selection of the
accumulated results.

* Local Controls
— DS_ASYNCHRONOUS (Optional Functionality)
The interface currently operates synchronously (within the same thread) only,
as detailed in Chapter 10. There is only one possible value, as follows:

OM_FALSE, meaning that the operation is performed sequentially
(synchronously) with the application being blocked until a result or error
is returned.

— DS_AUTOMATIC_CONTINUATION
This attribute indicates the requestor’s requirement for continuation reference

handling, including referrals and those in partial outcome qualifiers. The
value is one of the following:

OM_FALSE, meaning that the interface returns all continuation
references to the application program.

11-18 OSF® DCE Application Development Guide — Directory Services

XDS Class Definitions

OM_TRUE, meaning that continuation references are automatically
processed, and the subsequent results are returned to the application
instead of the continuation references, whenever practical. This is a
much simpler option tha®M_FALSE unless the application has special
requirements.

Note: Continuation references can still be returned to the application if, for example,
the relevant DSA cannot be contacted.

Applications can assume that an object of OM cl&S C_CONTEXT, created
with default values of all its OM attributes, works with all the interface functions.
The DS_DEFAULT_CONTEXT constant can be used as an argument to interface
functions instead of creating an OM object with default values.

11.16 DS_C_CONTINUATION_REF

An instance of OM clas®S_C_CONTINUATION_REF comprises the information
that enables a partially completed directory request to be continued; for example,
following a referral.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its superctass,C_OBJECT
in addition to the OM attributes listed in Table 11-9.

Table 11-9. OM Attributes of DS_C_CONTINUATION_REF

OM Attribute Value Syntax Value Value Value
Length Number | Initially

DS _ACCESS Objec{DS_C _ — 1 or more| —
POINTS ACCESS_POINT)
DS_ALIASED_ OM_S_INTEGER — 1 —
RDNS
DS_OPERATION_ | Objec{DS_C_ — 1 —
PROGRESS OPERATION_

PROGRESS)

OSF® DCE Application Development Guide — Directory Services 11-19

XDS/XOM Supplementary Information

OM Attribute Value Syntax Value Value Value
Length Number | Initially

DS_RDNS_ OM_S_INTEGER — Oorl —

RESOLVED

DS_TARGET_ Objec{DS_C_NAME) — 1 —

OBJECT

* DS_ACCESS_POINTS

This attribute indicates the names and presentation addresses of the DSAs from
where the directory request is continued.

* DS_ALIASED_RDNS

This attribute indicates how many (if any) of the RDNs in the target name are
produced by dereferencing an alias. Its value is 0 (zero) if no aliases are
dereferenced. This value needs to be used inDBeC_CONTEXT of any
continued operation.

* DS_OPERATION_PROGRESS
This attribute indicates the state at which the directory request must be continued.
This value needs to be used in th&_C_CONTEXT of any continued operation.

* DS_RDNS_RESOLVED
This attribute indicates the number of RDNs in the supplied object name that are

resolved (using internal references), and not just assumed to be correct (using
cross-references).

* DS_TARGET_OBJECT

This attribute indicates the name of the object upon which the continuation must
focus.

11.17 DS_C_DS_DN

An instance of OM clas®S_C_DS_DNrepresents a name of a directory object.

11-20 OSF® DCE Application Development Guide — Directory Services

XDS Class Definitions

An instance of this OM class has the OM attributes of its superclasses,

OM_C_OBJECTand DS_C_NAME in addition to the OM attribute listed in Table
11-10.

Table 11-10. OM Attribute of DS_C_DS_ DN

OM Attribute Value Syntax Value Value Value
Length Number | Initially
DS _RDNS Objec{DS_C DS_ | — 0 or more| —
RDN)
» DS_RDNS

This attribute indicates the sequence of RDNs that define the path through the DIT
from its root to the object that tHeS_C_DS_DNindicates. ThédS_C_DS DN

of the root of the directory is the null name (li5_RDNSvalues). The order

of the values is significant; the first value is closest to the root, and the last value
is the RDN of the object.

11.18 DS_C_DS_RDN

An instance of OM clasBS_C_DS_RDNis a relative distinguished name. An RDN

uniquely identifies an immediate subordinate of an object whose entry is displayed in
the DIT.

An instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECTand DS _C_RELATIVE_NAMEin addition to the OM attribute
listed in Table 11-11.

Table 11-11. OM Attribute of DS_C_DS_RDN

OM Attribute Value Syntax Value Value Value
Length Number | Initially
DS_AVAS Objec{DS_C_AVA) | — 1 or more| —
* DS_AVAS
OSF® DCE Application Development Guide — Directory Services 11-21

XDS/XOM Supplementary Information

This attribute indicates thBS_AVAS that are marked by the DIB as components
of the object’'s RDN. The assertion is TRUE of the object but not of any of its
siblings, and the attribute type and value are displayed in the object’s directory
entry. The order of th®S_AVAS is not significant.

11.19 DS_C_ENTRY_INFO

An instance of OM clas®S C _ENTRY_INFO contains selected information from
a single directory entry.

An instance of this OM class has the OM attributes of its superclasses,
OM_C _OBJECTandDS _C _ATTRIBUTE_LIST, in addition to the OM attributes
listed in Table 11-12.

Table 11-12. OM Attributes of DS_C_ENTRY_INFO

11-22

OM Attribute Value Syntax Value Value | Value
Length Numbel Initially
DS_FROM_ENTRY | OM_S_ BOOLEAN | — 1 —
DS_OBJECT_NAME| Objec{DS_C_ — 1 —
NAME)

The OM attribute DS _ATTRIBUTES is inherited from the superclass
DS C _ATTRIBUTE_LIST. It contains the information extracted from the
directory entry of the target object. The type of each attribute requested and located
is indicated in the list as are its values, if types and values are requested.
The OM class-specific OM attributes are as follows:
* DS_FROM_ENTRY
This attribute indicates whether the information is extracted from the specified
object’s entry, rather than from a copy of the entry.
» DS_OBJECT_NAME

This attribute contains the object’s DN.

OSF® DCE Application Development Guide — Directory Services

XDS Class Definitions

11.20 DS_C_ENTRY_INFO_SELECTION

An instance of OM classDS C ENTRY_INFO_SELECTION identifies the
information to be extracted from a directory entry.

An instance of this OM class has the OM attributes of its superd2igs,C_ OBJECT
in addition to the OM attributes listed in Table 11-13.

Table 11-13. OM Attributes of DS_C_ENTRY_INFO_SELECTION

OM Attribute Value Syntax Value Value Value Initially
Length | Number
DS_ALL_ATTRIBUTES | OM_S_ BOOLEAN — 1 OM_TRUE
DS_ ATTRIBUTES_ StringOM_S_OBJECT_ | — 0 or —
SELECTED IDENTIFIER_STRING) more
DS _INFO_TYPE Enum(DS_Information_ | — 1 DS TYPES
Type) AND_VALUES

* DS_ALL_ATTRIBUTES

This attribute indicates which attributes are relevant. It can take one of the
following values:

— OM_FALSE, meaning that information is only requested on those attributes
that are listed in the OM attributeS ATTRIBUTES SELECTED.

— OM_TRUE, meaning that information is requested on all
attributes in the directory entry. Any values of the OM attribute
DS_ATTRIBUTES_SELECTED are ignored in this case.

DS_ATTRIBUTES_SELECTED

This attribute lists the types of attributes in the entry from which information
will be extracted. The value of this OM attribute is used only if the value
of DS_ALL_ATTRIBUTES is OM_FALSE. If an empty list is supplied, no
attribute data is returned that could be used to verify the existence of an entry for
a DN.

« DS_INFO_TYPE

OSF® DCE Application Development Guide — Directory Services 11-23

XDS/XOM Supplementary Information

This attribute identifies the information that will be extracted from each attribute
identified. It must take one of the following values:

— DS_TYPES_ONLY, meaning that only the attribute types of the selected
attributes in the entry are returned.

— DS_TYPES_AND_VALUES, meaning that both the attribute types and the
attribute values of the selected attributes in the entry are returned.

11.21 DS_C_ENTRY_MOD

An instance of OM clas®S_C_ENTRY_MOD describes a single modification to a
specified attribute of a directory entry.

An instance of this OM class has the OM attributes of its superclasses,
OM_C _OBJECTandDS_C_ATTRIBUTE, in addition to the OM attribute listed in
Table 11-14.

Table 11-14. OM Attribute of DS_C_ENTRY_MOD

11-24

OM Attribute Value Syntax Value | Value | Value
Length | Number| Initially
DS_MOD_TYPE EnumDS_ — 1 DS_ADD_
Modification_ ATTRIBUTE
Type)

The attribute type to be modified, and the associated values, are specified in the
OM attributesDS_ATTRIBUTE_TYPE and DS_ATTRIBUTE_VALUES that are
inherited from theDS_C_ATTRIBUTE superclass.

« DS_MOD_TYPE
This attribute identifies the type of modification. It must have one of the
following values:

— DS_ADD_ATTRIBUTE, meaning that the specified attribute is absent and
will be added with the specified values.

OSF® DCE Application Development Guide — Directory Services

XDS Class Definitions

— DS_ADD_VALUES, meaning that the specified attribute is present and that
one or more specified values will be added to it.

— DS_REMOVE_ATTRIBUTE , meaning that the specified attribute is

present and will be removed. Any values present in the OM attribute
DS_ATTRIBUTE_VALUES are ignored.

— DS_REMOVE_VALUES, meaning that the specified attribute is present and
that one or more specified values will be removed from it.

11.22 DS_C_ENTRY_MOD_LIST

An instance of OM clasDS C_ENTRY_MOD_LIST comprises a sequence of
changes to be made to a directory entry.

An instance of this OM class has the OM attributes of its superd2igs,C_OBJECT
in addition to the OM attribute listed in Table 11-15.

Table 11-15. OM Attribute of DS_C_ENTRY_MOD_LIST

OM Attribute Value Syntax Value Value Value
Length Number | Initially
DS _CHANGES Objec{DS_C _ — 1 or more| —
ENTRY_MOD)

» DS_CHANGES

This attribute identifies the modifications to be made (in the order specified) to
the directory entry of the specified object.

11.23 DS_C_ERROR

The OM clasDS_C_ERRORomprises the parameters common to all errors.

It is an abstract OM class with the OM attributes of its supercl@ds, C OBJECT
in addition to the OM attribute listed in Table 11-16.

OSF® DCE Application Development Guide — Directory Services 11-25

XDS/XOM Supplementary Information

Table 11-16. OM Attribute of DS_C_ERROR

11-26

OM Attribute Value Syntax Value Value Value
Length | Number | Initially
DS_PROBLEM EnumDS_Problem) | — 1 —

Details of errors are returned in an instance of a subclass of this OM class. Each
such subclass represents a particular kind of error, and is one of the following:

« DS_C_ABANDON_FAILED

« DS C_ATTRIBUTE_PROBLEM

« DS _C_COMMUNICATIONS_ERROR

« DS_C_LIBRARY_ERROR

« DS_C_NAME_ERROR

« DS_C_SECURITY_ERROR

« DS_C_SERVICE_ERROR

« DS_C_SYSTEM_ERROR

« DS_C_UPDATE_ERROR
A number of possible values are defined for these subclasses. DCE XDS does not
return other values for error conditions described in this chapter. Information on
system errors can be found in Section 11.44. The following is a list of the error
values. Each error OM class section defines the possible error values associated

with that class. For a description of the errors, refer to @®F DCE Problem
Determination Guide

« DS_E_ADMIN_LIMIT_EXCEEDED

« DS_E_AFFECTS_MULTIPLE_DSAS

« DS_E_ALIAS_DEREFERENCING_PROBLEM
« DS_E_ALIAS_PROBLEM

« DS_E_ATTRIBUTE_OR_VALUE_EXISTS

« DS_E_BAD_ARGUMENT

- DS_E_BAD_CLASS

OSF® DCE Application Development Guide — Directory Services

XDS Class Definitions

 DS_E_BAD_CONTEXT

- DS_E_BAD_NAME

- DS_E_BAD_SESSION

- DS_E_BAD_WORKSPACE

- DS_E_BUSY

« DS_E_CANNOT_ABANDON

« DS_E_CHAINING_REQUIRED

« DS_E_COMMUNICATIONS_PROBLEM
« DS_E_CONSTRAINT_VIOLATION

- DS_E_DIT_ERROR

- DS_E_ENTRY_EXISTS

« DS_E_INAPPROP_AUTHENTICATION
« DS_E_INAPPROP_MATCHING

« DS_E_INSUFFICIENT_ACCESS_RIGHTS
« DS_E_INVALID_ATTRIBUTE_SYNTAX
« DS_E_INVALID_ATTRIBUTE_VALUE

« DS_E_INVALID_CREDENTIALS

« DS_E_INVALID_REF

« DS_E_INVALID_SIGNATURE

- DS_E_LOOP_DETECTED

- DS_E_MISCELLANEOUS

- DS_E_MISSING_TYPE

- DS_E_MIXED_SYNCHRONOUS

« DS_E_NAMING_VIOLATION

« DS_E_NO_INFO

- DS_E_NO_SUCH_ATTRIBUTE_OR_VALUE
« DS_E_NO_SUCH_OBJECT

OSF® DCE Application Development Guide — Directory Services 11-27

XDS/XOM Supplementary Information

« DS_E_NO_SUCH_OPERATION
- DS_E_NOT_ALLOWED_ON_NON_LEAF
- DS_E_NOT_ALLOWED_ON_RDN

« DS_E_NOT_SUPPORTED

« DS_E_OBJECT_CLASS_MOD_PROHIB

« DS_E_OBJECT_CLASS_VIOLATION

- DS_E_OUT_OF_SCOPE

« DS_E_PROTECTION_REQUIRED

« DS_E_TIME_LIMIT_EXCEEDED

- DS_E_TOO_LATE

- DS_E_TOO_MANY_OPERATIONS

- DS_E_TOO_MANY_SESSIONS

« DS_E_UNABLE_TO_PROCEED

« DS_E_UNAVAILABLE

« DS_E_UNAVAILABLE_CRIT_EXT

- DS_E_UNDEFINED_ATTRIBUTE_TYPE

« DS_E_UNWILLING_TO_PERFORM

11.24 DS _C_EXT

11-28

An instance of OM clasDS C_EXT indicates that a standardized extension to
the directory service is outlined in the standards. Such extensions will only be
standardized in post-1988 versions of the standards. Therefore, this OM class is not
used by the XDS API and is only included for X/Open conformance purposes.

An instance of this OM class has the OM attributes of its superd2igs,C_ OBJECT
in addition to the OM attributes listed in Table 11-17.

OSF® DCE Application Development Guide — Directory Services

XDS Class Definitions

Table 11-17. OM Attributes of DS_C_EXT

OM Attribute Value Syntax Value | Value [Value
Length | Number] Initially

DS_CRIT OM_S_BOOLEAN — 1 OM_FALSE

DS_IDENT OM_S_INTEGER — 1 —

DS_ITEM_ Any — 1 —

PARAMETERS

* DS_CRIT

This attribute must have one of the following values:

— OM_FALSE, meaning that the originator permits the operation to be
performed even if the extension is not available.

— OM_TRUE, meaning that the originator mandates that the extended operation
be performed. If the extended operation is not performed, an error is reported.

* DS_IDENT

This attribute identifies the service extension.

* DS_ITEM_PARAMETERS

This OM attribute supplies the parameters of the extension. Its syntax is
determined by the value @S_IDENT.

11.25 DS_C_FILTER

An instance of OM clas®S_C_FILTER is used to select or reject an object on the
basis of information in its directory entry. At any point in time, an attribute filter
has a value relative to every object. The value is FALSE, TRUE, or undefined. The
object is selected if, and only if, the filter's value is TRUE.

An instance of this OM class has the OM attributes of its superd2igs,C_ OBJECT
in addition to the OM attributes listed in Table 11-18.

OSF® DCE Application Development Guide — Directory Services 11-29

XDS/XOM Supplementary Information

Table 11-18. OM Attributes of DS_C_FILTER

11-30

OM Attribute Value Syntax Value Value Value
Length Number | Initially

DS_FILTER_ITEMS | Objec{DS_C_ — 0 or more| —
FILTER_ITEM)

DS _FILTERS Objec{DS_C _ — 0 or more| —
FILTER)

DS _FILTER_TYPE | Enum(DS_Filter_ — 1 DS_AND
Type)

A filter is a collection of less elaborate filters and elemen28y FILTER_ITEMS,
together with a Boolean operation. The filter value is undefined if, and only if, all the
componenDS_FILTERS andDS_FILTER_ITEMS are undefined. Otherwise, the
filter has a Boolean value with respect to any directory entry, which can be determined
by evaluating each of the nested components and combining their values using the
Boolean operation. The components whose values are undefined are ignored.

* DS_FILTER_ITEMS
This attribute is a collection of assertions, each relating to just one attribute of a
directory entry.

* DS_FILTERS

This attribute is a collection of simpler filters.
* DS_FILTER_TYPE

This attribute is the filter's type. It can have any of the following values:

— DS_AND, meaning that the filter is the logical conjunction of its components.
The filter is TRUE unless any of the nested filters or filter items is FALSE.
If there are no nested components, the filter is TRUE.

— DS_OR meaning that the filter is the logical disjunction of its components.
The filter is FALSE unless any of the nested filters or filter items is TRUE.
If there are no nested components, the filter is FALSE.

— DS_NOT, meaning that the result of this filter is reversed. There must be
exactly one nested filter or filter item. The filter is TRUE if the enclosed

OSF® DCE Application Development Guide — Directory Services

XDS Class Definitions

filter or filter item is FALSE, and it is FALSE if the enclosed filter or filter
item is TRUE.

11.26 DS _C_FILTER_ITEM

An instance of OM clasBS_C_FILTER_ITEM is a component obS_C_FILTER.

It is an assertion about the existence or values of a single attribute type in a directory

entry.
An instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECTand DS_C_ATTRIBUTE, in addition to the OM attributes listed
in Table 11-19.

Table 11-19. OM Attributes of DS_C_FILTER_ITEM

OM Attribute Value Syntax Value Value Value
Length Number | Initially

DS_FILTER_ Enum(DS_Filter_ — 1 —
ITEM_TYPE Item_Type)
DS_FINAL_ String) lormore|Oorl —
SUBSTRING
DS_INITIAL _ String(*) lormore|Oorl —
SUBSTRING

Note: OM attributesDS_ATTRIBUTE_TYPE and DS_ATTRIBUTE_VALUES

are inherited from the superclaBS C_ATTRIBUTE.

The value of the filter item is undefined in the following cases:
« The DS_ATTRIBUTE_TYPE is not known.

* None of theDS_ATTRIBUTE_VALUES conform to the attribute syntax defined
for that attribute type.

» The DS_FILTER_ITEM_TYPE uses a matching rule that is not defined for the
attribute syntax.

OSF® DCE Application Development Guide — Directory Services 11-31

XDS/XOM Supplementary Information

11-32

Access control restrictions can also cause the value to be undefined.
* DS_FILTER_ITEM_TYPE
This attribute identifies the type of filter item and, thus, the nature of the filter.
The filter item can adopt any of the following values:
— DS_APPROXIMATE_MATCH , meaning that the filter is TRUE if the

directory entry contains at least one value of the specified type that is
approximately equal to that specified (the meaning of “approximately equal”
is implementation dependent); otherwise, the filter is FALSE.

Rules for approximate matching are defined locally. For example, an
approximate match may take into account spelling variations or employ
phonetic comparison rules. In the absence of any such capabilities, a DSA
needs to treat an approximate match as a test for equality. DCE GDS supports
phonetic comparisons. There must be exactly one value of the OM attribute
DS_ATTRIBUTE_VALUES .

DS_EQUALITY , meaning that the filter is TRUE if the entry contains at least
one value of the specified type that is equal to the value specified, according
to the equality matching rule in force; otherwise, the filter is FALSE. There
must be exactly one value of the OM attribid& ATTRIBUTE_VALUES.

DS_GREATER_OR_EQUAL, meaning that the filter item is TRUE if, and
only if, at least one value of the attribute is greater than or equal to the
supplied value. There must be exactly one value of the OM attribute
DS_ATTRIBUTE_VALUES.

DS_LESS _OR_EQUAL meaning that the filter item is TRUE if, and
only if, at least one value of the attribute is less than or equal to the
supplied value. There must be exactly one value of the OM attribute
DS_ATTRIBUTE_VALUES.

DS_PRESENT, meaning that the filter is TRUE if the entry contains an
attribute of the specified type; otherwise, it is FALSE.
Any values of the OM attribut®S_ATTRIBUTE_VALUES are ignored.

DS_SUBSTRINGS meaning that the filter is TRUE if the entry contains at
least one value of the specified attribute type that contains all of the specified
substrings in the given order; otherwise, the filter is FALSE.

OSF® DCE Application Development Guide — Directory Services

XDS Class Definitions

Any number of substrings can be given as values of the OM attribute
DS_ATTRIBUTE_VALUES. Similarly, no substrings can be specified.
There can also be a substring IDS_INITIAL_SUBSTRING or
DS_FINAL_SUBSTRING, or both. The substrings do not overlap, but
they can be separated from each other or from the ends of the attribute
value by zero or more string elements. However, at least one attribute
of type DS_ATTRIBUTE_VALUES, DS_INITIAL_SUBSTRING, or
DS_FINAL_SUBSTRING must exist.

* DS_FINAL_SUBSTRING

If present, this attribute is the substring that will match the final part
of an attribute value in the entry. This attribute can only exist if the
DS_FILTER_ITEM_TYPE is equal toDS_SUBSTRINGS

* DS_INITIAL_SUBSTRING

If present, this attribute is the substring that will match the initial part of an
attribute value in the entry.

11.27 DS_C_LIBRARY_ERROR

An instance of OM clas®S_C_LIBRARY_ERROR reports an error detected by
the interface function library.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercla€ddsC OBJECT
andDS_C_ERRORand no additional OM attributes.

Each function has several possible errors that can be detected by the library itself and
that are returned directly by the subroutine. These errors occur when the library itself
is incapable of performing an action, submitting a service request, or deciphering a
response from the directory service.

The OM attribute DS_PROBLEM, which is inherited from the superclass
DS_C_ERRORIdentifies the particular library error that occurred. (In reference
pages, the ERRORS section of each function description lists the errors that the
respective function can return.) Its value is one of the following:

OSF® DCE Application Development Guide — Directory Services 11-33

XDS/XOM Supplementary Information

« DS_E_BAD_ARGUMENT

« DS_E_BAD_CLASS

« DS_E_BAD_CONTEXT

« DS_E_BAD_NAME

- DS_E_BAD_SESSION

- DS_E_MISCELLANEOUS

« DS_E_MISSING_TYPE

« DS_E_MIXED_SYNCHRONOUS
« DS_E_NOT_SUPPORTED

« DS_E_TOO_MANY_OPERATIONS
- DS_E_TOO_MANY_SESSIONS

11.28 DS_C_LIST_INFO

An instance of OM clas®S_C_LIST_INFO is part of the results odls_list().

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercla€ddsC OBJECT
andDS_C_COMMON_RESULT#® addition to the OM attributes listed in Table 11-
20.

11-34 OSF® DCE Application Development Guide — Directory Services

XDS Class Definitions

Table 11-20. OM Attributes of DS_C_LIST_INFO

OM Attribute Value Syntax Value Value Value
Length Number | Initially

DS_OBJECT_ Objec{DS_C_NAME) — Oor1l —

NAME

DS_PARTIAL_ Objec{DS_C_ — Oor1l —

OUTCOME_QUAL | PARTIAL
OUTCOME_QUAL)

DS _ Objec{DS_C _ — 0 or more| —
SUBORDINATES LIST_INFO_ITEM)

 DS_OBJECT_NAME

This attribute is the DN of the target object of the operation. It is present if
the OM attributeDS_ALIAS_DEREFERENCED, inherited from the superclass
DS_C_COMMON_RESULT®% OM_TRUE.

* DS_PARTIAL_OUTCOME_QUAL
This OM attribute value is present if the list of subordinates is incomplete. The
DSA or DSAs that provided this list did not complete the search for some reason.

The partial outcome qualifier contains details of why the search is not completed,
and which areas of the directory have not been searched.

 DS_SUBORDINATES

This attribute contains information about zero or more subordinate objects
identified byds_list().

11.29 DS_C_LIST_INFO_ITEM

An instance of OM clas®S_C_LIST_INFO_ITEM comprises details returned by
ds_list() of a single subordinate object.

OSF® DCE Application Development Guide — Directory Services 11-35

XDS/XOM Supplementary Information

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its superctass,C_OBJECT
in addition to the OM attributes listed in Table 11-21.

Table 11-21. OM Attributes of DS_C_LIST_INFO_ITEM

OM Attribute Value Syntax Value Value Value
Length Number | Initially
DS_ALIAS_ENTRY | OM_S_ BOOLEAN | — 1 —
DS_FROM_ENTRY | OM_S_ BOOLEAN | — 1 —
DS_RDN Objec{DS_C_ — 1 —
RELATIVE_ NAME)

« DS_ALIAS_ENTRY

This attribute indicates whether the object is an alias.
* DS_FROM_ENTRY

This attribute indicates whether information about the object was obtained directly
from its directory entry, rather than from a copy of the entry.

 DS_RDN

This attribute contains the RDN of the object. If this is the name of an alias
entry, as indicated bipS_ALIAS_ENTRY, it is not dereferenced.

11.30 DS _C LIST RESULT

An instance of OM clasBS_C_LIST_RESULT comprises the results of a successful
call tods_list().

An application is not permitted to create or modify instances of this OM class. An

instance of this OM class has the OM attributes of its superctass,C_OBJECT
in addition to the OM attributes listed in Table 11-22.

11-36 OSF® DCE Application Development Guide — Directory Services

XDS Class Definitions

Table 11-22. OM Attributes of DS_C_LIST_RESULT

OM Attribute Value Syntax Value Value Value
Length Number | Initially
DS_LIST_INFO Objec(DS_C_ — Oor1l —
LIST_INFO)
DS _ Objec{DS_C _ — 0 or more| —
UNCORRELATED_ | LIST_ RESULT)
LIST_INFO

Note: No instance contains values of both OM attributes.

« DS_LIST_INFO

This attribute contains the full results d§_list(), or just part of them.
* DS_UNCORRELATED_LIST_INFO

When the DUA requests a protection requessighed the information returned

can comprise a number of sets of results originating from, and signed by,
different components of the directory. Implementations can reflect this structure
by nestingDS_LIST_RESULT OM objects as values of this OM attribute.
Alternatively, they can collapse all results into a single value of the OM attribute
DS_LIST_INFO. The DCE directory service does not support the optional feature
of signed results; therefore, this OM attribute is never present.

11.31 DS _C_NAME

The OM clasDS_C_NAMHEepresents a name of an object in the directory, or a part
of such a name.

It is an abstract class that has the attributes of its superclddsC_OBJECT and
no other OM attributes.

A name uniquely distinguishes the object from all other objects whose entries are

displayed in the DIT. However, an object can have more than one name; that is, a
name need not be unique. A DN is unique; there are no other DNs that identify

OSF® DCE Application Development Guide — Directory Services 11-37

XDS/XOM Supplementary Information

11.32

the same object. An RDN is part of a name and only distinguishes the object from
others that are its siblings.

Most of the interface functions takereameparameter, the value of which must be
an instance of one of the subclasses of this OM class. Thus, this OM class is useful
for amalgamating all possible representations of names.

The DCE XDS implementation defines one subclass of this OM class and, thus,
a single representation for names; that BS_C DS DN which provides a
representation for names, including DNs.

DS_C_NAME_ERROR

An instance of OM clas®S_C NAME_ERROR reports a name-related directory
service error.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercla€dsC OBJECT
andDS_C_ERRORIn addition to the OM attribute listed in Table 11-23.

Table 11-23. OM Attribute of DS_C_NAME_ERROR

11-38

OM Attribute Value Syntax Value Value Value
Length Number | Initially
DS_MATCHED Objec{DS_C_NAME) — 1 —

» DS_MATCHED

This attribute identifies the initial part (up to, but excluding, the first RDN that
is unrecognized) of the name that is supplied, or of the name resulting from
dereferencing an alias. It names the lowest entry (object or alias) in the DIT that
is matched.

The OM attribute DS_PROBLEM, which is inherited from the superclass
DS_C_ERRORdentifies the cause of the failure. Its value is one of the following:

 DS_E_ALIAS_DEREFERENCING_PROBLEM

OSF® DCE Application Development Guide — Directory Services

XDS Class Definitions

« DS_E_ALIAS_PROBLEM
« DS_E_INVALID_ATTRIBUTE_VALUE
« DS_E_NO_SUCH_OBJECT

11.33 DS_C_OPERATION_PROGRESS

An instance of OM clas®S_C_OPERATION_PROGRESSspecifies the progress
or processing state of a directory request.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercass,C_OBJECT
in addition to the OM attributes listed in Table 11-24.

Table 11-24. OM Attributes of DS_C_OPERATION_PROGRESS

OM Attribute Value Syntax Value Value Value
Length Number | Initially

DS NAME _ EnumDS_Name_ — 1 —

RESOLUTION _ Resolution_Phase)

PHASE

DS_NEXT_ OM_S_INTEGER — Oorl —

RDN_TO_BE

RESOLVED

The target name mentioned as follows is the name upon which processing of the
directory request is currently focused.

* DS_NAME_RESOLUTION_PHASE
This attribute indicates what phase is reached in handling the target name. It
must have one of the following values:

— DS_COMPLETED, meaning that the DSA holding the target object is
reached.

— DS _NOT_STARTED, meaning that so far a DSA is not reached with a
naming context containing the initial RDNs of the name.

OSF® DCE Application Development Guide — Directory Services 11-39

XDS/XOM Supplementary Information

11.34

— DS_PROCEEDING, meaning that the initial part of the name has been
recognized, although the DSA holding the target object has not yet been
reached.

« DS_NEXT_RDN_TO_BE_RESOLVED

This attribute indicates to the DSA which of the RDNs in the target name is
next to be resolved. It takes the form of an integer in the range from 1 to the
number of RDNs in the name. This OM attribute only has a value if the value
of DS_NAME_RESOLUTION_PHASE is DS_PROCEEDING.

The constant DS_OPERATION_NOT_STARTED can be wused in the
DS_C_CONTEXT of an operation instead of an instance of this OM class.

DS_C_PARTIAL_OUTCOME_QUAL

An instance of OM clas®S_C_PARTIAL_OUTCOME_QUAL explains to what
extent the results of a call ws_list() or ds_search()are incomplete and why.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercass,C_OBJECT
in addition to the OM attributes listed in Table 11-25.

Table 11-25. OM Attributes of a DS_C_PARTIAL_OUTCOME_QUAL

11-40

OM Attribute Value Syntax Value Value Value
Length Number | Initially

DS_LIMIT_ Enum(DS_Limit_ — 1 —
PROBLEM Problem)
DS_ OM_S_ BOOLEAN | — 1 —
UNAVAILABLE_
CRIT_EXT
DS _ Objec{DS_C _ — 0 or more| —
UNEXPLORED CONTINUATION_

REF)

* DS_LIMIT_PROBLEM

OSF® DCE Application Development Guide — Directory Services

XDS Class Definitions

This attribute explains fully or partly why the results are incomplete. It can have
one of the following values:

— DS_ADMIN_LIMIT_EXCEEDED , meaning that an administrative limit is
reached.

— DS_NO_LIMIT_EXCEEDED , meaning that there is no limit problem.

— DS_SIZE_LIMIT_EXCEEDED , meaning that the maximum number of
objects specified as a service control is reached.

— DS_TIME_LIMIT_EXCEEDED , meaning that the maximum number of
seconds specified as a service control is reached.

* DS_UNAVAILABLE_CRIT_EXT

If OM_TRUE, this attribute indicates that some part of the directory service
cannot provide a requested critical service extension. The user requested one
or more standard service extensions by including values of the OM attribute
DS_EXT in the DS_C_CONTEXT supplied for the operation. Furthermore,

the user indicated that some of these extensions are essential by setting the
OM attribute DS_CRIT in the extension ta®OM_TRUE. Some of the critical
extensions cannot be performed by one particular DSA or by a humber of DSAs.
In general, it is not possible to determine which DSA could not perform which
particular extension.

» DS_UNEXPLORED

This attribute identifies any regions of the directory that are left unexplored in such
a way that the directory request can be continued. Only continuation references
within the scope specified by tHeS SCOPE_OF_REFERRALservice control

are included.

11.35 DS_C_PRESENTATION_ADDRESS

An instance of OM clasDS C_PRESENTATION_ADDRESSIis a presentation
address of an OSI application entity, which is used for OSI communications with this
instance.

OSF® DCE Application Development Guide — Directory Services 11-41

XDS/XOM Supplementary Information

An instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECTand DS_C _ADDRESSnN addition to the OM attributes listed in
Table 11-26.

Table 11-26. OM Attributes of DS_C_PRESENTATION_ADDRESS

OM Attribute Value Syntax Value Value Value
Length Number | Initially

DS N_ StringOM_S — 1 or more| —

ADDRESSES OCTET_STRING)

DS P_SELECTOR | StringOM_S_ — Oor1l —
OCTET_STRING)

DS S _SELECTOR | StringOM_S_ — Oor1l —
OCTET_STRING)

DS T SELECTOR | StringOM_S_ — Oor1l —
OCTET_STRING)

- DS_N_ADDRESSES

This attribute is the network addresses of the application entity.
* DS_P_SELECTOR

This attribute is the presentation selector.
* DS_S_SELECTOR

This attribute is the session selector.
« DS T SELECTOR

This attribute is the transport selector.

11.36 DS_C_READ_RESULT

An instance of OM clasBS_C_READ_RESULTcomprises the result of a successful
calltods_read() An application is not permitted to create or modify instances of this

11-42 OSF® DCE Application Development Guide — Directory Services

XDS Class Definitions

OM class. An instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECTand DS _C_COMMON_RESULT$ addition to the OM attribute
listed in Table 11-27.

Table 11-27. OM Attribute of DS_C_READ_RESULT

OM Attribute Value Syntax Value Value Value
Length Number | Initially
DS_ENTRY Objec(DS_C_ — 1 —
ENTRY_INFO)
* DS_ENTRY

This attribute contains the information extracted from the directory entry of the
target object.

11.37 DS_C_REFERRAL

An instance of OM clasBS_C_REFERRAL reports failure to perform an operation

and redirects the requestor to one or more access points better equipped to perform
the operation.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercla€ddsC OBJECT
andDS_C_CONTINUATION_REF, and no additional OM attributes.

The referral is a continuation reference by means of which the operation can progress.

11.38 DS_C_RELATIVE_NAME

The OM classDS_C_RELATIVE_NAMEepresents the RDNs of objects in the
directory. It is an abstract class, which has the attributes of its superclass,
OM_C_OBJECTand no other OM attributes.

OSF® DCE Application Development Guide — Directory Services 11-43

XDS/XOM Supplementary Information

11.39

An RDN is part of a name, and only distinguishes the object from others that are its
siblings. This OM class is used to accumulate all possible representations of RDNs.
An argument of interface functions that is an RDN, or an OM attribute value that is
an RDN is an instance of one of the subclasses of this OM class.

The DCE XDS API defines one subclass of this OM class, and, thus, a single
representation for RDNs; that i S_C_DS_RDN which provides a representation
for RDNs.

DS_C_SEARCH_INFO

An instance of OM clasBS_C_SEARCH_INFOis part of the result ofls_search()

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercla€ddsC OBJECT
andDS_C_COMMON_RESULT#® addition to the OM attributes listed in Table 11-
28.

Table 11-28. OM Attributes of DS_C_SEARCH_INFO

11-44

OM Attribute Value Syntax Value Value Value
Length Number | Initially
DS _ENTRIES Objec{DS_C _ — 0 or more| —
ETNRY_INFO)
DS_OBJECT_ Objec{DS_C_NAME) — Oor1l —
NAME
DS_PARTIAL_ Objec(DS_C_ — Oor1l —
OUTCOME_QUAL | PARTIAL_
OUTCOME_QUAL)

* DS_ENTRIES

This attribute contains information about zero or more objects found by
ds_search()that matched the given selection criteria.

« DS_OBJECT_NAME

OSF® DCE Application Development Guide — Directory Services

XDS Class Definitions

This attribute contains the DN of the target object of the operation. It is present if
the OM attributeDS_ALIAS_DEREFERENCED, inherited from the superclass
DS_C_COMMON_RESULT®% OM_TRUE.

* DS_PARTIAL_OUTCOME_QUAL
This OM attribute value is only present if the list of entries is incomplete. The
DSA or DSAs that provided this list did not complete the search for some reason.

The partial outcome qualifier contains details of why the search was not completed
and which areas of the directory were not searched.

11.40 DS_C_SEARCH_RESULT

An instance of OM clas®DS_C SEARCH_RESULT comprises the result of a
successful call tals_search()

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercass,C_OBJECT
in addition to the OM attributes listed in Table 11-29.

Table 11-29. OM Attributes of DS_C_SEARCH_RESULT

OM Attribute Value Syntax Value Value Value
Length Number | Initially
DS_SEARCH_INFO | Objec{DS_C_ — Oor1l —
SEARCH_INFO)
DS _ Objec{DS_C _ — 0 or more| —
UNCORRELATED_ | SEARCH_RESULT)
SEARCH_INFO

Note: No instance contains values of both OM attributes.
« DS_SEARCH_INFO

This attribute contains the full result df_search() or part of the result.

* DS_UNCORRELATED_SEARCH_INFO

OSF® DCE Application Development Guide — Directory Services 11-45

XDS/XOM Supplementary Information

When the DUA requests a protection requessighed the information returned

can comprise a number of sets of results originating from and signed by different
components of the directory service. Implementations can reflect this structure by
nestingDS_C_SEARCH_RESULT OM objects as values of this OM attribute.
Alternatively, they can collapse all results into a single value of the OM attribute
DS_SEARCH_INFO. The DCE directory service does not support the optional
feature of signed results; therefore, this OM attribute is never present.

11.41 DS_C_SECURITY_ERROR

An instance of OM clasDS C_SECURITY_ERROR reports a security-related
directory service error.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercla€dsC OBJECT
andDS_C_ERRORand no additional OM attributes.

The OM attribute DS_PROBLEM, which is inherited from the superclass
DS_C_ERRORdentifies the cause of this failure. Its value is one of the following:

« DS_E_INAPPROP_AUTHENTICATION

» DS_E_INSUFFICIENT_ACCESS_RIGHTS

* DS_E_INVALID_CREDENTIALS

« DS_E_INVALID_SIGNATURE

* DS_E_NO_INFO

* DS_E_PROTECTION_REQUIRED

11.42 DS_C_SERVICE_ERROR

An instance of OM clasBS_C_SERVICE_ERRORreports a directory service error
related to the provision of the service.

11-46 OSF® DCE Application Development Guide — Directory Services

XDS Class Definitions

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercla€ddsC OBJECT
andDS_C_ERRORand no additional OM attributes.

The OM attribute DS_PROBLEM, which is inherited from the superclass
DS_C_ERRORdentifies the cause of the failure. Its value is one of the following:

* DS_E_ADMIN_LIMIT_EXCEEDED

« DS_E_BUSY

« DS_E_CHAINING_REQUIRED

« DS_E_DIT_ERROR

 DS_E_INVALID_REF

« DS_E_LOOP_DETECTED

« DS_E_OUT_OF_SCOPE

 DS_E_TIME_LIMIT_EXCEEDED

* DS_E_UNABLE_TO_PROCEED

» DS_E_UNAVAILABLE

* DS_E_UNAVAILABLE_CRIT_EXT

» DS_E_UNWILLING_TO_PERFORM

11.43 DS_C_SESSION

An instance of OM clas®DS_C_SESSIONidentifies a particular link from the
application program to a DUA.

An instance of this OM class has the OM attributes of its superd2igs,C_ OBJECT
in addition to the OM attributes listed in Table 11-30.

OSF® DCE Application Development Guide — Directory Services 11-47

XDS/XOM Supplementary Information

Table 11-30. OM Attributes of DS_C_SESSION

OM Attribute Value Syntax Value Value Value
Length Number | Initially

DS_DSA_ADDRESS| Objec{DS_C_ — Oorl local
ADDRESS)

DS_DSA _NAME Objec{DS_C _ — Oor1l localt
NAME)

DS_FILE_ OM_S_INTEGER — 1 See text

DESCRIPTOR

DS _REQUESTOR | Objec(DS_C_ — Oorl —
NAME)

1 The default values of these OM attributes are set to the address and

name of the default DSA entry in the local cache. If this cache entry
is not present, then these OM attributes are absent.

The DS_C_SESSIONgathers all the information that describes a particular directory
interaction. The parameters that will control such a session are set up in an instance
of this OM class, which is then passed as an argumerdstdind(). This sets

the OM attributes that describe the actual characteristics of this session, and then
starts the session. A session started in this way must pass as the first argument to
each interface function. The result of modifying an initiated session is unspecified.
Finally, ds_unbind() is used to terminate the session, after which the parameters can
be modified and a new session started using the same instance, if required. Multiple
concurrent sessions can run using multiple instances of this OM class.

The OM attributes of a session are as follows:
« DS _DSA ADDRESS

This attribute indicates the address of the default DSA named by
DS_DSA_NAME

« DS_DSA_NAME

This attribute indicates the DN of the DSA that is used by default to service
directory requests.

11-48 OSF® DCE Application Development Guide — Directory Services

XDS Class Definitions

» DS_FILE_DESCRIPTOR (Optional Functionality)

This OM attribute is not used by DCE XDS and is always set to
DS_NO_VALID_FILE_DESCRIPTOR.

* DS_REQUESTOR
This attribute is the DN of the user of this directory service session.

Applications can assume that an object of OM clB& C_SESSION created with

default values of all its OM attributes, works with all the interface functions. Local
administrators need to ensure that this is the case. Such a session can be created by
passing the constamlS_DEFAULT_SESSIONas an argument tds_bind().

11.44 DS_C_SYSTEM_ERROR

An instance of OM clasBS_C_SYSTEM_ERRORreports an error that occurred in
the underlying operating system.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercla€ddsC OBJECT
andDS_C_ERROFRand no additional OM attributes, although there can be additional
implementation-defined OM attributes.

The OM attribute DS_PROBLEM, which is inherited from the superclass
DS_C_ERRORIdentifies the cause of the failure. Its value is the same as that of
errno defined in the C language.

The standard names of system errors are defined in Volume 2 ¥i@@en Portability
Guide

If such an error persists, @S _C_LIBRARY_ERROR (DS_E_MISCELLANEOUS)
is reported.

OSF® DCE Application Development Guide — Directory Services 11-49

XDS/XOM Supplementary Information

11.45 DS _C_UPDATE_ERROR

An instance of OM clas®S_C_UPDATE_ERRORreports a directory service error
peculiar to a modification operation.

An application is not permitted to create or modify instances of this OM class. An
instance of this OM class has the OM attributes of its supercla€ddsC OBJECT
andDS_C_ERRORand no additional OM attributes.

The OM attribute DS_PROBLEM, which is inherited from the superclass
DS_C_ERRORdentifies the cause of the failure. Its value is one of the following:

 DS_E_AFFECTS_MULTIPLE_DSAS

* DS_E_ENTRY_EXISTS

* DS_E_NAMING_VIOLATION

» DS_E_NOT_ALLOWED_ON_NON_LEAF

« DS_E_NOT_ALLOWED_ON_RDN

« DS_E_OBJECT_CLASS_MOD_PROHIB

« DS_E_OBJECT_CLASS_VIOLATION

11-50 OSF® DCE Application Development Guide — Directory Services

Chapter 12
Basic Directory Contents Package

The standards define a number of attribute types (known asdtezted attribute
typeg, attribute syntaxes, attribute sets, and object classes (known aselgwted
object class€. These definitions allow the creation and maintenance of directory
entries for a number of common objects so that the representation of all such objects
is the same throughout the directory. They include such objec@®astry, Person

and Organization.

This chapter outlines names for each of these items, and defines OM classes to
represent those that are not represented directly by OM syntaxes. The attribute
values in the directory are not restricted to those discussed in this chapter, and new
attribute types and syntaxes can be created at any time. (For further information on
how the values of other syntaxes are represented in the interface, see Chapter 10.)

1. These definitions are chiefly ifhe Directory: Selected Attribute Typg€ksSO 9594-6,
CCITT X.520) andThe Directory: Selected Object Class@SO 9594-7, CCITT X.521)
with additional material inThe Directory: Overview of Concepts, Models, and Services
(ISO 9594-1, CCITT X.500) andhe Directory: Authentication FramewoikSO 9594-8,
CCITT X.509).

OSF® DCE Application Development Guide — Directory Services 12-1

XDS/XOM Supplementary Information

12.1

12-2

The constants and OM classes in this chapter are defined in addition to those in Chapter
11, since they are not essential to the working of the interface, but instead allow
directory entries to be utilized. The definitions belong to the basic directory contents
package (BDCP), which is supported by the DCE XDS API following negotiation of

its use withds_version()

Note: The definitions for the GDS package are provided in Chapter 15. The
definitions for the strong authentication package are provided in Chapter 13.
The definitions for the MHS directory user package are provided in Chapter
14.

The object identifier associated with the BDCP is

{iso(1) identified-organization(3) icd-ecma(0012) member-company(2)
dec(1011) xopen(28) bdcp(1)}

It takes the following encoding:
\X2B\XC\x2\x87\x73\x1C\x1

This identifier is represented by the const&x8_BASIC_DIR_CONTENTS_PKG.
The C constants associated with this package are ixdsbdcp.hheader file. (See
the xdsbdcp.h(4xds)reference page.)

The concepts and notation used are introduced in Chapter 11. They are also fully
explained in Chapters 17 through 19.

The selected attribute types are presented first, followed by the selected object classes.
Next, the OM class hierarchy and OM class definitions required to support the selected
attribute types are presented.

Selected Attribute Types

This section presents the attribute types, defined in the standards, which are to be used
in directory entries. Each directory entry is composed of a number of attributes, each
of which comprises an attribute type together with one or more attribute values. The
form of each value of an attribute is determined by the attribute syntax associated
with the attribute’s type.

OSF® DCE Application Development Guide — Directory Services

Basic Directory Contents Package

In the interface, attributes are displayed as instances of OMDIBs€ ATTRIBUTE

with the attribute type represented as the value of the OM attribute
DS_ATTRIBUTE_TYPE, and the attribute value (or values) represented as
the value (or values) of the OM attributBS_ATTRIBUTE_VALUES. Each
attribute type has an object identifier, assigned in the standards, which is the value of
the OM attributeDS_ATTRIBUTE_TYPE. These object identifiers are represented

in the interface by constants with the same name as the directory attribute, and they
are prefixed withDS_A_so that they can be easily identified.

Table 12-1 shows the names of the attribute types defined in the standards, together
with the BER encoding of the object identifiers associated with each of them. Table
12-2 shows the names of the attribute types, together with the OM value syntax that
is used in the interface to represent values of that attribute type. Table 12-2 also
includes the range of lengths permitted for the string types. This indicates whether
the attribute can be multivalued and which matching rules are provided for the syntax.
Following the table is a brief description of each attribute.

The standards define matching rules that are used for deciding whether two values are
equal (E), for ordering (O) two values, and for identifying one value as a substring
(S) of another in directory service operations. Specific matching rules are given in
this chapter for certain attributes. In addition, the following general rules apply as
indicated:

o All attribute values whose syntax is Strif@M_S NUMERIC_STRING),
StringOM_S_PRINTABLE_STRING), or
StringOM_S_TELETEX_STRING) are considered
insignificant for the following reasons:

— Differences caused by the presence of spaces preceding the first printing
character

— Spaces following the last printing character
— More than one consecutive space anywhere within the value
» For all attribute values whose syntax is St(@i!_S TELETEX_STRING),

differences in the case of alphabetical characters are considered insignificant.

Note: The third and fourth columns of Table 12-1 contain the contents octets of the
BER encoding of the object identifier. All these object identifiers stem from
the root{joint-iso-ccitt(2) ds(5) attributeType(4)}.

OSF® DCE Application Development Guide — Directory Services 12-3

XDS/XOM Supplementary Information

Table 12-1. Object Identifiers for Selected Attribute Types

Object Identifier BER
Package Attribute Type Decimal Hexadecimal
BDCP DS_A_ALIASED_OBJECT_NAME 85,4,1 \x55\x04\x01
BDCP DS_A_BUSINESS_CATEGORY 85, 4, 15 \x55\x04\x0F
BDCP DS_A_COMMON_NAME 85, 4,3 \x55\x04\x03
BDCP DS_A_COUNTRY_NAME 85,4, 6 \x55\x04\x06
BDCP DS_A_DESCRIPTION 85, 4, 13 \x55\x04\x0D
BDCP DS_A_DEST_INDICATOR 85, 4, 27 \x55\x04\x1B
BDCP DS_A_FACSIMILE_PHONE_NBR 85, 4, 23 \x55\x04\x17
BDCP DS_A_INTERNAT_ISDN_NBR 85, 4, 25 \x55\x04\x19
BDCP DS_A_KNOWLEDGE_INFO 85, 4,2 \x55\x04\x02
BDCP DS_A_LOCALITY_NAME 85,4,7 \x55\x04\x07
BDCP DS_A_MEMBER 85, 4, 31 \X55\x04\x1F
BDCP DS_A_OBJECT_CLASS 85,4,0 \x55\x04\x00
BDCP DS_A_ORG_NAME 85, 4, 10 \x55\x04\x0A
BDCP DS_A_ORG_UNIT_NAME 85, 4, 11 \x55\x04\x0B
BDCP DS_A_OWNER 85, 4, 32 \x55\x04\x20
BDCP DS_A_PHYS_DELIV_OFF_NAME 85, 4, 19 \x55\x04\x13
BDCP DS_A_POST_OFFICE_BOX 85, 4, 18 \x55\x04\x12
BDCP DS_A_POSTAL_ADDRESS 85, 4, 16 \x55\x04\x10
BDCP DS_A_POSTAL_CODE 85, 4, 17 \x55\x04\x11
BDCP DS_A_PREF_DELIV_METHOD 85, 4, 28 \x55\x04\x1C
BDCP DS_A_PRESENTATION_ADDRESS 85, 4, 29 \x55\x04\x1D
BDCP DS_A_REGISTERED_ADDRESS 85, 4, 26 \x55\x04\x1A
BDCP DS_A_ROLE_OCCUPANT 85, 4, 33 \x55\x04\x21

12-4 OSF® DCE Application Development Guide — Directory Services

Basic Directory Contents Package

Object Identifier BER
Package Attribute Type Decimal Hexadecimal
BDCP DS_A_SEARCH_GUIDE 85, 4, 14 \x55\x04\x0E
BDCP DS_A_SEE_ALSO 85, 4, 34 \x55\x04\x22
BDCP DS_A_SERIAL_NBR 85,4,5 \x55\x04\x05
BDCP DS_A_STATE_OR_PROV_NAME 85,4, 8 \x55\x04\x08
BDCP DS_A_STREET_ADDRESS 85,4, 9 \x55\x04\x09
BDCP DS_A_SUPPORT_APPLIC_CONTEXT 85,4, 3 \x55\x04\x1E
BDCP DS_A_SURNAME 85,4, 4 \x55\x04\x04
BDCP DS_A_PHONE_NBR 85, 4, 20 \x55\x04\x14
BDCP DS_A_TELETEX_TERM_IDENT 85, 4, 22 \x55\x04\x16
BDCP DS_A_TELEX_NBR 85, 4,21 \x55\x04\x15
BDCP DS_A_TITLE 85, 4, 12 \x55\x04\x0C
BDCP DS_A_USER_PASSWORD 85, 4, 35 \x55\x04\x23
BDCP DS_A_X121_ADDRESS 85, 4, 24 \x55\x04\x18

Table 12-2. Representation of Values for Selected Attribute Types
Attribute Type OM Value Syntax Value Multi- Matching
Length valued Rules
DS_A_ALIASED_ Objec{DS_C_ NAME) — no E
OBJECT_NAME
DS_A_BUSINESS_ StringOM_S_TELETEX_ | 1-128 yes E, S
CATEGORY STRING)
DS_A_COMMON_NAME StringOM_S_TELETEX_ | 1-64 yes E, S
STRING)
DS_A_COUNTRY_NAME StringlOM_S_ 2 no E
PRINTABLE_STRING) !
OSF® DCE Application Development Guide — Directory Services 12-5

XDS/XOM Supplementary Information

Attribute Type OM Value Syntax Value Multi- Matching
Length valued Rules

DS_A_ DESCRIPTION StringOM_S_ 1-1024 | yes E, S
TELETEX_STRING)

DS_A DEST_ INDICATOR | StringOM_S_ 1-128 yes E, S
PRINTABLE_STRING) 2

DS_A_FACSIMILE_ Objec(DS_C_ — yes —

PHONE_NBR FACSIMILE_
PHONE_NBR)

DS_A_INTERNAT_ StringOM_S_ 1-16 yes —

ISDN_NBR NUMERIC_STRING) 3

DS A_ StringOM_S_ — yes E, S

KNOWLEDGE_INFO TELETEX_STRING)

DS_A LOCALITY_ NAME | StringOM_S_ 1-128 yes E, S
TELETEX_STRING)

DS_A MEMBER Objec{DS_C_ NAME) — yes

DS_A OBJECT_CLASS StringOM_S_OBJECT_ | — yes
IDENTIFIER_STRING)

DS_A ORG_NAME StringOM_S_ 1-64 yes E, S
TELETEX_STRING)

DS_A ORG_UNIT_NAME | StringOM_S_ 1-64 yes E, S
TELETEX_STRING)

DS_A OWNER Objec{DS_C_NAME) — yes

DS_A PHYS_ StringOM_S_ 1-128 yes E, S

DELIV_OFF_NAME TELETEX_STRING)

DS_A POST_ StringOM_S_ 1-40 yes E, S

OFFICE_BOX TELETEX_STRING)

DS_A POSTAL_ADDRESS | Objec{DS_C_ POSTAL_ | — yes E
ADDRESS)

DS_A POSTAL_CODE StringOM_S_ 1-40 yes E, S

TELETEX_STRING)

12-6

OSF® DCE Application Development Guide — Directory Services

Basic Directory Contents Package

Attribute Type OM Value Syntax Value Multi- Matching
Length valued Rules
DS A PREF_ EnumDS_Preferred_ — yes —
DELIV_METHOD Delivery_Method)
DS_A PRESENTATION_ Objec{DS_C_ — no E
ADDRESS PRESENTATION_
ADDRESS)
DS_A REGISTERED_ Objec{DS_C_ — yes —
ADDRESS POSTAL_ADDRESS)
DS_A ROLE_OCCUPANT | Objec{DS_C_ NAME) — yes E
DS_A_SEARCH_GUIDE Objec{DS_C_ — yes —
SEARCH_GUIDE)
DS_A SEE_ALSO Objec{DS_C_NAME) — yes
DS_A SERIAL_NBR StringOM_S_ 1-64 yes E, S
PRINTABLE_STRING)
DS_A STATE_ StringOM_S_ 1-128 yes E, S
OR_PROV_NAME TELETEX_STRING)
DS_A STREET_ ADDRESS| StringOM_S_OBJECT_ | 1-128 yes E, S
IDENTIFIER_STRING)
DS_A _SUPPORT_ StringOM_S_OBJECT_ | — yes E
APPLIC_CONTEXT IDENTIFIER_STRING)
DS_A_SURNAME StringOM_S_ 1-64 yes E, S
TELETEX_STRING)
DS_A PHONE_NBR StringOM_S_ 1-32 yes E, S
PRINTABLE_STRING) 4
DS_A TELETEX_ Objec{DS_C_TELETEX_ | — yes —
TERM_IDENT TERM_IDENT)
DS_A TELEX_NBR Objec{DS_C_TELEX_ — yes —
NBR)
DS_A TITLE StringOM_S_TELETEX_ | 1-64 yes E, S
STRING)
OSF® DCE Application Development Guide — Directory Services 12-7

XDS/XOM Supplementary Information

Attribute Type

OM Value Syntax Value Multi- Matching
Length valued Rules

DS_A USER_PASSWORD | StringOM_S_OCTET_ | 0-128 |ves —

STRING)

DS_A X121 _ADDRESS StringOM_S_NUMERIC_ | 1-15 yes E, S

STRING)®

a A W N P

As permitted by ISO 3166.

As permitted by Recommendations F.1 and F.31.

As permitted by E.164.

As permitted by E.123 (for example, +44 582 10101).
As permitted by X.121.

Throughout the descriptions that follow, the teojectindicates the directory object
whose directory entry contains the corresponding directory attributes.

« DS_A_ALIASED_OBJECT_NAME

This attribute occurs only in alias entries. It assigns the distinguished name
(DN) of the object, provided with an alias, using the entry in which this attribute
occurs. An alias is an alternative to an object’'s DN. Any object can (but need
not) have one or more aliases. The directory service is said to dereference an
alias whenever it replaces the alias during name processing with the DN associated
with it by means of this attribute.

DS_A_BUSINESS_CATEGORY

This attribute provides descriptions of the businesses in which the object is
engaged.

DS_A_COMMON_NAME

This attribute provides the names by which the object is commonly known in the
context defined by its position in the DIT. The names can conform to the naming
convention of the country or culture with which the object is associated. They
can be ambiguous.

« DS_A_COUNTRY_NAME

12-8

OSF® DCE Application Development Guide — Directory Services

Basic Directory Contents Package

This attribute identifies the country in which the object is located or with which

it is associated in some other important way. The matching rules require that
differences in the case of alphabetical characters be considered insignificant. It
has a length of two characters and its values are those listed in 1ISO 3166.

» DS_A_DESCRIPTION

This attribute gives informative descriptions of the object.

- DS_A_DEST_INDICATOR

This attribute provides the country-city pairs by means of which the object can
be reached via the public telegram service. The matching rules require that
differences in the case of alphabetical characters be considered insignificant.

« DS_A_FACSIMILE_PHONE_NBR

This attribute provides the telephone numbers for facsimile terminals (and their
parameters, if required) by means of which the object can be reached or with
which it is associated in some other important way.

« DS_A_INTERNAT_ISDN_NBR

This attribute provides the international ISDN numbers by means of which the
object can be reached or with which it is associated in some other important way.
The matching rules require that differences caused by the presence of spaces be
considered insignificant.

* DS_A_KNOWLEDGE_INFO
This attribute occurs only in entries that describe a DSA. It provides a human-

intelligible accumulated description of the directory knowledge possessed by the
DSA.

* DS_A_LOCALITY_NAME
This attribute identifies geographical areas or localities. When used as part of a

directory name, it specifies the localities in which the object is located or with
which it is associated in some other important way.

- DS_A_MEMBER

OSF® DCE Application Development Guide — Directory Services 12-9

XDS/XOM Supplementary Information

12-10

This attribute gives the names of objects that are considered members of the
present object; for example, a distribution list for electronic mail.

DS_A_OBJECT_CLASS

This attribute identifies the object classes to which the object belongs, and it also
identifies their superclasses. All such object classes that have object identifiers
assigned to them are present, except that object €8s TOP need not (but

can) be present provided that some other value is present. This attribute must
be present in every entry and cannot be modified. For a further discussion, see
Section 12.2.

DS_A ORG_NAME
This attribute identifies organizations. When used as part of a directory name, it

specifies an organization with which the object is affiliated. Several values can
identify the same organization in different ways.

DS_A_ORG_UNIT_NAME
This attribute identifies organizational units. When used as part of a directory
name, it specifies an organizational unit with which the object is affiliated. The

units are understood to be parts of the organization thaDbhieA ORG_NAME
attribute indicates. Several values can identify the same unit in different ways.

DS_A_OWNER

This attribute gives the names of objects that have responsibility for the object.
DS_A PHYS_DELIV_OFF_NAME
This attribute gives the names of cities, towns, villages, and so on, that contain

physical delivery offices through which the object can take delivery of physical
mail.

DS_A POST_OFFICE_BOX
This attribute identifies post office boxes at which the object can take

delivery of physical mail. This information is also displayed as part of the
DS_A_POSTAL_ADDRESSattribute, if it is present.

DS_A_POSTAL_ADDRESS

OSF® DCE Application Development Guide — Directory Services

Basic Directory Contents Package

This attribute gives the postal addresses at which the object can take delivery
of physical mail. The matching rules require that differences in the case of
alphabetical characters be considered insignificant.

 DS_A_POSTAL_CODE
This attribute gives the postal codes that are assigned to areas or buildings through

which the object can take delivery of physical mail. This information is also
displayed as part of thBS_A POSTAL_ADDRESSattribute, if it is present.

« DS_A_PREF_DELIV_METHOD
This attribute gives the object’s preferred methods of communication, in the order
of preference. The values are as follows:
— DS_ANY_DELIV_METHOD , meaning that the object has no preference.
— DS_G3_FACSIMILE_DELIV , meaning via the Group 3 facsimile.
— DS_G4_FACSIMILE_DELIV , meaning via the Group 4 facsimile.
— DS _IA5_TERMINAL_DELIV , meaning via the IA5 text.
— DS_MHS_DELIV, meaning via X.400.
— DS_PHYS_DELIV, meaning via the postal or other physical delivery system.
— DS_PHONE_DELIV, meaning via telephone.
— DS_TELETEX_DELIV , meaning via teletex.
— DS_TELEX_DELIV , meaning via telex.
— DS_VIDEOTEX_DELIV , meaning via videotex.
« DS_A PRESENTATION_ADDRESS
This attribute contains the OSI presentation address of the object, which is an
OSI application entity. The matching rule for a presented value to match a value
stored in the directory is that the P-Selector, S-Selector, and T-Selector of the two

presentation addresses must be equal, and the N-Addresses of the presented value
must be a subset of those of the stored value.

- DS_A_REGISTERED ADDRESS

This attribute contains mnemonics by means of which the object can be reached
via the public telegram service, according to Recommendation F.1. A mnemonic

OSF® DCE Application Development Guide — Directory Services 12-11

XDS/XOM Supplementary Information

identifies an object in the context of a particular city, and it is registered in the
country containing the city. The matching rules require that differences in the
case of alphabetical characters be considered insignificant.

« DS _A ROLE_OCCUPANT
This attribute occurs only in entries that describe an organizational role. It gives
the names of objects that fulfill the organizational role.

« DS _A SEARCH_GUIDE
This attribute contains the criteria that can be used to build filters for conducting
searches in which the object is the base object.

« DS A SEE_ALSO
This attribute contains the names of objects that represent other aspects of the
real-world object that the present object represents.

« DS _A SERIAL NBR

This attribute contains the serial numbers of a device.

« DS_A_STATE_OR_PROV_NAME

This attribute specifies a state or province. When used as part of a directory
name, it identifies states, provinces, or other geographical regions in which the
object is located or with which it is associated in some other important way.

 DS_A_STREET_ADDRESS
This attribute identifies a site for the local distribution and physical delivery of
mail. When used as part of a directory name, it identifies the street address (for

example, street name and house number) at which the object is located or with
which it is associated in some other important way.

« DS_A_SUPPORT_APPLIC_CONTEXT

This attribute occurs only in entries that describe an OSI application entity. It
identifies OSI application contexts supported by the object.

.« DS_A_SURNAME

12-12 OSF® DCE Application Development Guide — Directory Services

Basic Directory Contents Package

This attribute occurs only in entries that describe individuals. The surname by
which the individual is commonly known, normally inherited from the individual’s
parent (or parents) or taken at marriage, as determined by the custom of the country
or culture with which the individual is associated.

 DS_A PHONE_NBR
This attribute identifies telephones by means of which the object can be reached
or with which it is associated in some other important way. The matching rules

require that differences caused by the presence of spaces and dashes be considered
insignificant.

* DS_A_TELETEX_TERM_IDENT
This attribute contains descriptions of teletex terminals by means of which the
object can be reached or with which it is associated in some other important way.
* DS_A TELEX_NBR
This attribute contains descriptions of telex terminals by means of which the
object can be reached or with which it is associated in some other important way.
« DS_A TITLE

This attribute identifies positions or functions of the object within its organization.

« DS_A_USER_PASSWORD

This attribute contains the passwords assigned to the object.

* DS_A X121_ADDRESS
This attribute identifies points on the public data network at which the object
can be reached or with which it is associated in some other important way.

The matching rules require that differences caused by the presence of spaces
be considered insignificant.

12.2 Selected Object Classes

This section presents the object classes that are defined in the standards. Object
classes are groups of directory entries that share certain characteristics. The object

OSF® DCE Application Development Guide — Directory Services 12-13

XDS/XOM Supplementary Information

classes are arranged into a lattice, based on the objectiz®ag® TOP. In a lattice,

each element, except a leaf, has one or more immediate subordinates but also has
one or more immediate superiors. This contrasts with a tree, where each element
has exactly one immediate superior. Object classes clodeBt@® TOPare called
superclassesand those further away are callsdbclasses This relationship is not
connected to any other such relationship in this guide.

Each directory entry belongs to an object class, and to all the superclasses of that
object class. Each entry has an attribute nadd&l A_OBJECT_CLASS which

was discussed in the previous section, and which identifies the object classes to
which the entry belongs. The values of this attribute are object identifiers, which
are represented in the interface by constants with the same name as the object class,
prefixed byDS O .

Associated with each object class are zero or more mandatory and zero or more
optional attributes. Each directory entry must contain all the mandatory attributes
and can (but need not) contain the optional attributes associated with the object class
and its superclasses.

The object classes defined in the standards are shown in Table 12-3, together with
their object identifiers.

Note: The third and fourth columns of Table 12-3 contain the contents octets of the
BER encoding of the object identifier. All these object identifiers stem from
the root{joint-iso-ccitt(2) ds(5) objectClass(6)}

Table 12-3. Object Identifiers for Selected Object Classes
Object Identifier BER

Package Attribute Type Decimal Hexadecimal
BDCP DS_O_ALIAS 85, 6,1 \x55\x06\x01
BDCP DS_O_APPLIC_ENTITY 85, 6, 12 \x55\x06\x0C
BDCP DS_O_APPLIC_PROCESS 85, 6, 11 \x55\x06\x0B
BDCP DS_O_COUNTRY 85, 6, 2 \x55\x06\x02
BDCP DS_O_DEVICE 85, 6, 14 \x55\x06\x0E
BDCP DS_O_DSA 85, 6, 13 \x55\x06\x0D

12-14 OSF® DCE Application Development Guide — Directory Services

Basic Directory Contents Package

BDCP DS_O_GROUP_OF_NAMES 85, 6, 9 \X55\x06\x09
BDCP DS O LOCALITY 85, 6, 3 \x55\x06\x03
BDCP DS O ORG 85, 6, 4 \x55\x06\x04
BDCP DS O ORG_PERSON 85, 6,7 \x55\x06\x07
BDCP DS_O_ORG_ROLE 85, 6, 8 \X55\x06\x08
BDCP DS_O_ORG_UNIT 85, 6, 5 \X55\x06\x05
BDCP DS O PERSON 85, 6, 6 \x55\x06\x06
BDCP DS O _RESIDENTIAL_PERSON 85, 6, 10 \x55\x06\x0A
BDCP DS_O_TOP 85,6, 0 \X55\x06\x00
12.3 OM Class Hierarchy

The remainder of this chapter defines the additional OM classes used to represent
values of the selected attributes described in Section 12.1. Some of the selected
attributes are represented by OM classes that are used in the interface itself, and
hence are defined in Chapter 11; for exampl&_C_NAME

This section shows the hierarchical organization of the OM classes that are defined
in the following sections, and it shows which OM classes inherit additional OM
attributes from their OM superclasses. In the following list, subclassification is
indicated by indentation, and the names of abstract OM classes are in italics. For
example,DS_C_POSTAL_ADDRESSis an immediate subclass of the abstract OM
classOM_C_OBJECT
OM_C_OBJECT

DS _C_FACSIMILE_PHONE_NBR
DS _C_POSTAL_ADDRESS
DS_C_SEARCH_CRITERION
DS_C_SEARCH_GUIDE

« DS_C_TELETEX_TERM_IDENT

OSF® DCE Application Development Guide — Directory Services 12-15

XDS/XOM Supplementary Information

« DS_C_TELEX_NBR

None of the OM classes in the preceding list are encodable by wsimgncode()
andom_decode()

12.4 DS_C_FACSIMILE_PHONE_NBR

An instance of OM classDS C FACSIMILE_PHONE_NBR identifies and
describes a facsimile terminal, if required.

An instance of this OM class has the OM attributes of its superd2igs,C_ OBJECT
in addition to the OM attributes listed in Table 12-4.

Table 12-4. OM Attributes of DS_C_FACSIMILE_PHONE_NBR

OM Attribute Value Syntax Value Value Value
Length Number | Initially
DS_PARAMETERS Object(MH_C_G3_FAX_ | — Oor1l —
NBPS)
DS_PHONE_NBR StringOM_S_ 1-32 1 —
PRINTABLE_STRING) 2

=

As defined in the X.400 API specifications.
As permitted by E.123 (for example, +44 582 10101).
* DS_PARAMETERS

N

If present, this attribute identifies the facsimile terminal’s nonbasic capabilities.

- DS_PHONE_NBR

This attribute contains a telephone number by means of which the facsimile
terminal is accessed.

12-16 OSF® DCE Application Development Guide — Directory Services

Basic Directory Contents Package

125 DS_C_POSTAL_ADDRESS

An instance of OM clas®S_C_POSTAL_ADDRESS:is a postal address.

An instance of this OM class has the OM attributes of its superd2igs,C_OBJECT
in addition to the OM attribute listed in Table 12-5.

Table 12-5. OM Attribute of DS_C_POSTAL_ADDRESS

OM Attribute Value Syntax Value | Value | Value

Length | Number| Initially
DS_POSTAL_ StringOM_S_ 1-30 1-6 —
ADDRESS TELETEX_STRING)

» DS_POSTAL_ADDRESS

Each value of this OM attribute is one line of the postal address. It typically
includes a name, street address, city name, state or province name, postal code,

and possibly a country name.

126 DS_C_SEARCH_CRITERION

An instance of OM clasdDS C_SEARCH_CRITERION is a component of a
DS_C_SEARCH_GUIDE OM object.

An instance of this OM class has the OM attributes of its superd2igs,C_ OBJECT
in addition to the OM attributes listed in Table 12-6.

OSF® DCE Application Development Guide — Directory Services

12-17

XDS/XOM Supplementary Information

Table 12-6.

OM Attributes of DS_C_SEARCH_CRITERION

OM Attribute Value Syntax Value Value Value
Length Number | Initially

DS_ATTRIBUTE_TYPE StringOM_S_OBJECT _ — Oor1l —
IDENTIFIER_STRING)

DS_CRITERIA Objec{DS_C_SEARCH_ | — 0 or more| —
CRITERION)

DS _FILTER_ITEM_TYPE | Enum(DS_Filter_ltem_ — Oorl —
Type)

DS _FILTER_TYPE EnumDS_Filter_Type) — 1 DS _ITEM

A DS_C_SEARCH_CRITERION suggests how to build part of a filter to be used
when searching the directory. Its meaning depends on the value of its OM attribute
DS_FILTER_TYPE. If the value isDS_ITEM, then the criteria suggests building an
instance of OM clas®S_C_FILTER_ITEM . If DS_FILTER_TYPE has any other
value, it suggests building an instance of OM cl&3 C_FILTER.

12-18

» DS_ATTRIBUTE_TYPE

This attribute indicates the attribute type to be used in the suggested
DS_C _FILTER_ITEM . This OM attribute is only present when the value of
DS FILTER_TYPE is DS_ITEM.

* DS_CRITERIA

This attribute contains nested search criteria. This OM attribute is not present
when the value 0DS _FILTER_TYPE is DS_ITEM.

« DS_FILTER_ITEM_TYPE

This attribute indicates the type of suggested filter item. Its value can be one of
the following:

— DS_APPROXIMATE_MATCH
— DS_EQUALITY

— DS_GREATER_OR_EQUAL
— DS_LESS_OR_EQUAL

OSF® DCE Application Development Guide — Directory Services

Basic Directory Contents Package

— DS_SUBSTRINGS

However, the filter item cannot have the valD§ PRESENT This OM attribute
is only present when the value BfS_FILTER_TYPE is DS_ITEM.

DS FILTER_TYPE

This attribute indicates the type of suggested filter. The vBIS8eITEM means

that the suggested component is a filter item, not a filter. The other values suggest
the corresponding type of filter. Its value is one of the following:

— DS_AND
— DS_ITEM
— DS_NOT
— DS_OR

12.7 DS_C_SEARCH_GUIDE

An instance of OM clas®S_C_SEARCH_GUIDE suggests a criteria for searching
the directory for particular entries. It can be used to build& C_FILTER

parameter fords_search()operations that are based on the object in whose entry
the search guide occurs.

An instance of this OM class has the OM attributes of its superd2igs,C OBJECT
in addition to the OM attributes listed in Table 12-7.

Table 12-7. OM Attributes of DS_C_SEARCH_GUIDE

OM Attribute

DS_CRITERIA

Value Syntax Value Value Value
Length Number | Initially
DS_OBJECT_CLASS StringOM_S_OBJECT _ — Oor1l —
IDENTIFIER_STRING)
Objec{DS_C_SEARCH_ | — 1 —
CRITERION)

» DS_OBJECT_CLASS

OSF® DCE Application Development Guide — Directory Services 12-19

XDS/XOM Supplementary Information

This attribute identifies the object class of the entries to which the search guide
applies. If this OM attribute is absent, the search guide applies to objects of any
class.

* DS_CRITERIA

This attribute contains the suggested search criteria.

12.8 DS_C_TELETEX_TERM_IDENT
An instance of OM clasBS_C_TELETEX_TERM_IDENT identifies and describes
a teletex terminal.
An instance of this OM class has the OM attributes of its superd2igs,C_ OBJECT
in addition to the OM attributes listed in Table 12-8.
Table 12-8. OM Attributes of DS_C_TELETEX_TERM_IDENT
OM Attribute Value Syntax Value Value Value
Length Number | Initially
DS _PARAMETERS Objec{MH_C_ — Oorl —
TELETEX_NBPS)?!
DS TELETEX _TERM StringgOM_S _ 1-1024 |1 —
PRINTABLE_STRING) 2

12-20

As defined in the X.400 API specifications.
As permitted by F.200.
* DS_PARAMETERS

N

This attribute identifies the teletex terminal’'s nonbasic capabilities.

* DS_TELETEX_TERM

This attribute identifies the teletex terminal.

OSF® DCE Application Development Guide — Directory Services

Basic Directory Contents Package

12.9 DS_C_TELEX_NBR

An instance of OM clasDS C _TELEX NBR identifies and describes a telex

terminal.

An instance of this OM class has the OM attributes of its superd2igs,C_ OBJECT
in addition to the OM attributes listed in Table 12-9.

Table 12-9. OM Attributes of DS_C_TELEX_NBR

PRINTABLE_STRING)

OM Attribute Value Syntax Value Value Value
Length Number | Initially
DS_ANSWERBACK StringOM_S_ 1-8 1 —
PRINTABLE_STRING)
DS_COUNTRY_CODE String OM_S 1-4 1 —
PRINTABLE_STRING)
DS_TELEX_NBR StringOM_S_ 1-14 1 —

» DS_ANSWERBACK

This attribute contains the code with which the telex terminal acknowledges calls

placed to it.

» DS_COUNTRY_CODE

This attribute contains the identifier of the country through which the telex

terminal is accessed.
« DS _TELEX NBR

This attribute contains the number by means of which the telex terminal is

addressed.

OSF® DCE Application Development Guide — Directory Services

12-21

Chapter 13
Strong Authentication Package

2This chapter describes the strong authentication package (SAP). In addition to the
attribute types, attribute syntaxes, and object classes defined in the basic directory
contents package, the standards also contain definitions to support authentication
mechanisms.

They include such objects &trong-Authentication-User.

This chapter outlines names for each of these items, and it defines OM classes to
represent those that are not represented directly by OM syntaxes. The values of
attributes in the directory are not restricted to those discussed in this chapter, and new
attribute types and syntaxes can be created at any time. (For further information on
how the values of other syntaxes are represented in the interface, see Chapter 10.)

The constants and OM classes in this chapter are defined in addition to those in
Chapter 11, since they are not essential to the working of the interface, but instead

2. These definitions are chiefly iMhe Directory: Selected Attribute Typ€SO 9594-6,
CCITT X.520) andThe Directory: Selected Object Class@SO 9594-7, CCITT X.521)
with additional material inThe Directory: Overview of Concepts, Models, and Services
(ISO 9594-1, CCITT X.500) andhe Directory: Authentication FramewoikSO 9594-8,
CCITT X.509).

OSF® DCE Application Development Guide — Directory Services 13-1

XDS/XOM Supplementary Information

13.1

13-2

allow directory entries to be utilized. The definitions belong to the SAP, which is
supported by the DCE XDS API following negotiation of its use wdth version()

The object identifier associated with the SAP is

{iso(1) identified-organization(3) icd-ecma(0012) member-company(2)
dec(1011) xopen(28) sap(2)}

It takes the following encoding:
\X2B\XC\x2\x87\x73\x1C\x2

This identifier is represented by the const@@ STRONG_AUTHENT_PKG. The
C constants associated with this package are inxtlssap.hheader file.

The concepts and notation used are introduced in Chapter 11. They are also fully
explained in Chapters 17 through 19.

The selected attribute types are presented first, followed by the selected object classes.
Next, the OM class hierarchy and OM class definitions required to support the selected
attribute types are presented.

SAP Attribute Types

This section presents the additional attribute types defined in the standards that are to
be used with the SAP. Each attribute type has an object identifier, which is the value of

the OM attributeDS_ATTRIBUTE_TYPE. These object identifiers are represented

in the interface by constants with the same name as the directory attribute, and they
are prefixed withDS_A_so that they can be easily identified.

This section contains two tables that are used to indicate the object identifiers for SAP
attribute types (see Table 13-1), and the values for SAP attribute types (see Table 13-
2), respectively. Following these two tables is a brief description of each attribute.
(See Chapter 12 for information on general matching rules).

Note: The third and fourth columns of Table 13-1 contain the contents octets of the

BER encoding of the object identifier. All these object identifiers stem from
the root{joint-iso-ccitt(2) ds(5) attributeType(4)}.

OSF® DCE Application Development Guide — Directory Services

Strong Authentication Package

Table 13-1. Object Identifiers for SAP Attribute Types

Object Identifier BER
Packagq Attribute Type Decimal Hexadecimal
SAP DS_A_AUTHORITY_REVOC_LIST | 85, 4, 38 | \x55\x04\x26
SAP DS_A_CA _CERT 85, 4, 37 | \x55\x04\x25
SAP DS_A_CERT_REVOC_LIST 85, 4, 39 | \x55\x04\x27
SAP DS_A_CROSS_CERT_PAIR 85, 4, 40 | \x55\x04\x28
SAP DS_A_USER_CERT 85, 4, 36 | \x55\x04\x24

Table 13-2. Representation of Values for SAP Attribute Types

Attribute Type OM Value Syntax Value | Multi- | Matching
Length | valued | Rules

DS _A AUTHORITY_ | Objec(DS_C_ — yes

REVOC_LIST CERT_LIST)

DS_A CA_CERT Objec{DS_C_CERT) | — yes

DS A CERT_ Objec{DS_C _ — yes

REVOC_LIST CERT_LIST)

DS A CROSS Objec{DS_C _ — yes

CERT_PAIR CERT_PAIR)

DS_A USER_CERT | Objec{DS_C_CERT) | — yes

Throughout the descriptions that follow, the teamjectindicates the directory object
whose directory entry contains the corresponding directory attributes.

* DS_A_AUTHORITY_REVOC_LIST
This attribute occurs only in entries that describe a certification authority (CA).

It lists all the certificates issued to any of the CAs known to this CA, and later
revoked. Each value of this OM attribute is signed by the CA.

« DS_A _CA_CERT

OSF® DCE Application Development Guide — Directory Services 13-3

XDS/XOM Supplementary Information

13.2

Table 13-3.

13-4

This attribute specifies the certificates assigned to the object, which is a CA.
DS_A CERT_REVOC_LIST

This attribute occurs only in entries that describe a CA. It lists the certificates
issued by this CA and later revoked. Each value of this OM attribute is signed
by the CA.

DS_A CROSS_CERT_PAIR
This attribute specifies one or two certificates held in the entry of a CA. The first

certificate is that of one CA, guaranteed by a second CA; whereas, the second
certificate is that of the second CA, guaranteed by the first CA.

DS_A_USER_CERT

This attribute specifies the user certificates assigned to the object, which may be
any user certificate, including a CA certificate.

SAP Object Classes

This section presents the SAP object classes that are defined in the standards. (See
Table 13-3).

Note: The third and fourth columns of Table 13-3 contain the contents octets of the

BER encoding of the object identifier. All these object identifiers stem from
the root{joint-iso-ccitt(2) ds(5) objectClass(6)}

Object Identifiers for SAP Object Classes

Object Identifier BER

Package Attribute Type Decimal Hexadecimal

SAP DS_O_CERT_ AUTHORITY | 85, 6,16 | \x55\x06\x10

SAP DS_O_STRONG_ 85, 6, 15 | \x55\x06\x0F
AUTHENT_USER

OSF® DCE Application Development Guide — Directory Services

Strong Authentication Package

13.3

13.4

OM Class Hierarchy

The remainder of this chapter defines the additional OM classes used by SAP. This
section shows the hierarchical organization of the OM classes that are defined in the
following sections, and it shows which OM classes inherit additional OM attributes
from their OM superclasses. In the following list, subclassification is indicated by
indentation, and the names of abstract OM classes are in italics.
OM_C_OBJECT
« DS C ALGORITHM_IDENT
e DS C CERT_PAIR
« DS C SIGNATURE
— DS _C_CERT
— DS _C_CERT_LIST
— DS _C_CERT _SUBLIST

None of the OM classes in the preceding list are encodable by wsmgncode()
andom_decode()

DS_C_ALGORITHM_IDENT

An instance of OM clasDS_C_ALGORITHM_IDENT records the encryption
algorithm that an object uses to digitally sign messages, together with the parameters
of the algorithm.

An instance of this OM class has the OM attributes of its superd2igs,C_ OBJECT
in addition to the OM attributes listed in Table 13-4.

OSF® DCE Application Development Guide — Directory Services 13-5

XDS/XOM Supplementary Information

Table 13-4.

13.5

13-6

OM Attributes of DS_C_ALGORITHM_IDENT
OM Attribute Value Syntax Value | Value | Value
Length | Number| Initially
DS_ALGORITHM StringOM_S_ — 1 —
OBJECT_
IDENTIFIER_
STRING)
DS_ALGORITHM_ any — Qorl |—
PARAMETERS

* DS_ALGORITHM

This attribute specifies an object identifier that uniquely identifies the algorithm
used by some object.

* DS_ALGORITHM_PARAMETERS

This attribute specifies the values of the algorithm’s parameters that are used
by the object. The syntax of the parameters is determined by each individual
algorithm.

DS _C _CERT

An instance of OM clas®S_C_CERT comprises a user's DN, public key, and
additional information, all of which is digitally signed by the issuing CA in
order to make the certificate unforgeable. ~The OM attributes associated with
DS_C_SIGNATUREa superclass dbS_C_CERT) are present.

An instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECTandDS_C_SIGNATUREN addition to the OM attributes listed in
Table 13-5.

OSF® DCE Application Development Guide — Directory Services

Strong Authentication Package

Table 13-5.

OM Attributes of DS _C_CERT

OM Attribute

Value Syntax Value Value Value
Length Number | Initially

DS_SERIAL_NUMBER OM_S_INTEGER — 1 —
DS_SUBJECT Objec{DS_C_NAME) — 1 —
DS_SUBJECT_ Objec{DS_C _ — 1 —
ALGORITHM ALGORITHM_IDENT)

DS_SUBJECT_ StringOM_S_ — 1 —
PUBLIC_KEY BIT_STRING)

DS_VALIDITY_ StringOM_S_UTC_ 0-17 1 —
NOT_AFTER TIME_STRING)

DS_VALIDITY_ StringOM_S_UTC_ 0-17 1 —
NOT_BEFORE TIME_STRING)

DS_VERSION Enum(DS_Version) — 1 DS V1984

DS_SERIAL_NUMBER
This attribute distinguishes the certificate from all other certificates that were ever
or will be issued by the CA that issued this certificate.

DS_SUBJECT

This attribute specifies the subject’s name.

DS_SUBJECT_ALGORITHM

This attribute specifies the algorithm that is used by the subject for encryption.
and which is associated with the public key.

DS_SUBJECT_PUBLIC_KEY

This attribute specifies the subject’s public key associated with the algorithm.
DS_VALIDITY_NOT_AFTER

This attribute specifies the last day on which the certificate is valid.

DS_VALIDITY_NOT_BEFORE

OSF® DCE Application Development Guide — Directory Services 13-7

XDS/XOM Supplementary Information

This attribute specifies the first day on which the certificate is valid.

* DS_VERSION

This attribute identifies the certificate’s design. Its valuB®% V1988 meaning
the design that was specified in the 1988 version of the standards.

13.6 DS _C_CERT LIST

An instance of OM clas®S_ C_CERT_LIST documents the revocation of zero or
more certificates. The documentation is provided by the object, which is a CA whose
signature is affixed to the instance.

An instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECTandDS_C_SIGNATUREN addition to the OM attributes listed in
Table 13-6.

Table 13-6. OM Attributes of DS_C_CERT_LIST

OM Attribute Value Syntax Value | Value | Value
Length | Number| Initially

DS _LAST UPDATE | StringoM_S_uTC_ |0-17 |1 —

TIME_STRING)
DS_REVOKED_ Objec(DS_C_CERT_ | — 0 or —
CERTS SUBLIST) more

« DS_LAST_UPDATE

This attribute indicates the time at which the revocation list was updated to its
current state.

» DS_REVOKED_CERTS

This attribute identifies the revoked certificates.

13-8 OSF® DCE Application Development Guide — Directory Services

Strong Authentication Package

13.7 DS_C_CERT_PAIR

An instance of OM clas®S_C_CERT_PAIR contains one or both of a forward and
reverse certificate that assists users in building a certification path.

An instance of this OM class has the OM attributes of its superd2igs,C_ OBJECT
in addition to the OM attributes listed in Table 13-7.

Table 13-7. OM Attributes of DS_C_CERT_PAIR

OM Attribute Value Syntax Value | Value | Value
Length | Number| Initially
DS_FORWARD Objec(DS_C_CERT) |— Oort |—
DS_REVERSE Objec(DS_C_ CERT) | — Oor1t |—
1 At least one of these OM attributes must be present.

» DS_FORWARD

This attribute specifies the certificate of a first CA issued by a second CA.

» DS_REVERSE

This attribute specifies the certificate of the second CA issued by the first CA.

13.8 DS_C_CERT_SUBLIST

An instance of OM clasBS_C_CERT_SUBLIST documents the revocation of zero
or more certificates issued by the CA whose signature is affixed to the instance.

An instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECTandDS_C_SIGNATUREN addition to the OM attributes listed in
Table 13-8.

OSF® DCE Application Development Guide — Directory Services 13-9

XDS/XOM Supplementary Information

Table 13-8. OM Attributes of DS_C_CERT_SUBLIST

OM Attribute Value Syntax Value | Value | Value
Length | Number| Initially
DS_REVOCATION_ | StringOM_S_UTC_ 0-17 0 or —
DATE TIME_STRING) more*
DS_SERIAL_ OM_S_ INTEGER — 0 or —
NUMBERS moré
1 The values of these two OM attributes parallel one another and are equal

in number.

« DS_REVOCATION_DATE

This attribute specifies the epoch at which each of the certificates was revoked.
The serial numbers of the certificates are the corresponding values of the OM

attributeDS_SUBJECT.
* DS_SERIAL_NUMBERS

This attribute specifies the serial numbers assigned to the revoked certificates.

13.9 DS_C_SIGNATURE

An instance of the abstract OM clag&sS_C_SIGNATUREontains the algorithm
identifier used to produce a digital signature and the name of the object that produced
it. The scope of the signature is any instance of any subclass of this OM class.

An instance of this OM class has the OM attributes of its superd2igs,C_ OBJECT
in addition to the OM attributes listed in Table 13-9.

13-10 OSF® DCE Application Development Guide — Directory Services

Strong Authentication Package

Table 13-9. OM Attributes of DS_C_SIGNATURE

OM Attribute Value Syntax Value | Value | Value
Length | Number| Initially
DS_ISSUER Objec(DS_C_NAME) | — 1 —
DS_SIGNATURE Objec{DS_C_ — 1 —
ALGORITHM_
IDENT)
DS_SIGNATURE_ StringOM_S_ — 1 —
VALUE OCTET_STRING)
» DS_ISSUER

This attribute indicates the name of the object that produced the digital signature.
» DS_SIGNATURE
This attribute identifies the algorithm that was used to produce the digital
signature, and it identifies any parameters of the algorithm.
» DS_SIGNATURE_VALUE
This attribute provides an enciphered summary of the information to which the

signature is appended. The summary is produced by means of a one-way hash
function, while the enciphering is carried out by using the secret key of the signer.

OSF® DCE Application Development Guide — Directory Services 13-11

Chapter 14
MHS Directory User Package

The message handling system (MHS) directory user package (MDUP) contains
definitions to support the use of the directory in accordance with the standard 1988
X.400 User Agents and MTAs for name resolution, distribution list (DL) expansion,
and capability assessment. The definitions are based on the attribute types and
syntaxes specified iX.402, Annex A

The MDUP is an optional package that can be used by the XDS interface.
Applications must negotiate use of this package wdth version() before using

any of the MDUP features. If an application attempts to use features specific
to the package without first negotiating its use, an appropriate error (for example,
OM_NO_SUCH_CLASS is returned by the object management (OM) function.

The object identifier associated with the MDUP is

{iso(1) identified-organization(3) icd-ecma(0012) member-company(2)
dec(1011) xopen(28) mdup(3)}

It takes the following encoding:

OSF® DCE Application Development Guide — Directory Services 14-1

XDS/XOM Supplementary Information

14.1

Table 14-1.

14-2

\X2B\XC\x2\x87\x73\x1C\x3

This identifier is represented by the const&f® MHS_ DIR_USER_PKG The C
constants associated with this package are defined ixdemdup.h, xmhp.h, and
xmsga.hheader files.

The concepts and notation used are first mentioned in Chapter 11. They are also
fully explained in Chapters 17 through 19. The attribute types are introduced first,
followed by the object classes. Next, the OM class hierarchy and OM class definitions
required to support the new attribute types are described.

MDUP Attribute Types

This section presents additional directory attribute types that are used with the MDUP.
Each attribute type has an object identifier, which is the value of the OM attribute

DS_ATTRIBUTE_TYPE. These object identifiers are represented in the interface by

constants with the same name as the directory attribute and are prefiXe8_ly_

so that they can be easily identified.

This section contains two tables that are used to indicate the object identifiers for
MDUP attribute types (see Table 14-1), and the values for MDUP attribute types (see
Table 14-2), respectively. Following these two tables is a brief description of each
attribute. (See Chapter 12 for information on general matching rules).

Note: The third and fourth columns of Table 14-1 contain the contents octets of the
BER encoding of the object identifiers. All these object identifiers stem from
the root{joint-iso-ccitt(2) mhs-motis(6) arch(5) at(2)}

Object Identifiers for MDUP Attribute Types

Object Identifier BER

Package | Attribute Type Decimal Hexadecimal

MDUP | DS_A DELIV_ 86, 5,2,0 \x56\x05\x02\x00
CONTENT_LENGTH

MDUP | DS_A DELIV_ 86,5,2,1 \x56\x05\x02\x01
CONTENT_TYPES

OSF® DCE Application Development Guide — Directory Services

MHS Directory User Package

Object Identifier BER

Package | Attribute Type Decimal Hexadecimal

MDUP | DS_A DELIV_EITS 86,5, 2,2 \x56\x05\x02\x02

MDUP | DS_A DL_MEMBERS | 86, 5, 2, 3 \x56\x05\x02\x03

MDUP | DS_A DL_SUBMIT_ 86,5,2,4 \x56\x05\x02\x04
PERMS

MDUP | DS_A_MESSAGE_ 86,5,2,5 \x56\x05\x02\x05
STORE

MDUP | DS_A_OR_ 86,5, 2,6 \x56\x05\x02\x06
ADDRESSES

MDUP | DS_A PREF_DELIV_ | 86,5, 2,7 \x56\x05\x02\x07
METHODS

MDUP | DS_A_SUPP_AUTO_ |86,5,2,8 \x56\x05\x02\x08
ACTIONS

MDUP | DS_A_SUPP_ 86,5,2,9 \x56\x05\x02\x09
CONTENT_TYPES

MDUP | DS_A_SUPP_OPT_ 86, 5, 2, 10 \x56\x05\x02\x0A
ATTRIBUTES

Table 14-2. Representation of Values for MDUP Attribute Types
Attribute Type OM Value Syntax | Value Multi- Matching
Length valued Rules

DS_A_DELIV_ OM_S_ — no —

CONTENT_LENGTH | INTEGER

DS _A DELIV_ StringOM_S — yes —

CONTENT_TYPES OBJECT_

IDENTIFIER_
STRING)
OSF® DCE Application Development Guide — Directory Services 14-3

XDS/XOM Supplementary Information

Attribute Type OM Value Syntax | Value Multi- Matching
Length valued Rules
DS_A DELIV_EITS StringOM_S_ — yes —
OBJECT_
IDENTIFIER_
STRING)
DS_A DL_MEMBERS| Objec(DS_C_ — yes —
OR_NAME)
DS _A DL_SUBMIT_ | Objec(DS_C_ — yes —
PERMS DL_SUBMIT_
PERMS)
DS_A MESSAGE_ StringDS_C_ — no —
STORE DS_DN)
DS A OR_ Objec(MH_C _ — yes —
ADDRESSES OR_ADDRESS)
DS_A PREF_ Enum(MH_ — no E
DELIV_METHODS Delivery_Mode)
DS_A SUPP_AUTO_ | StringlOM_S_ — yes —
ACTIONS OBJECT_
IDENTIFIER_
STRING)
DS A SUPP_ StringOM_S — yes —
CONTENT_TYPES OBJECT_
IDENTIFIER_
STRING)
DS _A SUPP_OPT_ | StringlOM_S_ — yes —
ATTRIBUTES OBJECT_
IDENTIFIER_
STRING)

Throughout the descriptions that follow, the teaijectindicates the directory object
whose directory entry contains the corresponding directory attributes.

« DS_A_DELIV_CONTENT_LENGTH

14-4 OSF® DCE Application Development Guide — Directory Services

MHS Directory User Package

This attribute identifies the maximum content length of the messages whose
delivery a user will accept.

« DS_A DELIV_CONTENT_TYPES
This attribute identifies the content types of the messages whose delivery a user
will accept.

« DS_A DELIV_EITS
This attribute identifies the encoded information types (EITs) of the messages
whose delivery a user will accept.

« DS _A DL _MEMBERS

This attribute identifies the members of a DL.
« DS A DL SUBMIT_PERMS

This attribute identifies the users and DLs that may submit messages to a DL.
* DS_A _MESSAGE_STORE

This attribute identifies a user’'s message store (MS) by name.
* DS_A_OR_ADDRESSES

This attribute specifies a user’s or DL’s originator/recipient (O/R) addresses.

« DS_A PREF_DELIV_METHODS
This attribute identifies, in the order of decreasing preference, the methods of
delivery a user prefers.

* DS_A_SUPP_AUTO_ACTIONS

This attribute identifies the automatic actions that an MS fully supports.
* DS_A_SUPP_CONTENT_TYPES

This attribute identifies the content types of the messages whose syntax and
semantics an MS fully supports.

- DS_A_SUPP_OPT_ATTRIBUTES

OSF® DCE Application Development Guide — Directory Services 14-5

XDS/XOM Supplementary Information

14.2

Table 14-3.

14.3

14-6

This attribute identifies the optional attributes that an MS fully supports.

MDUP Object Classes

There are five MDUP object classes and their associated object identifiers (see Table
14-3).

Note: The third and fourth columns of Table 14-3 contain the contents octets of the
BER encoding of the object identifier. MDUP object identifiers stem from
the root{joint-iso-ccitt(2) mhs-motis(6) arch(5) oc(1)}

Object Identifiers for MDUP Object Classes

Object Identifier BER

Package| Object Class Decimal Hexadecimal

MDUP | DS_O_MHS_ 86,5,1,0 \x56\x05\x01\x00
DISTRIBUTION_LIST

MDUP | DS_O_MHS_MESSAGE_ 86,5,1,1 \x56\x05\x01\x01
STORE

MDUP | DS_O_MHS_MESSAGE_ 86,5,1,2 \x56\x05\x01\x02
TRANS_AG

MDUP | DS_O_MHS_USER 86,5,1,3 \x56\x05\x01\x03

MDUP | DS_O_MHS_USER_AG 86,5 1,4 \x56\x05\x01\x04

MDUP OM Class Hierarchy

The remainder of this chapter defines the additional OM classes used by MDUP.
This section shows the hierarchical organization of the OM classes that are defined
in the following sections, and shows which classes inherit additional OM attributes
from their OM superclasses. In the following list, subclassification is indicated by
indentation and the names of abstract OM classes are represented in italic font.

OSF® DCE Application Development Guide — Directory Services

MHS Directory User Package

14.4

Table 14—4.

OM_C_OBJECT
« MH_C_OR_ADDRESS
— MH_C_OR_NAME
« DS_C_DL_SUBMIT_PERMS

None of the OM classes in the preceding list are encodable by wsimgncode()
andom_decode()

MH_C_OR_ADDRESS

An instance of classMH_C_OR_ADDRESS distinguishes one user or DL from
another, and identifies its point of access to the message transfer system (MTS).
Every user or DL is assigned one or more MTS access points and thus one or more
originator/recipient (O/R) addresses.

The attributes specific to this class are listed in Table 14-4. The 1988 column
indicates that the attribute applies only to the 1988 standard.

Attributes Specific to MH_C_OR_ADDRESS

Attribute Value Syntax Value | Value 19887
Length | Number

MH_T_ADMD_ StringOM_S_ 0-16 Qorl |—
NAME ! PRINTABLE_

STRING)
MH_T_COMMON_ StringOM_S_ 1-64 0-2 1988
NAME PRINTABLE_

STRING) or

StringOM_S

TELETEX_

STRING)?
MH_T_COUNTRY_ StringOM_S_ 2-3 Qorl |—
NAME ! PRINTABLE_

STRING)

OSF® DCE Application Development Guide — Directory Services 14-7

XDS/XOM Supplementary Information

14-8

Attribute

Value Syntax

Value
Length

Value
Number

19887

MH_T_DOMAIN_
TYPE 2

StringOM_S
PRINTABLE_
STRING) or
StringOM_S
TELETEX_
STRING)?3

1-8

-2

MH_T_DOMAIN_
TYPE_3

StringOM_S
PRINTABLE_
STRING) or
StringOM_S
TELETEX_
STRING)?3

1-8

-2

MH_T_DOMAIN_
TYPE 4

StringOM_S
PRINTABLE_
STRING) or
StringOM_S
TELETEX_
STRING)?3

MH_T_DOMAIN_
VALUE_1

StringOM_S
PRINTABLE_
STRING) or
StringOM_S
TELETEX
STRING)?3

1-128

-2

MH_T_DOMAIN_
VALUE_2

StringOM_S
PRINTABLE_
STRING) or
StringOM_S
TELETEX_
STRING)?3

1-128

-2

OSF® DCE Application Development Guide — Directory Services

MHS Directory User Package

Attribute

Value Syntax

Value
Length

Value
Number

19887

MH_T_DOMAIN_
VALUE_3

StringOM_S
PRINTABLE_
STRING) or
StringOM_S
TELETEX_
STRING)?3

1-128

-2

MH_T_DOMAIN_
VALUE_4

StringOM_S
PRINTABLE_
STRING) or
StringOM_S_
TELETEX_
STRING)?3

1-128

-2

MH_T_
GENERATION

StringOM_S
PRINTABLE_
STRING) or
StringOM_S
TELETEX_
STRING)?3

MH_T_GIVEN_
NAME

StringOM_S
PRINTABLE_
STRING) or
StringOM_S
TELETEX
STRING)?3

1-16

-2

MH_T_INITIALS

StringOM_S
PRINTABLE_
STRING) or
StringOM_S
TELETEX_
STRING)?3

1-5

-2

MH_T_ISDN_
NUMBER

StringOM_S
NUMERIC_STRING)

1-15

Oor1l

1988

MH_T_ISDN_
SUBADDRESS

StringOM_S
NUMERIC_STRING)

1-40

Oor P°

1988

OSF® DCE Application Development Guide — Directory Services

14-9

XDS/XOM Supplementary Information

14-10

Attribute Value Syntax Value | Value 19887
Length | Number

MH_T_NUMERIC_ StringOM_S_ 1-32 |Oor1 |—
USER_IDENTIFIER | NUMERIC_STRING)
MH_T_ StringOM_S_ 1-64 |o0-26 |—
ORGANIZATION_ PRINTABLE_
NAME STRING) or

StringOM_S

PRINTABLE_

STRING)
MH T StringOM_S_ 1-32 |02 —
ORGANIZATIONAL_ | PRINTABLE_
UNIT_NAME_1 STRING) or

StringOM_S

TELETEX_

STRING)?3
MH T StringOM_S_ 1-32 |02 —
ORGANIZATIONAL_ | PRINTABLE_
UNIT_NAME_2 STRING) or

StringOM_S

TELETEX_

STRING)?3
MH_T_ StringOM_S_ 1-32 |02 —
ORGANIZATIONAL_ | PRINTABLE_
UNIT_NAME_3 STRING) or

StringOM_S

TELETEX_

STRING)?3
MH_T_ StringOM_S_ 1-32 |02 —
ORGANIZATIONAL__ | PRINTABLE_
UNIT_NAME_4 STRING) or

StringOM_S

TELETEX_

STRING)?3

OSF® DCE Application Development Guide — Directory Services

MHS Directory User Package

Attribute Value Syntax Value | Value 19887
Length | Number

MH_T_POSTAL_ StringOM_S_ 1-30 0-2 1988
ADDRESS_DETAILS | PRINTABLE_

STRING) or

StringOM_S

TELETEX_

STRING)?
MH_T_POSTAL_ StringOM_S_ 1-185 |Oor1 |1988
ADDRESS_IN_FULL | PRINTABLE_

STRING)
MH_T_POSTAL_ StringOM_S_ 1-30 0-6 1988
ADDRESS _ PRINTABLE_
IN_LINES STRING)
MH_T_POSTAL_ StringOM_S_ 1-16 Oorl |1988
CODE PRINTABLE_

STRING)
MH_T_POSTAL_ StringOM_S_ 2-3 Oorl |1988
COUNTRY_NAME PRINTABLE_

STRING)
MH_T_POSTAL_ StringOM_S_ 1-30 0-2 1988
DELIVERY_ PRINTABLE_
POINT_NAME STRING) or

StringOM_S

TELETEX_

STRING)?3
MH_T_POSTAL_ StringOM_S_ 1-16 Oor1 |1988
DELIV_ PRINTABLE_
SYSTEM_NAME STRING)
MH_T_POSTAL StringOM_S_ 1-30 0-2 1988
GENERAL_ PRINTABLE_
DELIV_ADDR_ STRING) or

StringOM_S

TELETEX_

STRING)?

OSF® DCE Application Development Guide — Directory Services 14-11

XDS/XOM Supplementary Information

14-12

Attribute

Value Syntax

Value
Length

Value
Number

19887

MH_T_POSTAL_
LOCALE

StringOM_S
PRINTABLE_
STRING) or
StringOM_S
TELETEX
STRING)?

1-30

0-2

1988

MH_T_POSTAL_
OFFICE_
BOX_NUMBER

StringOM_S
PRINTABLE_
STRING) or
StringOM_S
TELETEX_
STRING)?

1-30

0-2

1988

MH_T_POSTAL_
OFFICE_NAME

StringOM_S
PRINTABLE_
STRING) or
StringOM_S
TELETEX
STRING)?

1-30

1988

MH_T_POSTAL_
OFFICE_NUMBER

StringOM_S
PRINTABLE_
STRING) or
StringOM_S
TELETEX
STRING)?

1-30

0-2

1988

MH_T_POSTAL_
ORGANIZATION_
NAME

StringOM_S
PRINTABLE_
STRING) or
StringOM_S
TELETEX_
STRING)?

1-30

0-2

1988

OSF® DCE Application Development Guide — Directory Services

MHS Directory User Package

Attribute Value Syntax Value | Value 19887
Length | Number

MH_T_POSTAL_ StringOM_S_ 1-30 0-2 1988
PATRON_DETAILS PRINTABLE_

STRING) or

StringOM_S

TELETEX_

STRING)?
MH_T_POSTAL_ StringOM_S_ 1-30 0-2 1988
PATRON_NAME PRINTABLE_

STRING) or

StringOM_S_

TELETEX_

STRING)?
MH_T_POSTAL_ StringOM_S_ 1-30 0-2 1988
STREET_ADDRESS | PRINTABLE_

STRING) or

StringOM_S

TELETEX_

STRING)?
MH_T_ Objec(DS_C_ — Oorl |1988
PRESENTATION_ PRESENTATION_
ADDRESS ADDRESS)
MH_T_PRMD_ StringOM_S_ 1-16 Qorl |—
NAME PRINTABLE_

STRING)
MH_T_SURNAME StringOM_S_ 1-40 -2 —

PRINTABLE_

STRING) or

StringOM_S

TELETEX_

STRING)? 3
MH_T_TERMINAL_ StringOM_S_ 1-24 Qorl |—
IDENTIFIER PRINTABLE_

STRING)

OSF® DCE Application Development Guide — Directory Services 14-13

XDS/XOM Supplementary Information

Attribute Value Syntax Value | Value 19887
Length | Number
MH_T_TERMINAL _ Enum(MH_Terminal_ | — Oorl | 1988
TYPE Type)
MH_T_X121_ StringOM_S_ 1-15 Qorl |—
ADDRESS NUMERIC_ STRING)
1 The value initially is the current session’s attribute of the same name.
2 If only one value is present in international communications, its syntax

is StringOM_S_PRINTABLE_STRING). If two values are present, in
either domestic or international communications, the syntax of the first
is StringOM_S_PRINTABLE_STRING), the syntax of the second

is StringOM_S_TELETEX_STRING), and the two convey the same
information such that either can be safely ignored.

For example, Teletex strings allow inclusion of the accented characters
commonly used in many countries. Not all input/output devices,
however, permit the entry and display of such characters. Printable
strings are required internationally to ensure that such device limitations
do not prevent communications.

3 For 1984, the syntax of the value is
StringOM_S_PRINTABLE_STRING).

4 For 1984, at most one value is present.

5 This attribute is present only if the ISDN number attribute is present.

6 For 1988, this attribute is required if any organization name is present.

« MH_T_ADMD_NAME

This attribute contains the name of the user’s or DL’s administration management
domain (ADMD). It identifies the ADMD relative to the country that the
MH_T_COUNTRY_NAME attribute indicates. Its values are defined by that
country.

Note that the attribute value that comprises a single space is reserved. If permitted
by the country that thtMfH_T_COUNTRY_NAME attribute indicates, a single
space designates “any”—that is, all ADMDs within the country. This affects
both the identification of users and DLs within the country and the routing
of messages, probes, and reports to and among the ADMDs of that country.

14-14 OSF® DCE Application Development Guide — Directory Services

MHS Directory User Package

Regarding the former, it requires that the O/R addresses of users and DLs within
the country be chosen so as to ensure their unambiguousness, even in the absence
of the actual names of the users’ and DLs’ ADMDs. Regarding the latter, it
permits private management domains (PRMDs) within the country and ADMDs
outside the country to route messages, probes, and reports to any of the ADMDs
within the country indiscriminately. It also requires that the ADMDs within the
country interconnect themselves in such a way that the messages, probes, and
reports are conveyed to their destinations.

« MH_T_COMMON_NAME

This attribute contains the name commonly used to refer to the user or DL. It
identifies the user or DL relative to the entity indicated by another attribute;
for example, MH_T_ORGANIZATION_NAME . Its values are defined by that
entity.

* MH_T_COUNTRY_NAME
This attribute contains the name of the user’s or DL’s country. Its defined values

are the numbers that X.121 assigns to the country, or the character pairs that ISO
3166 assigns to it.

« MH_T_DOMAIN_TYPE_1
This attribute contains the name of a class of information. Its values are defined
by the user’s or DL's ADMD and PRMD, if any, in combination.

« MH_T_DOMAIN_TYPE_2
This attribute contains the name of a class of information. Its values are defined
by the user’s or DL’'s ADMD and PRMD, if any, in combination.

« MH_T_DOMAIN_TYPE_3
This attribute contains the name of a class of information. Its values are defined
by the user’s or DL's ADMD and PRMD, if any, in combination.

« MH_T _DOMAIN_TYPE_4
This attribute contains the name of a class of information. Its values are defined
by the user’s or DL's ADMD and PRMD, if any, in combination.

« MH_T_DOMAIN_VALUE_1

OSF® DCE Application Development Guide — Directory Services 14-15

XDS/XOM Supplementary Information

14-16

This attribute is an instance of the class of information that the
MH_T_DOMAIN_TYPE_1 attribute indicates.

MH_T DOMAIN_VALUE_2

This attribute is an instance of the class of information that the
MH_T_DOMAIN_TYPE_2 attribute indicates.

MH_T _DOMAIN_VALUE 3

This attribute is an instance of the class of information that the
MH_T_DOMAIN_TYPE_3 attribute indicates.

MH_T _DOMAIN_VALUE 4

This attribute is an instance of the class of information that the
MH_T_DOMAIN_TYPE_4 attribute indicates.

MH_T_GENERATION

This attribute contains the user’s generation; for exampie,

MH_T_GIVEN_NAME

This attribute contains the user's given name; for exampéhert.

MH_T _INITIALS

This attribute contains the initials of all of the user's names except the user’s
surname; for exampld&RE.

MH_T ISDN_NUMBER

This attribute contains the ISDN number of the user’s terminal. Its values are
defined by E.163 and E.164.

MH_T_ISDN_SUBADDRESS

This attribute contains the ISDN subaddress, if any, of the user’s terminal. Its
values are defined by E.163 and E.164.

MH_T_NUMERIC_USER_IDENTIFIER

OSF® DCE Application Development Guide — Directory Services

MHS Directory User Package

This attribute numerically identifies the user or DL relative to the ADMD that
the MH_T_ADMD_NAME attribute indicates. Its values are defined by that
ADMD.

* MH_T_ORGANIZATION_NAME

This attribute contains the name of the user's or DL’s organization.
As a national matter, such names may be assigned by the country
that the MH_T _COUNTRY_NAME attribute indicates, the ADMD
that the MH_T_ADMD_NAME attribute indicates, the PRMD that the
MH_T_PRMD_NAME attribute indicates, or the latter two organizations
together.

« MH_T_ORGANIZATIONAL_UNIT_NAME_1

This attribute contains the name of a unit (for example, a division or department) of
the organization that thelH_T_ORGANIZATION_NAME attribute indicates.
The attribute’s values are defined by that organization.

« MH_T_ORGANIZATIONAL_UNIT_NAME_2

This attribute contains the name of a subunit (for example, a division or
department) of the unit that thdH_T_ORGANIZATIONAL_UNIT_NAME_1
attribute indicates. The attribute’s values are defined by the latter unit.

« MH_T_ORGANIZATIONAL_UNIT_NAME_3

This attribute contains the name of a subunit (for example, a division or
department) of the unit that tHeS_A_ORGANIZATIONAL_UNIT_NAME_2
attribute indicates. The attribute’s values are defined by the latter unit.

« MH_T_ORGANIZATIONAL_UNIT_NAME_4

This attribute contains the name of a subunit (for example, a division or
department) of the unit that thdH_T_ORGANIZATIONAL_UNIT_NAME_3
attribute indicates. The attribute’s values are defined by the latter unit.

* MH_T_POSTAL_ADDRESS_DETAILS
This attribute contains the means (for example, a room and the floor numbers in

a large building) for identifying the exact point at which the user takes delivery
of physical messages.

OSF® DCE Application Development Guide — Directory Services 14-17

XDS/XOM Supplementary Information

14-18

MH_T_POSTAL_ADDRESS_IN_FULL

This attribute contains the free-form and possibly multiline postal address of the
user as a single Teletex string with the lines being separated as prescribed for
Teletex strings.

MH_T_POSTAL_ADDRESS_IN_LINES

This attribute contains the free-form postal address of the user in a sequence of
printable strings, each representing a line of text.

MH_T_POSTAL_CODE

This attribute contains the postal code for the geographical area in which the user
takes delivery of physical messages. It identifies the area relative to the country
that theMH_T _POSTAL COUNTRY_NAME attribute indicates. Its values

are defined by the postal administration of that country.

MH_T_POSTAL_COUNTRY_NAME

This attribute contains the name of the country in which the user takes delivery
of physical messages. Its defined values are the numbers that X.121 assigns to
the country, or the character pairs that ISO 3166 assigns to it.

MH_T_POSTAL_DELIVERY_POINT_NAME

This attribute identifies the locus of distribution other than that indicated by the
MH_T_POSTAL_OFFICE_NAME attribute (for example, a geographical area)
of the user’s physical messages.

MH_T_POSTAL_DELIV_SYSTEM_NAME

This attribute contains the name of the postal delivery system (PDS) through
which the user is to receive physical messages. It identifies the PDS relative to
the ADMD that theMH_T_ADMD_NAME attribute indicates. Its values are
defined by that ADMD.

MH_T_POSTAL_GENERAL_DELIV_ADDRESS
This attribute contains the code that the user gives to the post office to collect

the physical messages awaiting delivery to the user. The post office is
indicated in theMH_T_POSTAL_OFFICE_NAME attribute. The values for

OSF® DCE Application Development Guide — Directory Services

MHS Directory User Package

the MH_T_POSTAL_GENERAL_DELIV_ADDRESS attribute are defined by
that post office.

« MH_T_POSTAL_LOCALE
This attribute identifies the point of delivery other than that indicated by the
following attributes:
— MH_T_POSTAL_GENERAL_DELIV_ADDR
— MH_T_POSTAL_OFFICE_BOX_NUMBER
— MH_T_POSTAL_STREET_ADDRESS.

For example, a building or a hamlet of the user’s physical messages.
* MH_T_POSTAL_OFFICE_BOX_NUMBER

This attribute contains the number of the post office box by means of which the
user takes delivery of physical messages. The box is located at the post office
that theMH_T_POSTAL_ OFFICE_NAME attribute indicates. The attribute’s
values are defined by that post office.

* MH_T_POSTAL_OFFICE_NAME
This attribute contains the name of the municipality (for example, city or village)

where the post office is situated, through which the user takes delivery of physical
messages.

e MH_T POSTAL_OFFICE_NUMBER
This attribute contains the means of distinguishing among several post offices
indicated by theMH_T_POSTAL_OFFICE_NAME attribute.

e MH_T _POSTAL_ORGANIZATION_NAME
This attribute contains the name of the organization through which the user takes
delivery of physical messages.

e MH_T _POSTAL_PATRON_DETAILS
This attribute contains additional information (for example, the name of the

organizational unit through which the user takes delivery of physical messages)
necessary to identify the user for purposes of physical delivery.

OSF® DCE Application Development Guide — Directory Services 14-19

XDS/XOM Supplementary Information

14-20

MH_T_POSTAL_PATRON_NAME

This attribute contains the name under which the user takes delivery of physical
messages.

MH_T_POSTAL_STREET_ADDRESS

This attribute contains the street address (for examgBePrimrose Lang at
which the user takes delivery of physical messages.
MH_T_PRESENTATION_ADDRESS

This attribute contains the presentation address of the user’s terminal.
MH_T_PRMD_NAME

This attribute contains the name of the user's PRMD. As a national matter, such
names may be assigned by the country that Mt¢ T COUNTRY_NAME

attribute indicates or the ADMD that th&MH T _ADMD_NAME attribute
indicates.

MH_T_SURNAME

This attribute contains the user’'s surname; for exampbe,
MH_T_TERMINAL_IDENTIFIER

This attribute contains the terminal identifier of the user’s terminal; for example,
a Telex answer back or a Teletex terminal identifier.

MH_T_TERMINAL_TYPE

This attribute contains the type of the user’s terminal. Its value is selected from
among the following:

— MH_TT_G3_FAX

— MH_TT_G4_FAX

— MH_TT_IA5_TERMINAL

— MH_TT_TELETEX

— MH_TT_TELEX

— MH_TT_VIDEOTEX

OSF® DCE Application Development Guide — Directory Services

MHS Directory User Package

The meaning of each value is indicated by its name.
* MH_T_X121_ADDRESS

This attribute contains the network address of the user’s terminal. Its values are
defined by X.121.

Note: The strings admitted by X.121 include a telephone number preceded by
the telephone escape digit (9), and a Telex number preceded by the Telex
escape digit (8).
Certain attributes are grouped together for reference as follows:

» Personal Name Attributes

These comprise the following:
— MH_T_GIVEN_NAME

— MH_T_INITIALS

— MH_T_SURNAME

— MH_T_GENERATION

* Organizational Unit Name Attributes

These comprise the following:

— MH_T_ORGANIZATIONAL_UNIT_NAME_1

— MH_T_ORGANIZATIONAL_UNIT_NAME_2

— MH_T_ORGANIZATIONAL_UNIT_NAME_3

— MH_T_ORGANIZATIONAL_UNIT_NAME_4
* Network Address Attributes

These comprise the following:

— MH_T_ISDN_NUMBER

— MH_T_ISDN_SUBADDRESS

— MH_T_PRESENTATION_ADDRESS
— MH_T_X121_ADDRESS

OSF® DCE Application Development Guide — Directory Services 14-21

XDS/XOM Supplementary Information

Table 14-5.

14-22

For anyi in the interval [1, 4], the domain type and domain valué attributes
constitute a domain-defined attribute (DDA).

Note: The widespread avoidance of DDAs produces more uniform and thus
more user-friendly O/R addresses. However, it is anticipated that not all
management domains (MDs) will be able to avoid such attributes immediately.
The purpose of DDAs is to permit an MD to retain its existing native
addressing conventions for a time. It is intended, however, that all MDs
migrate away from the use of DDAs, and thus that DDAs are used only for
an interim period.

An O/R address may take any of the forms summarized in Table 14-5. Table
14-5 indicates the attributes that may be present in an O/R address of each form.
It also indicates whether it is mandatory (M) or conditional (C) that they do so.
When applied to a group of attributes (the network address attributes, for example),
mandatory means that at least one member of the group must be present, while
conditional means that no members of the group need necessarily be present.

The presence or absence in a particular O/R address of conditional attributes is
determined as follows. If a user or DL is accessed through a PRMD, the ADMD
that theMH_T_COUNTRY_NAME andMH_T_ADMD_NAME attributes indicate
governs whether attributes used to route messages to the PRMD are present, but it
imposes no other constraints on attributes. If a user or Dhotsaccessed through

a PRMD, the same ADMD governs whether all conditional attributes, except those
specific to postal O/R addresses, are present. All conditional attributes specific to
postal O/R addresses are present or absent so as to satisfy the postal addressing
requirements of the users they identify.

Forms of Originator/Recipient Address

Attribute Mnem?! | Num? | Sposf | Upost | Term
MH_T_ADMD_NAME M M M M C
MH_T_COMMON_NAME |C
MH_T_COUNTRY_NAME | M
C

O I
<
<

Domain-Defined Attributes
Network Address Attributes| — — — —

|
|
z|lolo

OSF® DCE Application Development Guide — Directory Services

MHS Directory User Package

Attribute Mnem? | Num? Sposf’ Uposl4 Term®

MH_T_NUMERIC_USER_ | — M — — —
IDENTIFIER

MH_T_ORGANIZATION_ | cC — — — —
NAME

Organizational Unit Name | C — — — —
Attributes

Personal Name Attributes | C — — — —

MH_T_POSTAL_ — — C — —
ADDRESS_DETAILS

MH_T_POSTAL_ — — — M —
ADDRESS_IN_FULL

MH_T_POSTAL_CODE | — — M M —

MH_T_POSTAL_ — — M M —
COUNTRY_NAME

MH_T_POSTAL_ — — C — —
DELIVERY_POINT_
NAME

MH_T_POSTAL_DELIV_ | — — C C —
SYSTEM_NAME

MH_T_POSTAL_ — — C — —
GENERAL_DELIV_ADDR

MH_T_POSTAL_LOCALE | — — C — —

MH_T_POSTAL_ — — C — —
OFFICE_BOX_NUMBER

MH_T_POSTAL_ — — C — —
OFFICE_NAME

MH_T_POSTAL_ — — C — —
OFFICE_NUMBER

MH_T_POSTAL_ — — C — —
ORGANIZATION_NAME

OSF® DCE Application Development Guide — Directory Services 14-23

XDS/XOM Supplementary Information

14-24

Attribute Mnem? | Num? Spos’? Uposl4 Term®
MH_T POSTAL _ — — C — —
PATRON_DETAILS
MH_T POSTAL _ — — C — —
PATRON_NAME
MH_T POSTAL STREET | — — C — —
ADDRESS
MH_T_PRMD_NAME C ct C C ct
MH_T _TERMINAL _ — — — — C
IDENTIFIER
MH_T _TERMINAL _ — — — — C
TYPE
1 Mnemonic. X.400 (1984) calls this Form 1 Variant 1.
2 Numeric. X.400 (1984) calls this Form 1 Variant 2.
3 Structured postal. For 1984 this O/R address form is undefined.
4 Unstructured postal. For 1984 this O/R address form is undefined.
5 X.400 (1984) calls this Form 1 Variant 3 and Form 2.
6 For 1984 this attribute is absent (—). For 1988 it is conditional (C).

* Mnemonic O/R Address

This address mnemonically identifies a user or DL. Using the
MH_T_ADMD_NAME and MH_T_COUNTRY_NAME attributes, it
identifies an ADMD. Using theMH_T_COMMON_NAME attribute or the
personal name attributes, théH_T_ORGANIZATION_NAME attribute, the
Organizational-Unit-Name attributes, theMH_T_PRMD_NAME attribute, or

a combination of these, and optionally DDAs, it identifies a user or DL relative
to the ADMD.

The personal name attributes identify a user or DL relative to the entity
indicated by another attribute; for examplH_T_ORGANIZATION_NAME .
TheMH_T_SURNAME attribute will be present if any of the other three personal
name attributes are present.

OSF® DCE Application Development Guide — Directory Services

MHS Directory User Package

* Numeric O/R Address

This address numerically identifies a wuser or DL. Using the
MH_T_ADMD_NAME and MH_T_COUNTRY_NAME attributes, it
identifies an ADMD. Using theMH_T_NUMERIC_USER_IDENTIFIER
attribute and possibly th®lH_T_PRMD_NAME attribute, it identifies the user
or DL relative to the ADMD. Any DDAs provide information that is additional
to that required to identify the user or DL.

» Postal O/R Address

This address identifies a user through its postal address. Two kinds of postal O/
R address are distinguished, as follows:

— Structured

Said of a postal O/R address that specifies a user’'s postal address by means
of several attributes. The structure of the postal address is described in the
following text in some detail.

— Unstructured

Said of a postal O/R address that specifies a user’s postal address in a single
attribute. The structure of the postal address is left largely unspecified in the
following text.

Whether structured or unstructured, a postal O/R address does the following.
Using the MH_T_ADMD_NAME and MH_T_COUNTRY_NAME
attributes, it identifies an ADMD. Using thédH_T_POSTAL_CODE and
MH_T_POSTAL_COUNTRY_NAME attributes, it identifies the geographical
region in which the user takes delivery of physical messages. Using the
MH_T_POSTAL_DELIV_SYSTEM_NAME or MH_T_PRMD_NAME
attribute or both, it also can identify the PDS by means of which the user is to
be accessed.

An unstructured postal O/R address also includes the
MH_T_POSTAL_ADDRESS_IN_FULL attribute. A structured postal

O/R address also includes every other postal addressing attribute that the PDS
requires to identify the postal patron.

OSF® DCE Application Development Guide — Directory Services 14-25

XDS/XOM Supplementary Information

14-26

Note: The total number of characters in the values of all attributes, except
for MH_T_ADMD_NAME, MH_T_COUNTRY_NAME, and
MH_T_POSTAL_DELIV_SYSTEM_NAME , in a postal O/R address
should be small enough to permit their rendition in 6 lines of 30
characters, the size of a typical physical envelope window. The
rendition algorithm, while defined by the physical delivery access unit
(PDAU), is likely to include inserting delimiters (for example, spaces)
between some attribute values.

* Terminal O/R Address

This address identifies a user by identifying the user’s terminal using the network
address attributes. It also may identify the ADMD through which the terminal is
accessed by using théH_T_ADMD_NAME andMH_T_COUNTRY_NAME
attributes. TheMH_T_PRMD_NAME attribute and any DDAs, which will

be present only if thtMH_T_ADMD_NAME andMH_T_COUNTRY_NAME
attributes are present, provide information additional to that required to identify
the user.

If the terminal is a Telematic terminal, it gives the terminal's network
address and possibly, using theMH_T_TERMINAL_TYPE and
MH_T_TERMINAL_IDENTIFIER attributes, its terminal type and
identifier. If the terminal is a Telex terminal, it gives the terminal's Telex
number.

Whenever two O/R addresses are compared for equality, the following differences are
ignored:

* Whether an attribute has a value whose syntax is

StringgOM_S_PRINTABLE_STRING), a value whose syntax is
StringOM_S_TELETEX_STRING), or both.

* Whether a letter in a value of an attribute not used in DDAs is an uppercase or

lowercase letter.

« All leading, all trailing, and all but one consecutive embedded space in an attribute

value.

Note: An MD may impose additional equivalence rules upon the O/R addresses it

assigns to its own users and DLs. It may define, for example, rules concerning
punctuation characters in attribute values, the case of letters in attribute values,
or the relative order of DDAs.

OSF® DCE Application Development Guide — Directory Services

MHS Directory User Package

14.5

Table 14-6.

As a national matter, MDs may impose additional rules
regarding any attribute that may have a value whose syntax is
StringlOM_S_PRINTABLE_STRING), a value whose syntax is
StringOM_S_TELETEX_STRING), or both. In particular, the rules
for deriving from a Teletex string the equivalent printable string may be
nationally prescribed.

MH_C_OR_NAME

An instance of classMH_C_OR_NAME comprises a directory name, an O/
R address, or both. The name is considered present if, and only if, the
MH_T_DIRECTORY_NAME attribute is present. The address comprises the
attributes specific to th&/H_C_OR_ADDRESS class and is considered present if,
and only if, at least one of those attributes is present.

An O/R name’s composition is context sensitive. At submission, the name, the
address, or both may be present. At transfer, or delivery, the address is present and
the name can (but need not) be present. Whether at submission, transfer or delivery,
the MTS uses the name, if it is present, only if the address is absent or invalid.

The attribute specific to this class is listed in Table 14-6.

Attribute Specific to MH_C_OR_NAME

Attribute Value Syntax Value Value Value 19887
Length | Number | Initially

MH_T_ Objec{DS_ — Oor1l — 1988

DIRECTORY_ | C_NAME)

NAME

« MH_T_DIRECTORY_NAME

This attribute contains the name assigned to the user or DL by the worldwide
X.500 directory.

OSF® DCE Application Development Guide — Directory Services 14-27

XDS/XOM Supplementary Information

14.6 DS_C DL _SUBMIT _PERMS

An instance of OM clasD®S C DL _SUBMIT_PERMS characterizes an attribute
each of whose values are a submit permission. An instance of this OM class has the
OM attributes of its superclasM_C_OBJECTand additionally the OM attributes
listed in Table 14-7.

Table 14-7. OM Attributes of DS_C_DL_SUBMIT_PERMS

OM Attribute Value Syntax Value Value Value
Length Number Initially

DS _PERM_TYPE EnumDS_Permission_ | — 1 —
Type)

DS_INDIVIDUAL ObjectMH_C_ — Oorl —
OR_NAME)

DS_MEMBER_OF_DL | Objec{MH_C_ — Oor1l —
OR_NAME)

DS_PATTERN_MATCH | Objec(MH_C_ — Oor1l —
OR_NAME)

DS MEMBER_OF _ Objec{DS_C DS DN) | — 0 or more | —

GROUP

« DS_PERM_TYPE
This attribute contains the type of the permission specified herein. Its value can
be one of the following:
— DS_PERM_INDIVIDUAL
— DS_PERM_MEMBER_OF DL
— DS_PERM_PATTERN_MATCH
— DS_PERM_MEMBER_OF_GROUP
» DS_INDIVIDUAL

This attribute contains the user or unexpanded DL, any of whose O/R names is
equal to the specified O/R name.

14-28 OSF® DCE Application Development Guide — Directory Services

MHS Directory User Package

- DS_MEMBER_OF DL

This attribute contains each member of the DL, any of whose O/R names is equal
to the specified O/R name, or of each nested DL, recursively.

* DS_PATTERN_MATCH
This attribute contains each user or unexpanded DL, any of whose O/R names
matches the specified O/R name pattern.

+ DS_MEMBER_OF_GROUP

This attribute contains each member of the group-of-names whose name is
specified, or of each nested group-of-names, recursively.

Note that exactly one of the four name attributes will be present at any time, according
to the value of theDS PERM_TYPE attribute.

OSF® DCE Application Development Guide — Directory Services 14-29

Chapter 15

GDS Package

The Global Directory Service (GDS) package (GDSP) is an OSF extension to the
XDS interface. Applications must negotiate use of this package @gthversion()
before using any of the additional features. If an application attempts to use features
specific to this package without first negotiating its use, then an appropriate error (for
example,OM_NO_SUCH_CLASYS) is returned by the Object Management function.
The object identifier associated with the GDSP is

{iso(1) identified-organization(3) icd-ecma(0012) member-company(2)
siemens-units(1107) sni(1) directory(3) xdsapi(100) gdsp(0)}

It takes the following encoding:
\X2B\XC\x2\x88\x53\x1\x3\x64\x0

The identifier is represented by the const®$X_GDS_PKG The C constants
associated with this package are contained inxttegds.hheader file.

OSF® DCE Application Development Guide — Directory Services 15-1

XDS/XOM Supplementary Information

15.1

Table 15-1.

15-2

The concepts and notation used are first mentioned in Chapter 11. They are also
fully explained in Chapters 17 through 19. The attribute types are introduced first,
followed by the object classes. Next, the OM class hierarchy and OM class definitions
required to support the new attribute types are described.

GDSP Attribute Types

This section presents the additional directory attribute types that are used with GDSP.
Each attribute type has an object identifier, which is the value of the OM attribute
DS_ATTRIBUTE_TYPE. These object identifiers are represented in the interface
by constants with the same name as the directory attribute, and they are prefixed by
DSX_A_ so that they can be easily identified.

This section contains two tables that are used to indicate the object identifiers for
GDSP attribute types (see Table 15-1), and the values for GDSP attribute types (see
Table 15-2), respectively. Following these two tables is a brief description of each
attribute. (See Chapter 12 for information on general matching rules.)

Table 15-1 shows the names of the GDSP attribute types, together with the BER
encoding of the object identifiers associated with each of them.

Note: The third column of Table 15-1 contains the contents octets of the BER
encoding of the object identifier in hexadecimal. All these object identifiers
stem from the root{iso(1l) identified-organization(3) idc-ecma(0012)
member-company(2) siemens-units(1107) sni(1) directory(3) attribute-

type(4)}.

Object Identifiers for GDSP Attribute Types
Object Identifier BER
Package Attribute Type Hexadecimal
GDSP DSX_A_ACL \x2B\X0C\x02\x88\x53\x01\x03\x04\x01
GDSP DSX_A_AT \x2B\X0C\x02\x88\x53\x01\x03\x04\x06
GDSP DSX_A_CDS_ \x2B\x0C\x02\x88\x53\x01\x03\x04\x0D
CELL

OSF® DCE Application Development Guide — Directory Services

GDS Package

Object Identifier BER

Package Attribute Type Hexadecimal

GDSP DSX_A_CDS_ \x2B\X0C\x02\x88\x53\x01\x03\x04\x0E
REPLICA

GDSP DSX_A_CLIENT | \x2B\0C\x02\x88\x53\x01\x03\x04\x0A

GDSP DSX_A_ \x2B\x0C\x02\x88\x53\x01\x03\x04\x08
DEFAULT_DSA

GDSP DSX_A_DNLIST | \x2B\x0C\x02\x88\x53\x01\x03\x04\x0B

GDSP DSX_A_ \x2B\x0C\x02\x88\x53\x011x03\x04\x09
LOCAL_DSA

GDSP DSX_A_ \x2B\x0C\x02\x88\x53\x01\x03\x04\x00
MASTER_
KNOWLEDGE

GDSP DSX_A_OCT \x2B\x0C\x02\x88\x53\x01\x03\x04\x05

GDSP DSX_A_ \x2B\x0C\x02\x88\x53\x01\x03\x04\x03
SHADOWED_ BY

GDSP DSX_A_ \x2B\X0C\x02\x88\x53\x01\x03\x04\x0C
SHADOWING_
JOB

GDSP DSX_A_SRT \x2B\x0C\x02\x88\x53\x01\x03\x04\x04

GDSP DSX_A_ \x2B\X0C\x02\x88\x53\x01\x03\x04\x02
TIME_STAMP

Table 15-2 shows the names of the attribute types, together with the OM value syntax
used in the interface to represent values of that attribute type. The table also includes
the range of lengths permitted for the string types, indicates whether the attribute can
be multivalued, and lists which matching rules are provided for the syntax.

OSF® DCE Application Development Guide — Directory Services

15-3

XDS/XOM Supplementary Information

Table 15-2. Representation of Values for GDSP Attribute Types

Attribute Type OM Value Syntax | Value Multivalued Matching
Length Rules

DSX_A_ACL Objec{DSX_C_ — no E
GDS_ACL)

DSX_A_AT StringOM_S_ 1-101 yes E,S
PRINTABLE_
STRING)

DSX_A_CDS_ StringOM_S_ 1-284 no E

CELL OCTET_STRING)

DSX_A_CDS_ StringOM_S_ 1-905 yes E

REPLICA OCTET_STRING)

DSX_A_CLIENT | Only a cache — — —
attribute

DSX_A Only a cache — — —

DEFAULT _DSA attribute

DSX_A_DNLIST | Objec(DS_C_ — yes E,S
DS_DN)

DSX_A_ Only a cache — — —

LOCAL_DSA attribute

DSX_A_MASTER_| Objec{DS_C_ — no E,S

KNOWLEDGE DS_DN)

DSX_A_OCT StringOM_S_ 1-397 yes E,S
PRINTABLE_
STRING)

DSX_A_ Not used yet — — —

SHADOWED_BY

DSX_A Not used yet — — —

SHADOWING_

JOB

15-4 OSF® DCE Application Development Guide — Directory Services

GDS Package

Attribute Type OM Value Syntax | Value Multivalued Matching
Length Rules
DSX_A _SRT StringOM_S_ 1-29 yes E,S
PRINTABLE_
STRING)
DSX_A _TIME_ StringOM_S_ 11-17 no E,O
STAMP UTC_
TIME_STRING)
Note: With the exception of thdDSX_A_ACL attribute, the GDSP attributes in

Table 15-2 are only to be manipulated through the GDS administration
interface (see th®SF DCE GDS Administration Guide and Referehce

Descriptions of the GDSP attributes follow:

« DSX_A_ACL

This attribute describes the access rights for one or more directory service users.

« DSX_A_AT

This attribute describes the attribute types permitted in GDS. For further

OSF® DCE Application Development Guide — Directory Services

information, see th©SF DCE GDS Administration Guide and Reference
DSX_A_CDS_CELL andDSX_A_CDS_REPLICA

These two attributes always exist together in the same object. They describe the
information necessary for contacting a remote DCE cell.

DSX_A_CLIENT

This attribute only applies to the cache. It identifies an entry that holds the

DUA’s presentation address. Its OM syntaxO81_S PRINTABLE_STRING
and its value iCLIENT .

DSX_A_DEFAULT_DSA

This attribute only applies to the cache. It identifies an entry that holds the DN
of the DUA'’s default DSA. Its OM syntax i©M_S PRINTABLE_STRING
and its value iDEFAULT-DSA.

15-5

XDS/XOM Supplementary Information

15.2

15-6

DSX_A_DNLIST

This attribute is used internally by the GDS DSA.
DSX_A_LOCAL_DSA
This attribute only applies to the cache. It identifies an entry that holds the DN

of the DUA’s local DSA. Its OM syntax i©OM_S_PRINTABLE_STRING and
it's value isLOCAL-DSA..

DSX_A MASTER_KNOWLEDGE

This attribute contains the DN of the DSA that holds the master copy of this
entry.

DSX_A OCT

This attribute describes the object classes supported by the GDS DSA. For further
information, see th®©SF DCE GDS Administration Guide and Reference

DSX_A SHADOWED BY andDSX_A_ SHADOWING_JOB

These two GDSP attributes are intended for future use.
DSX_A SRT

This attribute describes the structure of the DNs permitted in GDS.
DSX_A_TIME_STAMP

This attribute is part of th®©SX_O_SCHEMA object. It contains the creation
time of theDSX_O_SCHEMA object.

GDSP Object Classes

The only additional GDSP object class@sX_O_SCHEMA (see Table 15-3). It

is stored in GDS as an object directly under root. The most important attributes
of the DSX_O_SCHEMA object are the three recurring attributeSX_A_OCT,
DSX_A_AT, andDSX_A_SRT. These three objects describe the GDS DIT structure.
For a more detailed explanation of the GDBBX_O_SCHEMA object, see th©SF

DCE GDS Administration Guide and Reference

OSF® DCE Application Development Guide — Directory Services

GDS Package

Note: The third column of Table 15-3 contains the contents octets of the BER
encoding of the object identifier in hexadecimal. This object identifier stems
from the root{iso(1) identified-organization(3) idc-ecma(0012) member-
company(2) siemens-units(1107) sni(1) directory(3) object-class(6)}

Table 15-3. Object Identifier for GDSP Object Classes

Package

Attribute Type

Object Identifier BER

Hexadecimal

GDSP

DSX_O_
SCHEMA

\x2B\x0C\x02\x88\x53\x01\x03\x06\x00

15.3 GDSP OM Class Hierarchy

The remainder of this chapter defines the additional OM classes used by GDSP. This
section shows the hierarchical organization of the OM classes that are defined in
the following sections, and it shows which classes inherit additional OM attributes

from their OM superclasses.

In the following list, subclassification is indicated by

indentation, and the names of abstract OM classes are represented in italics.

OM_C_OBJECT(defined in the OM package)
» DS_C_SESSION(defined in the directory service package)
— DSX_C_GDS_SESSION
» DS_C_CONTEXT (defined in the directory service package)

— DSX_C_GDS_CONTEXT

« DSX_C_GDS_ACL
« DSX_C_GDS_ACL_ITEM

None of the OM classes in the preceding list are encodable by wsmgncode()

andom_decode()

OSF® DCE Application Development Guide — Directory Services 15-7

XDS/XOM Supplementary Information

154 DSX_C_GDS_ACL

An instance of OM clas®SX_C_GDS_ACLdescribes up to five categories of rights
for one or more directory users.

An instance of this OM class has the OM attributes of its superd2igs,C_OBJECT
in addition to the OM attributes listed in Table 15-4.

Table 15-4. OM Attributes of DSX_C_GDS_ACL

OM Attribute Value Syntax Value Value Value
Length Number Initially

DSX_MODIFY_ Objec(DSX_C_ — 0-4 —

PUBLIC GDS_ACL_ITEM)

DSX_READ_ Objec{DSX_C_ — 0-4 —

STANDARD GDS_ACL_ITEM)

DSX_MODIFY_ Objec{DSX_C_ — 0-4 —

STANDARD GDS_ACL_ITEM)

DSX_READ_ Objec{DSX_C_ — 0-4 —

SENSITIVE GDS_ACL_ITEM

DSX_MODIFY_ Objec{DSX_C_ — 0-4 —

SENSITIVE GDS_ACL_ITEM)

The OM attributes 0DSX_C_GDS_ACL are as follows:

+ DSX_MODIFY_PUBLIC
This attribute specifies the user, or subtree of users, that can modify attributes
classified as public attributes.

« DSX_READ_STANDARD
This attribute specifies the user, or subtree of users, that can read attributes
classified as standard attributes.

+ DSX_MODIFY_STANDARD

15-8 OSF® DCE Application Development Guide — Directory Services

GDS Package

15.5

Table 15-5.

This attribute specifies the user, or subtree of users, that can modify attributes
classified as standard attributes.

» DSX_READ_SENSITIVE

This attribute specifies the user, or subtree of users, that can read attributes
classified as sensitive attributes.

» DSX_MODIFY_SENSITIVE

This attribute specifies the user, or subtree of users, that can modify attributes
classified as sensitive attributes.

DSX_C_GDS_ACL_ITEM

An instance of OM clas®SX_C_GDS_ACL_ITEM is a component of an instance
of OM classDSX_C_GDS_ACL It specifies the user, or subtree of users, to whom
an access right applies.

An instance of this OM class has the OM attributes of its superd2igs,C_ OBJECT
in addition to the OM attributes listed in Table 15-5.

OM Attributes of DSX_C_GDS_ACL_ITEM

OM Attribute Value Syntax Value Value Value
Length Number | Initially
DSX_ Enum(DSX_ — 1 —
INTERPRETATION Interpretation)
DSX_USER Objec{DS_C_ — 1 —
DS_DN)

The OM attributes of DSX C _GDS_ACL_ITEM are as follows:
* DSX_INTERPRETATION

This attribute specifies the scope of the access right. It can have one of the
following values:

OSF® DCE Application Development Guide — Directory Services 15-9

XDS/XOM Supplementary Information

— DSX_SINGLE_OBJECT, meaning that the access right is granted to the
user specified in th®SX_USER OM attribute.

— DSX_ROOT_OF_SUBTREE meaning that the access right is granted to
all users in the subtree below the name specified inDB8X _USER OM
attribute.

» DSX_USER

This attribute is the DN of the user, or subtree of users, to whom an access right
applies.

15.6 DSX_C_GDS_CONTEXT

An instance of OM classDSX_C_GDS_CONTEXT comprises per-operation
arguments that are accepted by most of the interface functions. GDS supports
additional service controls that are defined by h&X C_GDS_CONTEXT OM

class.

An instance of this OM class has the OM attributes of its superclasses,
OM_C_OBJECTand DS_C_CONTEXT, in addition to the OM attributes listed in
Table 15-6.

Table 15-6. OM Attributes of DSX_C_GDS_CONTEXT

OM Attribute Value Syntax Value Value Value Initially
Length Number

Service Controls

DSX_DUAFIRST OM_S_BOOLEAN — 1 OM_FALSE

DSX_DONT_STORE| OM_S_BOOLEAN — 1 OM_TRUE

DSX_NORMAL_ OM_S_BOOLEAN — 1 OM_FALSE

CLASS

DSX_PRIV_CLASS | OM_S_BOOLEAN — 1 OM_FALSE

DSX_RESIDENT_ | OM_S_BOOLEAN — 1 OM_FALSE

CLASS

15-10 OSF® DCE Application Development Guide — Directory Services

GDS Package

OM Attribute Value Syntax Value Value Value Initially
Length Number

DSX_USEDSA OM_S_BOOLEAN — 1 OM_TRUE

DSX_DUA_CACHE | OM_S_BOOLEAN — 1 OM_FALSE

DSX_PREFER_ OM_S_BOOLEAN — 1 OM_FALSE

ADM_FUNCS

DSX_SIGN_ Enum(DSX_Sign_ — 0-1 —

MECHANISM Mechanism)

DSX_PROT_ Enum(DSX_Prot_ — 0-1 —

REQUEST Request)

The OM attributes of thd®SX_C_GDS_CONTEXT OM class are as follows:

» DSX_DUAFIRST

This attribute defines whether the DUA cache or the DSA needs to be read first
for query operations. The default value@d1_FALSE; that is, search the DSA
first, if not found then search the DUA cache.

DSX_DONT_STORE

This attribute specifies whether the information read from the DSAs by the query
functions also needs to be stored in the DUA cache. When this service control
is set toOM_TRUE (default value), nothing is stored in the DUA cache.

When this service control is set @M_FALSE, the information read is stored in

the DUA cache. The objects returned thy list() andds_compare()are stored

in the cache without their associated attribute information. The objects returned
by ds_read() and ds_search()are stored in the cache with all theiacheable
attributes; these are all public attributes that do not exceed 4 Kilobytes in length.

This information is only cached when a list of requested attributes is supplied.
If all attributes are requested, then nothing is stored in the cache.

The DUA cache categorizes the information stored into three different memory classes.

The user specifies the category with the following service controls:
* DSX_NORMAL_CLASS

OSF® DCE Application Development Guide — Directory Services

15-11

XDS/XOM Supplementary Information

15-12

If this attribute is set toOM_TRUE, the entry in the DUA cache is assigned

to the class of normal objects. If the number of entries in this class exceeds a
maximum value, the entry that is not addressed for the longest period of time is
removed from the DUA cache.

« DSX_PRIV_CLASS

If this attribute is set td®OM_TRUE, the entry in the DUA cache is assigned to
the class of privileged objects. Entries can be removed from the class in the same
way as normal objects. By using this memory sparingly, the user can protect
entries from deletion.

» DSX_RESIDENT_CLASS

If this attribute is set td®OM_TRUE, the entry in the DUA cache is assigned to
the class of resident objects. An entry in this memory class is never removed
automatically; instead, it can only be removed with remove_entry() The
number of entries is limited; if this limit is exceedeats_add_entry()reports an
error.

Only the service control of one memory class can be set. ddhedd_entry()
function also evaluates these service control bits if the function is used on the DUA
cache.

* DSX_DUA_CACHE andDSX_USEDSA

These attributes define whether the entries in the DUA cache or in the DSA, or
both, need to be used when providing the service. Depending on the values of
these attributes, the following situations can arise:

— DSX_DUA_CACHE andDSX_USEDSA both OM_TRUE
The ds_add_entry()andds_remove_entry()functions report an error.

The query functions evaluate the service contid® DONT_USE_COPY
and DSX_DUAFIRST. When DS_DONT_USE_COPY is OM_FALSE,
then DSX_DUAFIRST determines whether the DUA cache or the DSA is
read first. WheDS _DONT_USE_COPYis OM_TRUE, information from
the DSA only is read.

— DSX_DUA_CACHE, OM_TRUE andDSX_USEDSA OM_FALSE

OSF® DCE Application Development Guide — Directory Services

GDS Package

The ds_add_entry() and ds_remove_entry() functions and the query
functions only go to the DUA cache.

— DSX_DUA_CACHE, OM_FALSE andDSX_USEDSA OM_TRUE
The ds_add_entry() and ds_remove_entry() functions and the query
functions only go to the DSA.

— DSX_DUA_CACHE andDSX_USEDSA bothOM_FALSE
The ds_add_entry() and ds_remove_entry() functions and the query
functions report an error.

All other functions always operate on the DSA currently connected.

* DSX_PREFER_ADM_FUNCS

GDS uses the three following optional attributes:

— DSX_A MASTER_KNOWLEDGE, which contains the DN of the DSA
that holds the master copy of an entry.

— DSX_A_ACL, which is used for GDS access control.
— DS_A _USER_PASSWORDas an attribute of th®S_O_DSAobject class,
which is used by the GDS shadowing mechanism.

The DSX A MASTER_KNOWLEDGE and DSX_A ACL attributes are
present in every GDS entry.

When an application requests all attributes, it can prevent any of these three
optional attributes from being returned by setting this service control to
OM_FALSE.

If GDS applications (for example, GDS administration) require these attributes,
they are obtained by setting this service controDi#l_TRUE.

* DSX_SIGN_MECHANISM

This attribute is reserved for future use.
« DSX_PROT_REQUEST

This attribute is reserved for future use.

OSF® DCE Application Development Guide — Directory Services 15-13

XDS/XOM Supplementary Information

Table 15-7.

15-14

Applications can assume that an object of OM cl&SX_C_GDS_CONTEXT,

created with default values of all its OM attributes, works with all the interface
functions. The constai®S_DEFAULT_CONTEXT can be used as an argument to

functions instead of creating an OM object with default values.

The defaultDSX_C_GDS_CONTEXT is defined in Table 15-7.

Default DSX_C_GDS_CONTEXT

OM Attribute

Default Value

Common A

rguments

DS_OPERATION_PROGRESS

DS_OPERATION_ NOT_STARTED

DS_ALIASED_RDNS

0

Service Controls

DS_CHAINING_PROHIB OM_TRUE
DS_DONT_DEREFERENCE_ OM_FALSE
ALIASES
DS_DONT_USE_COPY OM_TRUE
DS_LOCAL_SCOPE OM_FALSE
DS_PREFER_CHAINING OM_FALSE
DS_PRIORITY DS_MEDIUM
Local Controls
DS_ASYNCHRONOUS OM_FALSE
DS_AUTOMATIC_CONTINUATION | OM_TRUE

Private Extensions

DSX_DUAFIRST OM_FALSE
DSX_DONT_STORE OM_TRUE

DSX_NORMAL_CLASS OM_FALSE
DSX_PRIV_CLASS OM_FALSE
DSX_RESIDENT_CLASS OM_FALSE

OSF® DCE Application Development Guide — Directory Services

GDS Package

15.7

Table 15-8.

OM Attribute

Default Value

DSX_USEDSA OM_TRUE
DSX_DUA_CACHE OM_FALSE
DSX_PREFER_ADM_FUNCS OM_FALSE
DSX_SIGN_MECHANISM Absent
DSX_PROT_REQUEST Absent

DSX_C_GDS_SESSION

An instance of OM clas®SX_C_GDS_SESSIONdentifies a particular link from

an application program to a GDS DUA. This additional OM class is necessary if the
user either wants to specify an authentication mechanism or wants to specify the GDS
directory identifier, or alternatively wants to specify both an authentication mechanism
and the directory identifier.DSX_C_GDS_SESSIONcan be passed as an argument

to ds_bind().

An instance of this OM class has the OM attributes of its superclasses,

OM_C_OBJECTand DS_C_SESSION in addition to the OM attributes listed in

Table 15-8.

OM Attributes of DSX_C_GDS_SESSION

OSF® DCE Application Development Guide — Directory Services

OM Attribute Value Syntax Value Value Value
Length Number Initially
DSX_PASSWORD| StringOM_S_ — Oor1l —
OCTET_
STRING)
DSX_DIR_ID OM_S_ — 1 1
INTEGER
15-15

XDS/XOM Supplementary Information

15-16

OM Attribute Value Syntax Value Value Value
Length Number Initially

DSX_AUTH_ Enum(DSX_ — 0-1 —
MECHANISM Auth_

Mechanism)
DSX_AUTH_ StringOM_S_ — 0-1 —
INFO OCTET_

STRING)

The OM attributes 0DSX_C_GDS_SESSIONare as follows:
+ DSX_PASSWORD

This attribute indicates the password for the user credentials.

DSX_DIR_ID

This attribute contains an identifier for distinguishing between several
configurations of the directory service within a GDS installation. The valid
range is from 1 to 20.

DSX_AUTH_MECHANISM

If this attribute is present, then it identifies the authentication mechanism that the
application requests. If it is absent or has the val#&X NONE_AT_ALL,

then ads_bind() without credentials (anonymous bind) is requested. The values
that this attribute can take are as follows:

— DSX_NONE_AT_ALL. No authentication.

— DSX_DEFAULT. The default authentication mechanism is to use DCE
authentication, thereforddSX_DEFAULT defaults toDSX _DCE_AUTH.
The value forDSX_DEFAULT can be modified through an environment
variableXDS_DEF_AUTH_MECH. The value of this environment variable
is checked by the XDS software followingds_initialize() function call.

— DSX_SIMPLE. This requests simple authentication by using
the DS_REQUESTOR and DSX PASSWORD attributes of the
DSX_C_GDS_SESSIONbbject.

— DSX_SIMPLE_PROT1. This is reserved for future use.

OSF® DCE Application Development Guide — Directory Services

GDS Package

Table 15-9.

— DSX_SIMPLE_PROT2. This is reserved for future use.

— DSX_DCE_AUTH. This requests the use of the DCE authentication
mechanism.

— DSX_STRONG. This is reserved for future use.
If an authentication mechanism is selected that is not currently supported,
then ds_bind() returns aDS_E_NOT_SUPPORTEDerror. If the selected

authentication mechanism requires the user’s credentials that cannot be assembled,
then aDS_E_NO_INFO error is returned.

DSX_AUTH_INFO

This attribute is reserved for future use.

Applications can assume that an object of OM claSs_C_GDS_SESSIONcreated
with default values of all its OM attributes, works with all the interface functions.
Such a session can be created by passing the col3&8MmEFAULT_SESSIONas

an argument tals_bind(), having already negotiated the GDS package.

Table 15-9 define®SX_C_GDS_SESSION

Default DSX_C_GDS_SESSION
OM Attribute Default Value
DS _DSA ADDRESS Value obtained from the cache or abserllt
DS DSA NAME Value obtained from the cache or abserlnt
DS_FILE_DESCRIPTOR DS_NO_VALID_FILE_DESCRIPTOR
DSX_DIR_ID 1
DSX_AUTH_MECHANISM Absent
DSX_AUTH_INFO Absent

Note: The values ofDS_DSA ADDRESSand DS _DSA NAME are taken from

the cache of Directory ID 1.

OSF® DCE Application Development Guide — Directory Services 15-17

Chapter 16

Distributed Management Environment
Support

The Distributed Management Environment (DME) Network Management Option
(NMO) provides access to network management protocols. One of the protocols
it supports is the CMIP protocol. CMIP uses names to identify and locate managed
objects and management applications. GDS is used to provide this name to address
resolution.

DME has a requirement to support opaque address forms to cater to instances where
CMIP is not running over pure OSI protocols. For this purpose, GDS contains some
enhancements that are described in this chapter.

To support DME an additional directory object class, and an additional directory
attribute were required. Additional OM classes or OM attributes were not necessary.
Therefore, GDS supports DME without having to negotiate a specific XDS/DME
package. An application must inclugddsdme.h (4xdswhen using the new directory
object class and attribute.

OSF® DCE Application Development Guide — Directory Services 16-1

XDS/XOM Supplementary Information

16.1

Table 16-1.

16-2

The concepts and notation used are first mentioned in Chapter 11. They are also
fully explained in Chapters 17 through 19. The attribute types are introduced first,
followed by the object classes.

DME Attribute Types

This section presents the additional directory attribute type that DME uses. Each
attribute type has an object identifier, which is the value of the OM attribute
DS_ATTRIBUTE_TYPE. These object identifiers are represented in the interface
by constants with the same name as the directory attribute, and they are prefixed by
DSX_A_ so that they can be easily identified.

This section contains two tables that are used to indicate the object identifier for the
DME attribute type (see Table 16-1), and the values for the DME attribute type (see
Table 16-2), respectively. Following these two tables is a brief description of the

attribute. (See Chapter 12 for information on general matching rules.)

Table 16-1 shows the name of the DME attribute type, together with the BER encoding
of the associated object identifier.

Note: The second column of Table 16-1 contains the contents octets of the BER
encoding of the object identifier in hexadecimal. This object identifier
stems from the roofiso(1) identified-organization(3) o0sf(0022) dme(2)
components(1) nmo(2) dmeNmoAttributeType(1)}

Object Identifier for DME Attribute Type

Object Identifier BER

Attribute Type Hexadecimal

DSX_A_ALTERNATE_ADDRESS \x2B\x16\x02\x01\x02\x01\x01

Table 16-2 shows the name of the attribute type, together with the OM value syntax
used in the interface to represent values of that attribute type. The table also includes
the range of lengths permitted for the string types, indicates whether the attribute can
be multivalued, and lists which matching rules are provided for the syntax.

OSF® DCE Application Development Guide — Directory Services

Distributed Management Environment Support

Table 16-2.

16.2

Representation of Values for DME Attribute Types

Attribute Type OM Value Syntax Variable | MultivalugdMatching
Length Rules

DSX_A_ StringOM_S_ 1-800 yes E

ALTERNATE_ OCTET_STRING)

ADDRESS

The following is a description of the DME attribute:
* DSX_A_ALTERNATE_ADDRESS
This attribute is used by DME to store opaque address formats. In Table 16-2,

it can be seen that th<ernateAddress attribute is stored internally by GDS as
an octet string. The application expects the following syntax:

AlternateAddress ::= SEQUENCE ({
address OCTET STRING,
protocol SET OF OBJECT IDENTIFIER }

For conversion between octet string and a C structure corresponding to this
definition, two functions are provided: gds_encode_alt addr (3xds)and
gds_decode_alt_addr (3xds)

DME Object Classes

The only additional DME object class i®SX_O _DME_NMO_AGENT (see
Table 16-3). This object class has the same structure rules in the default
schema as the application entity object classDSX O _DME_NMO_AGENT

is a subclass of DS_O_APPLIC_ENTITY (inherits the mandatory
DS_A PRESENTATION_ADDRESS and DS_A_COMMON_NAME attributes)

and contains one attribut®SX_A ALTERNATE_ADDRESS.

Note: The second column of Table 16-3 contains the contents octets of the BER
encoding of the object identifier in hexadecimal. This object identifier
stems from the roofiso(1) identified-organization(3) o0sf(0022) dme(2)
components(1) nmo(2) dmeNmoObjectClass(2)}

OSF® DCE Application Development Guide — Directory Services 16-3

XDS/XOM Supplementary Information

Table 16-3. Object Identifier for DME Obiject Class

Object Identifier BER

Attribute Type Hexadecimal
DSX_O_DME_NMO_AGENT \x2B\x16\x02\x01\x02\x02\x01

16-4 OSF® DCE Application Development Guide — Directory Services

Chapter 17

Information Syntaxes

This chapter defines the syntaxes permitted for attribute values. The syntaxes are
closely aligned with the types and type constructors of ASN.1. Nk value data

type specifies how a value of each syntax is represented in the C interface (see Chapter
18).

17.1 Syntax Templates

The names of certain syntaxes are constructed feymtax templates A syntax
template is a lexical construct comprising a primary identifier followed by*an
(asterisk) enclosed in parentheses, as follows:

identifier (*)
A syntax template encompasses a group of related syntaxes. Any member of the
group, without distinction, is indicated by the primary identifietegtifier) alone. A

particular member is indicated by the template with the asterisk replaced by one of a
set of secondary identifiers associated with the template, as follows:

OSF® DCE Application Development Guide — Directory Services 17-1

XDS/XOM Supplementary Information

17.2

17-2

identifier1 (identifierz)

Syntaxes

A variety of syntaxes are defined. Most are functionally equivalent to ASN.1 types,
as documented in Sections 17.5 through 17.8.

The following syntaxes are defined:

OM_S_BOOLEAN

A value of this syntax is a Boolean; that is, it can@®!_TRUE or OM_FALSE.
Enum¢)
A value of any syntax encompassed by this syntax template is one of a set of

values associated with the syntax. The only significant characteristic of the values
is that they are distinct.

The group of syntaxes encompassed by this template is open-ended. Zero or
more members are added to the group by each package definition. The secondary
identifiers that indicate the members are also assigned there.

OM_S_INTEGER

A value of this syntax is a positive or negative integer.

OM_S_NULL
The one value of this syntax is a valueless placeholder.

Objectf)

A value of any syntax encompassed by this syntax template is an object, which
is any instance of a class associated with the syntax.

The group of syntaxes encompassed by this template is open-ended. One member
is added to the group by each class definition. The secondary identifier that
indicates the member is the name of the class.

String)

OSF® DCE Application Development Guide — Directory Services

Information Syntaxes

A value of any syntax encompassed by this syntax template is a string (as defined
in Section 17.3) whose form and meaning are associated with the syntax.

The group of syntaxes encompassed by this template is closed. One syntax is
defined for each ASN.1 string type. The secondary identifier that indicates the
member is, in general, the first word of the type’s name.

17.3 Strings

A stringis an ordered sequence of zero or more bits, octets, or characters accompanied
by the string’s length.

The valuelength of a string is the number of bits in lait string, octets in anoctet
string, or characters in aharacter string Any constraints on the value length of a
string are specified in the appropriate class definitions. The length is confined to the
range 0 to 22

Note: The length of a character string does not necessarily equal the number
of characters it comprises because, for example, a single character can be
represented by using several octets.

The elements of a string are numbered. The position of the first element is 0 (zero).
The positions of successive elements are successive positive integers.

The syntaxes that form the string group are identified in Table 17-1, which gives the
secondary identifier assigned to each such syntax.

Note: The identifiers in the first, second, and third columns of Table 17-1 indicate

the syntaxes of bit, octet, and character strings, respectively. The String
group comprises all syntaxes identified in the table.

OSF® DCE Application Development Guide — Directory Services 17-3

XDS/XOM Supplementary Information

Table 17-1. String Syntax Identifiers

Bit String Identifier Octet String Identifier Character String Identifier
OM_S_BIT_STRING OM_S_ENCODING_ OM_S_GENERAL_ STRING?
STRING?
OM_S_OBJECT_ OM_S_GENERALIZED_
IDENTIFIER_STRING 3 TIME_STRING 2
OM_S_OCTET_STRING OM_S_GRAPHIC_STRING?

OM_S IA5_STRING?

OM_S_NUMERIC_STRING?2

OM_S_OBJECT_
DESCRIPTOR_STRING?

OM_S_
PRINTABLE_STRING 2

OM_S_TELETEX_STRING 2

OM_S_UTC_TIME_STRING 2

OM_S_VIDEOTEX_STRING 2

OM_S_VISIBLE_STRING 2

17-4

The octets are those that BER permits for the contents octets of the
encoding of a value of any ASN.1 type.

The characters are those permitted by ASN.1's type of the corresponding
name. Values of these syntaxes are represented in their BER-encoded
form. The octets by which they are represented are those that BER
permits for the contents octets of a primitive encoding of a value of that
type.

The octets are those that BER permits for the contents octets of the
encoding of a value of ASN.1’s object identifier type.

OSF® DCE Application Development Guide — Directory Services

Information Syntaxes

17.4 Representation of String Values

In the service interface, a string value is represented by a string data type. This is
defined in Section 17.3. The length of a string is the number of octets by which it is
represented at the interface. It is confined to the range 64o 2

The length of a character does not need to be equal to the number of characters it
comprises because, for example, a single character can be represented by using several
octets.

It may be necessary to segment large string values when passing them across the

interface. A segment is any zero or more contiguous octets of a string value.
Segment boundaries are without semantic significance.

17.5 Relationship to ASN.1 Simple Types

As shown in Table 17-2, for every ASN.1 simple type except Real, there is an OM
syntax that is functionally equivalent to it. The simple types are listed in the first
column of the table; the corresponding syntaxes are listed in the second column.

Table 17-2. Syntax for ASN.1 Simple Types

Type Syntax

Bit String StringgOM_S_BIT_STRING)

Boolean OM_S BOOLEAN

Integer OM_S INTEGER

Null OM_S_NULL

Object Identifier | StringlOM_S_OBJECT_IDENTIFIER_STRING)

Octet String StringOM_S_OCTET_STRING)

Real Nonée
1 A future edition of XOM may define a syntax corresponding to this

type.

OSF® DCE Application Development Guide — Directory Services 17-5

XDS/XOM Supplementary Information

17.6 Relationship to ASN.1 Useful Types

As shown in Table 17-3, for every ASN.1 useful type, there is an OM syntax that is
functionally equivalent to it. The useful types are listed in the first column of the
table; the corresponding syntaxes are listed in the second column.

Table 17-3. Syntaxes for ASN.1 Useful Types

Type Syntax

External Objec{OM_C_EXTERNAL)

Generalized Time| String)OM_S_GENERALISED_TIME_STRING)
Object Descriptor | StringlOM_S_OBJECT_DESCRIPTOR_STRING)
Universal Time StringOM_S_UTC_TIME_STRING)

17.7 Relationship to ASN.1 Character String Types

As shown in Table 17-4, for every ASN.1 character string type, there is an OM syntax
that is functionally equivalent to it. The ASN.1 character string types are listed in
the first column of the table; the corresponding syntax is listed in the second column.

Table 17-4. Syntaxes for ASN.1 Character String Types

Type Syntax

General String StringOM_S_GENERAL_STRING)
Graphic String StringOM_S_GRAPHIC_STRING)
IA5 String StringOM_S_IA5_STRING)

— StringgOM_S_LOCAL_STRING)
Numeric String StringlOM_S_NUMERIC_STRING)
Printable String StringOM_S_PRINTABLE_STRING)
Teletex String StringOM_S_TELETEX_STRING)

17-6 OSF® DCE Application Development Guide — Directory Services

Information Syntaxes

Type Syntax
Videotex String StringlOM_S_VIDEOTEX_STRING)
Visible String StringgOM_S_VISIBLE_STRING)

17.8 Relationship to ASN.1 Type Constructors

As shown in Table 17-5, there are functionally equivalent OM syntaxes for some (but
not all) ASN.1 type constructors. The constructors are listed in the first column;
corresponding syntaxes are listed in the second column.

Table 17-5. Syntaxes for ASN.1 Type Constructors

Type Constructor | Syntax
Any StringgOM_S_ENCODING_STRING)
Choice OM_S_OBJECT
Enumerated OM_S ENUMERATION
Selection None
Sequence OM_S OBJECT
Sequence Of OM_S OBJECT
Set OM_S_OBJECT
Set Of OM_S_OBJECT
Tagged Noné
1 This type constructor, a purely specification-time phenomenon, has no
corresponding syntax.
2 This type constructor is used to distinguish the alternatives of a choice
or the elements of a sequence or set, a function performed by attribute
types.

The effects of the principal type constructors can be achieved, in any of a variety
of ways, by using objects-to-group attributes or using attributes-to-group values. An

OSF® DCE Application Development Guide — Directory Services 17-7

XDS/XOM Supplementary Information

OM application designer can (but need not) model these constructors as classes of the
following kinds:

» Choice
An attribute type can be defined for each alternative, with just one being permitted
in an instance of the class.

* Sequence or Set
An attribute type can be defined for each sequence or set element. If an element
is optional, then the attribute has zero or one value.

» Sequence Of or Set Of
A single multivalued attribute can be defined.

An ASN.1 definition of an enumerated type component of a structured type is generally
mapped to an OM attribute with an OM synt®&M_S ENUMERATION in this
interface. Where the ASN.1 component is optional, this is generally indicated by
an additional member of the enumeration, rather than by the omission of the OM
attribute. This leads to simpler programming in the application.

17-8 OSF® DCE Application Development Guide — Directory Services

Chapter 18

XOM Service Interface

This chapter describes the following aspects of the XOM service interface:

» The conformance of the DCE X/Open OSI-Abstract-Data Manipulation (XOM)
implementation to the X/Open specification.

» The data types whose data values are the parameters and results of the functions
that the service makes available to the client.

» An overview of the functions that the service makes available to the client. For
a complete description of these functions, see the corresponding reference pages.

» The return codes that indicate the outcomes (in particular, the exceptions) that the
functions can report.

See Chapter 7 for examples of using the XOM interface.

18.1 Standards Conformance

The DCE XOM implementation conforms to the following specification:

OSF® DCE Application Development Guide — Directory Services 18-1

XDS/XOM Supplementary Information

X/Open CAE Specificatio@SI-Abstract-Data Manipulation (XOMNovember 1991)

The following apply to the DCE XOM implementation:
» Multiple workspaces for XDS objects are supported.
» The OM package is supported.

» The om_encode()and om_decode()functions are not supported. The transfer
of objects between workspaces is not envisaged within the DCE environment.
The OM classes used by the DCE XDS/XOM API are not encodable.

 Translation to local character sets is supported.

18.2 XOM Data Types

The data types of the XOM service interface are defined in this section and listed
in Table 18-1. These data types are repeated in the XOM reference pages (see
xom.h(4xom)).

Table 18-1. XOM Service Interface Data Types

Data Type Description

OM_boolean Type definition for a Boolean data value.

OM_descriptor Type definition for describing an attribute
type and value.

OM_enumeration Type definition for an Enumerated data
value.

OM_exclusions Type definition for theexclusions
parameter foom_get()

OM_integer Type definition for an Integer data value.

OM_maodification Type definition for themodification

parameter foom_put().

OM_object Type definition for a handle to either a
private or a public object.

18-2 OSF® DCE Application Development Guide — Directory Services

XOM Service Interface

Data Type

Description

OM_object_identifier

Type definition for an object identifier dat|
value.

-

OM_private_object

)

Type definition for a handle to an object
an implementation-defined, or private,
representation.

OM_public_object

Type definition for a defined representatign
of an object that can be directly
interrogated by a programmer.

OM_return_code

Type definition for a value returned from
all OM functions, indicating either that thd
function succeeded or why it failed.

OM_string Type definition for a data value of one of
the String syntaxes.

OM_syntax Type definition for identifying a syntax
type.

OM_type Type definition for identifying an OM
attribute type.

OM_type_list Type definition for enumerating a sequenge
of OM attribute types.

OM_value Type definition for representing any data

value.

OM_value_length

Type definition for indicating the number
of bits, octets, or characters in a string.

OM_value_position

-

Type definition for designating a particulg
location within a String data value.

OM_workspace

Type definition for identifying an
application-specific API that implements
OM, such as directory or message handliphg.

Some data types are defined in terms of the followirtigrmediate data typesvhose
precise definitions in C are defined by the system:

* OM_sint

OSF® DCE Application Development Guide — Directory Services 18-3

XDS/XOM Supplementary Information

The positive and negative integers that can be represented in 16 bits
OM_sintl16

The positive and negative integers that can be represented in 16 bits
OM_sint32

The positive and negative integers that can be represented in 32 bits
OM_uint

The nonnegative integers that can be represented in 16 bits
OM_uint16

The nonnegative integers that can be represented in 16 bits
OM_uint32

The nonnegative integers that can be represented in 32 bits

Note: The OM_sint and OM_uint data types are defined by the range of integers

they must accommodate. As typically declared in the C interface, they are
defined by the range of integers permitted by the host machine’s word size.

The latter range, however, always encompasses the former.

The type definitions for these data types are as follows:

typedef int OM_sint;
typedef short OM_sint16;
typedef long int OM_sint32;
typedef unsigned OM_uint;

typedef unsigned short OM_uintl6;
typedef long unsigned OM_uint32;

18.2.1 OM_boolean

The C declaration for a@M_boolean data value is as follows:

typedef OM_uint32 OM_boolean;

18-4 OSF® DCE Application Development Guide — Directory Services

XOM Service Interface

A data value of this data type is a Boolean; that is, either FALSE or TRUE.

FALSE (OM_FALSE) is indicated by O (zero). TRUE is indicated by any other
integer, although the symbolic const@t_TRUE refers to the integer 1 specifically.

18.2.2 OM__descriptor

The OM_descriptor data type is used to describe an attribute type and value. Its C
declaration is as follows:

typedef struct OM_descriptor_struct
{
OM_type type;
OM_syntax syntax;
union OM_value_union value;
} OM_descriptor;

Note: Other components are encoded in high bits of the syntax member.

See theOM_value data type described in Section 18.2.16 or ttem.h(4xom)
reference page for a description of tbé1_value_union structure.

A data value of this type is a descriptor, which embodies an attribute value. An
array of descriptors can represent all the values of all the attributes of an object,
and is the representation call@M_public_object. A descriptor has the following
components:

* type

An OM_type data type. It identifies the data type of the attribute value.

e syntax

An OM_syntax data type. It identifies the syntax of the attribute value.
Components 3 to 7 (that is, the componefdrg-string through private that
follow) are encoded in the high-order bits of this structure member. Therefore,
the syntax always needs to be masked with the con€amtS SYNTAX. An
example is the following:

OSF® DCE Application Development Guide — Directory Services 18-5

XDS/XOM Supplementary Information

18-6

my_syntax = my_public_object[3].syntax &
OM_S_SYNTAX;

my_public_object[4].syntax =
my_syntax + (my_public_object[4].syntax &
“OI_S_SYNTAX);

long-string

An OM_booleandata type. It iSOM_TRUE only if the descriptor is a service-
generated descriptor and the length of the value is greater than an implementation-
defined limit.

This component occupies bit 15 (0x8000) of the syntax and is represented by the
constantOM_S LONG_STRING.

no-value

An OM_boolean data type. It isOM_TRUE only if the descriptor

is a service-generated descriptor and the value is not present because
OM_EXCLUDE_VALUES or OM_EXCLUDE_MULTIPLES is set in
om_get()

This component occupies bit 14 (0x4000) of the syntax and is represented by the
constantOM_S_NO_VALUE.

local-string

An OM_boolean data type, significant only if the syntax is one of the string
syntaxes. Iti©©OM_TRUE only if the string is represented in an implementation-
defined local character set. The local character set may be more amenable
for use as keyboard input or display output than the nonlocal character set,
and it can include specific treatment of line termination sequences. Certain
interface functions can convert information in string syntaxes to or from the local
representation, which may result in a loss of information.

This component occupies bit 13 (0x2000) of the syntax and is represented by the
constantOM_S LOCAL_STRING. The DCE XOM implementation does not
support translation of strings to a local character set.

service-generated

OSF® DCE Application Development Guide — Directory Services

XOM Service Interface

An OM_booleandata type. It iSOM_TRUE only if the descriptor is a service-
generated descriptor and the first descriptor of a public object, or the defined part
of a private object (see th#g3xom) reference pages).

This component occupies bit 12 (0x1000) of the syntax and is represented by the
constantOM_S_SERVICE_GENERATED.

* private
An OM_booleandata type. Iti®OM_TRUE only if the descriptor in the service-
generated public object contains a reference to the handle of a private subobject,
or in the defined part of a private object.
Note: This applies only when the descriptor is a service-generated descriptor.
The client need not set this bit in a client-generated descriptor that contains
a reference to a private object.

In the C interface, this component occupies bit 11 (0x0800) of the syntax and is
represented by the constadM_S_PRIVATE.

» value

An OM_value data type. It identifies the attribute value.

18.2.3 OM_enumeration

The OM_enumeration data type is used to indicate an Enumerated data value. Its
C declaration is as follows:

typedef OM_sint32 OM_enumeration;

A data value of this data type is an attribute value whose syntax is
OM_S_ENUMERATION .

OSF® DCE Application Development Guide — Directory Services 18-7

XDS/XOM Supplementary Information

18.2.4

18.2.5

18-8

OM_exclusions

The OM_exclusionsdata type is used for thexclusiongparameter obm_get() Its
C declaration is as follows:

typedef OM_uint OM_exclusions;

A data value of this data type is an unordered set of one or more values, all of which
are distinct. Each value indicates an exclusion, as defineghbyget() and is chosen
from the following set:

« OM_EXCLUDE_ALL_BUT_THESE_TYPES
« OM_EXCLUDE_MULTIPLES

« OM_EXCLUDE_ALL_BUT_THESE_VALUES
« OM_EXCLUDE_VALUES

« OM_EXCLUDE_SUBOBJECTS

« OM_EXCLUDE_DESCRIPTORS

Alternatively, the single valu®M_NO_EXCLUSIONS can be chosen; this selects
the entire object.

Each value excepPM_NO_EXCLUSIONS is represented by a distinct bit. The
presence of the value is represented as 1, its absence is represented as 0 (zero). Thus,

multiple exclusions are requested by ORing the values that indicate the individual
exclusions.

OM_integer

The OM_integer data type is used to indicate an integer data value. Its C declaration
is as follows:

typedef OM_sint32 OM_integer;

A data value of this data type is an attribute value whose synt@MsS_INTEGER.

OSF® DCE Application Development Guide — Directory Services

XOM Service Interface

18.2.6 OM_modification

The OM_modification data type is used for thmodificationparameter obm_put().
Its C declaration is as follows:

typedef OM_uint OM_maodification;
A data value of this data type indicates a kind of modification, as definedbyut().
It is chosen from the following set:
* OM_INSERT_AT_BEGINNING
OM_INSERT_AT_CERTAIN_POINT
OM_INSERT_AT_END
OM_REPLACE_ALL
OM_REPLACE_CERTAIN_VALUES

18.2.7 OM_object

The OM_object data type is used as a handle to either a private or a public object.
Its C declaration is as follows:

typedef struct OM_descriptor_struct *OM_object;
A data value of this data type represents an object, which can be either public or
private. Itis an ordered sequence of one or more instances @Mthelescriptor data

type. See th©M_private_object andOM_public_object data types for restrictions
on that sequence (Sections 18.2.9 and 18.2.10, respectively).

18.2.8 OM_object_identifier

The OM_object_identifier data type is used as an ASN.1 object identifier. Its C
declaration is as follows:

typedef OM_string OM_object_identifier;

OSF® DCE Application Development Guide — Directory Services 18-9

XDS/XOM Supplementary Information

A data value of this data type contains an octet string that comprises the contents
octets of the BER encoding of an ASN.1 object identifier.

18.2.8.1 C Declaration of Object Identifiers

Every application program that uses a class or another object identifier must explicitly
import it into every compilation unit (C source module) that uses it. Each such
class or object identifier name must be explicitly exported from just one compilation
module. Most application programs find it convenient to export all the names they

use from the same compilation unit. Exporting and importing is performed by using
the following two macros:

» The importing macro makes the class or other object identifier constants available
within a compilation unit.

— OM_IMPORT (class_namg
— OM_IMPORT (OID_namg

» The exporting macro allocates memory for the constants that represent the class
or another object identifier.

— OM_EXPORT (class_namg
— OM_EXPORT (OID_name¢

Object identifiers are defined in the appropriate header files, with the definition
identifier having the prefbOMP_O _ followed by the variable nhame for the object

identifier. The constant itself provides the hexadecimal value of the object identifier
string.

18.2.8.2 Use of Object Identifiers in C

The following macro initializes a descriptor:

OM_OID_DESC(type, OID_name)

18-10 OSF® DCE Application Development Guide — Directory Services

XOM Service Interface

It sets the type component to that given, sets thsyntax component to
OM_S OBJECT_IDENTIFIER_STRING, and sets thevalue component to the
specified object identifier.

The following macro initializes a descriptor to mark the end of a client-allocated
public object:

OM_NULL_DESCRIPTOR

For each class, there is a global variable of tgifd STRING with the same name;

for example, the External class has a variable callbti C_ EXTERNAL . This is also

the case for other object identifiers; for example, the object identifier for BER rules
has a variable calle®@M_BER. This global variable can be supplied as a parameter
to functions when required.

This variable is valid only when it is exported by &M_EXPORT macro and
imported by anOM_IMPORT macro in the compilation units that use it. This
variable cannot form part of a descriptor, but the value of its length and elements
components can be used. The following code fragment provides examples of the use
of the macros and constants.

/* Examples of the use of the macros and constants */
#include <xom.h>

OM_IMPORT(OM_C_ENCODING)
OM_IMPORT(OM_CANONICAL_BER)

/* The following sequence must appear in just one compilation
* unit in place of the above:

* #finclude <xom.h>
* OM_EXPORT(OM_C_ENCODING)
* OM_EXPORT(OM_CANONICAL_BER)
*/
main()

{

/* Use #1 - Define a public object of class Encoding

OSF® DCE Application Development Guide — Directory Services 18-11

XDS/XOM Supplementary Information

18.2.9

18.2.10

18-12

* (Note: xxxx is a Message Handling class which

* can be encoded)

*/

OM_descriptor my_public_object[] = {
OM_OID_DESC(OM_CLASS, OM_C_ENCODING),
OM_OID_DESC(OM_OBJECT_CLASS, MA_C_xxxx),
{ OM_OBJECT_ENCODING, OM_S_ENCODING_STRING, \

some_BER_value },

OM_OID_DESC(OM_RULES, OM_CANONICAL_BER),
OM_NULL_DESCRIPTOR

I3
/* Use #2 - Pass class Encoding as parameter to om_instance()
*/
return_code = om_instance(my_object, OM_C_ENCODING,
&boolean_result);

}

OM_private_object

The OM_private _object data type is used as a handle to an object in an
implementation-defined or private representation. Its C declaration is as follows:

typedef OM_object OM_private_object;
A data value of this data type is the designator or handle to a private object. It
comprises a single descriptor whosge component iSOM_PRIVATE_OBJECT

and whosesyntaxand value components are unspecified.

Note: The descriptor'ssyntaxand value components are essential to the service’'s
proper operation with respect to the private object.

OM_public_object

The OM_public_object data type is used to define an object that can be directly
accessed by a programmer. Its C declaration is as follows:

OSF® DCE Application Development Guide — Directory Services

XOM Service Interface

typedef OM_object OM_public_object;

A data value of this data type is a public object. It comprises one or more (usually
more) descriptors, all but the last of which represent values of attributes of the object.

The descriptors for the values of a particular attribute with two or more values are
adjacent to one another in the sequence. Their order is that of the values they
represent. The order of the resulting groups of descriptors is unspecified.

Since the Class attribute specific to the Object class is represented among the
descriptors, it must be represented before any other attributes. Regardless of whether
or not the Class attribute is present, the syntax field of the first descriptor must have
the OM_S_SERVICE_GENERATED bit set or cleared appropriately.

The last descriptor signals the end of the sequence of descriptors. The last
descriptor’'stype component iOM_NO_MORE_TYPES and itssyntaxcomponent

is OM_S NO_MORE_SYNTAXES. The last descriptor'svalue component is
unspecified.

18.2.11 OM return_code

The OM_return_code data type is used for a value that is returned from all OM
functions, indicating either that the function succeeded or why it failed. Its C
declaration is as follows:

typedef OM_uint OM_return_code;

A data value of this data type is the integer in the range o'fotizat indicates an
outcome of an interface function. It is chosen from the set specified in Section 18.4.

Integers in the narrower range 0 td°2are used to indicate the return codes they
define.

OSF® DCE Application Development Guide — Directory Services 18-13

XDS/XOM Supplementary Information

18.2.12 OM_string

The OM_string data type is used for a data value of String syntax. Its C declaration
is as follows:

typedef OM_uint32 OM_string_length;
typedef struct {
OM_string_length length;
void *elements;
} OM_string;

#define OM_STRING(string)\
{ (OM_string_length)(sizeof(string)-1), (string) }

A data value of this data type is a string; that is, an instance of a String syntax. A
string is specified either in terms of its length or whether or not it terminates with
NULL.

A string has the following components:

* length (OM_string_length)
The number of octets by means of which the string is represented, or the
OM_LENGTH_UNSPECIFIED value if the string terminates with NULL.

* elements
The string’s elements. The bits of a bit string are represented as a sequence of
octets (see Figure 18-1). The first octet stores the number of unused bits in the
last octet. The bits in the bit string, commencing with the first bit and proceeding
to the trailing bit, are placed in bits 7 to O of the second octet. These are followed

by bits 7 to 0 of the third octet, then by bits 7 to 0 of each octet in turn, followed
by as many bits as are required of the final octet, commencing with bit 7.

18-14 OSF® DCE Application Development Guide — Directory Services

XOM Service Interface

Figure 18-1. OM_String Elements
positionin bitstring: 0 1 2 3 4 5 6 7 8 9

bit positioninoctet: 7 6 5 4 3 2 1 0 7 6

2nd Octet 3rd Octet
most least
significant significant
bit bit

The service supplies a string value with a specified length. The client can supply a
string value to the service in either form, either with a specified length or terminated
with NULL.

The characters of a character string are represented as any sequence of octets permitted
as the primitive contents octets of the BER encoding of an ASN.1 type value. The
ASN.1 type defines the type of character string. A O (zero) value character follows
the characters of the character string, but is not encompassed leygitlecomponent.

Thus, depending on the type of character string, the O (zero) value character can delimit
the characters of the character string.

The OM_STRING macro is provided for creating a data value of this data type,

given only the value of itelementscomponent. The macro, however, applies to
octet strings and character strings, but not to bit strings.

18.2.13 OM_syntax

The OM_syntax data type is used to identify a syntax type. Its C declaration is as
follows:

typedef OM_uintl6 OM_syntax;

A data value of this data type is an integer in the range 0%¢hat indicates an
individual syntax or a set of syntaxes taken together.

OSF® DCE Application Development Guide — Directory Services 18-15

XDS/XOM Supplementary Information

The data value is chosen from among the following:
« OM_S_BIT_STRING
« OM_S_BOOLEAN
*« OM_S_ENCODING_STRING
* OM_S_ENUMERATION
* OM_S_GENERAL_STRING
* OM_S_GENERALIZED_TIME_STRING
* OM_S_GRAPHIC_STRING
* OM_S_IA5_STRING
« OM_S_INTEGER
« OM_S NULL
« OM_S_NUMERIC_STRING
* OM_S_OBJECT
« OM_S_OBJECT_DESCRIPTOR_STRING
« OM_S_OBJECT_IDENTIFIER_STRING
« OM_S_OCTET_STRING
« OM_S_PRINTABLE_STRING
« OM_S _TELETEX_STRING
« OM_S VIDEOTEX_STRING
« OM_S_VISIBLE_STRING
« OM_S_UTC_TIME_STRING
Integers in the narrower range 0 t8 &re used to indicate the syntaxes they define.
The integers in the range®2o0 210 are reserved for vendor extensions. Wherever

possible, the integers used are the same as the corresponding ASN.1 universal class
number.

18-16 OSF® DCE Application Development Guide — Directory Services

XOM Service Interface

18.2.14

Table 18-2.

18.2.15

OM_type

The OM_type data type is used to identify an OM attribute type. Its C declaration
is as follows:

typedef OM_uintl6 OM_type;
A data value of this data type is an integer in the range 3*fatat indicates a type in
the context of a package. However, the following values in Table 18-2 are assigned

meanings by the respective data types.

Assigning Meanings to Values

Value Data Type
OM_NO_MORE_TYPES OM_type_list
OM_PRIVATE_OBJECT OM_private_object

Integers in the narrower range 0 t&°2are used to indicate the types they define.

OM_type_list

The OM_type_list data type is used to enumerate a sequence of OM attribute types.
Its C declaration is as follows:

typedef OM_type *OM_type_list;

A data value of this data type is an ordered sequence of zero or more type numbers,
each of which is an instance of ti@_type data type.

An additional data valueDM_NO_MORE_TYPES, follows and thus delimits the
sequence. The C representation of the sequence is an array.

OSF® DCE Application Development Guide — Directory Services 18-17

XDS/XOM Supplementary Information

18.2.16 OM value

The OM_value data type is used to represent any data value. Its C declaration is as
follows:

typedef struct {
OM_uint32 padding;
OM_object object;
} OM_padded_object;

typedef union OM_value_union {

OM_string string;
OM_boolean boolean;
OM_enumeration enumeration;
OM_integer integer;
OM_padded_object object;

} OM_value;

Note: The first type definition (in particular, itpadding component) aligns the
object component with theelementscomponent of thestring component in
the second type definition. This facilitates initialization in C.

The identifierOM_value_union is defined for reasons of compilation order.
It is used in the definition of th©M_descriptor data type.

A data value of this data type is an attribute value. It has no components if the value’s
syntax iISOM_S_NO_MORE_SYNTAXES or OM_S_NO_VALUE. Otherwise, it
has one of the following components:

* string

The value if its syntax is a string syntax

* boolean

The value if its syntax i©OM_S BOOLEAN

e enumeration

The value if its syntax i©OM_S_ENUMERATION

* integer

18-18 OSF® DCE Application Development Guide — Directory Services

XOM Service Interface

The value if its syntax i©OM_S_INTEGER
* object
The value if its syntax i©OM_S_OBJECT
Note: A data value of this data type is only displayed as a component of a descriptor.

Thus, it is always accompanied by indicators of the value’s syntax. The latter
indicator reveals which component is present.

18.2.17 OM_value_length

The OM_value_length data type is used to indicate the number of bits, octets, or
characters in a string. Its C declaration is as follows:

typedef OM_uint32 OM_value_length;
A data value of this data type is an integer in the range Ofotteat represents the
number of bits in a bit string, octets in an octet string, or characters in a character

string.

Note: This data type is not used in the definition of the interface. It is provided for
use by client programmers for defining attribute constraints.

18.2.18 OM value_ position

The OM_value_position data type is used to indicate an attribute value’s position
within an attribute. Its C declaration is as follows:

typedef OM_uint32 OM_value_position;
A data value of this data type is an integer in the range O*fel2hat indicates the

position of a value within an attribute. However, the vatdiel_ALL_VALUES has
the meaning assigned to it lmm_get()

OSF® DCE Application Development Guide — Directory Services 18-19

XDS/XOM Supplementary Information

18.2.19 OM_workspace

The OM_workspace data type is used to identify an application-specific API that
implements OM; for example, directory or message handling.

follows:

typedef void *OM_workspace;

A data value of this data type is the designator or handle for a workspace.

18.3 XOM Functions

This section provides an overview of the XOM service interface functions as listed

in Table 18-3. For a full description of these functions, see*{38xom) reference

pages.

Table 18-3. XOM Service Interface Functions

Function

Description

om_copy()

Copies a private object.

om_copy_value()

Copies a string between private objeqts.

om_create()

Creates a private object.

om_decode()

Not supported by the DCE XOM
interface; it returns an
OM_FUNCTION_DECLINED error.

om_delete()

Deletes a private or service-generated
object.

om_encode()

Not supported by the DCE XOM
interface; it returns an
OM_FUNCTION_DECLINED error.

om_get()

Gets copies of attribute values from &
private object.

om_instance()

Tests an object’s class.

18-20 OSF® DCE Application Development Guide — Directory Services

Its C declaration is as

XOM Service Interface

Function Description

om_put() Puts attribute values into a private
object.

om_read() Reads a segment of a string in a privfite
object.

om_remove() Removes attribute values from a privdte
object.

om_write() Writes a segment of a string into a
private object.

The purpose and range of capabilities of the service interface functions can be
summarized as follows:

om_copy()

This function creates an independent copy of an existing private object and all
its subobjects. The copy is placed in the workspace of the original object, or in
another workspace specified by the DCE client.

om_copy_value()
This function replaces an existing attribute value or inserts a new value in one

private object with a copy of an existing attribute value found in another. Both
values must be strings.

om_create()

This function creates a new private object that is an instance of a particular class.
The object can be initialized with the attribute values specified as initial in the class
definition. The service does not permit the client to explicitly create instances

of all classes, but rather only those indicated by a package’s definition as having
this property.

om_delete()
This function deletes a service-generated public object or makes a private object
inaccessible.

om_get()

OSF® DCE Application Development Guide — Directory Services 18-21

XDS/XOM Supplementary Information

18-22

This function creates a new public object that is an exact, but independent, copy
of an existing private object. The client can request certain exclusions, each of
which reduces the copy to a part of the original. The client can also request that
values be converted from one syntax to another before they are returned.

The copy can exclude attributes of types other than those specified, values at
positions other than those specified within an attribute, values of multivalued

attributes, copies of (not handles for) subobjects, or all attribute values. Excluding
all attribute values reveals only an attribute’s presence.

om_instance()

This function determines whether an object is an instance of a particular class.
The client can determine an object’s class simply by inspection. This function
is useful since it reveals that an object is an instance of a particular class, even if
the object is an instance of a subclass of that class.

om_put()

This function places or replaces in one private object copies of the attribute values
of another public or private object.

The source values can be inserted before any existing destination values, before
the value at a specified position in the destination attribute, or after any existing
destination values. Alternatively, the source values can be substituted for any
existing destination values or for the values at specified positions in the destination
attribute.

om_read()
This function reads a segment of a value of an attribute of a private object. The
value must be a string. The value can first be converted from one syntax to

another. This function enables the client to read an arbitrarily long value without
requiring that the service place a copy of the entire value in memory.

om_remove()

This function removes and discards particular values of an attribute of a private
object. The attribute itself is removed if no values remain.

e om_write()

OSF® DCE Application Development Guide — Directory Services

XOM Service Interface

This function writes a segment of an attribute value to a private object. The value
must be a string. The segment can first be converted from one syntax to another.
The written segment becomes the value’s last segment since any elements beyond
it are discarded. The function enables the client to write an arbitrarily long value
without having to place a copy of the entire value in memory.

18.4 XOM Return Codes

This section defines the return codes of the service interface, and thus the exceptions
that can prevent the successful completion of an interface function.

Refer to theERRORS section of ther (3xom) references pages for a list of the errors
that each function can return. For an explanation of these error codes, refer to the
OSF DCE Problem Determination Guide

The return code values are as follows:

OM_SUCCESS

OM_ENCODING_INVALID

OM_FUNCTION_DECLINED

OM_FUNCTION_INTERRUPTED

OM_MEMORY_INSUFFICIENT

OM_NETWORK_ERROR

OM_NO_SUCH_CLASS

OM_NO_SUCH_EXCLUSION

OM_NO_SUCH_MODIFICATION

OM_NO_SUCH_OBJECT

OM_NO_SUCH_RULES

OM_NO_SUCH_SYNTAX

OM_NO_SUCH_TYPE

OM_NO_SUCH_WORKSPACE

© 00 N o o0~ W N B+ O

U ol =
w N B O

OSF® DCE Application Development Guide — Directory Services 18-23

XDS/XOM Supplementary Information

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

18-24

OM_NOT_AN_ENCODING
OM_NOT_CONCRETE
OM_NOT_PRESENT
OM_NOT_PRIVATE
OM_NOT_THE_SERVICES
OM_PERMANENT_ERROR
OM_POINTER_INVALID
OM_SYSTEM_ERROR
OM_TEMPORARY_ERROR
OM_TOO_MANY_VALUES
OM_VALUES_NOT_ADJACENT
OM_WRONG_VALUE_LENGTH
OM_WRONG_VALUE_MAKEUP
OM_WRONG_VALUE_NUMBER
OM_WRONG_VALUE_POSITION
OM_WRONG_VALUE_SYNTAX
OM_WRONG_VALUE_TYPE

OSF® DCE Application Development Guide — Directory Services

Chapter 19
Object Management Package

This chapter defines the object management package (OMP). The object identifier
(referred to asom) assigned to the package, as defined by this guide, is the object
identifier specified in ASN.1 as

{joint-iso-ccitt(2) mhs-motis(6) group(6) white(1) api(2) om(4)}

19.1 Class Hierarchy

This section shows the hierarchical organization of the OM classes. Subclassification
is indicated by indentation, and the names of abstract classes are in italics. Thus,
for example,OM_C_ENCODING is an immediate subclass 6M_C_OBJECTan
abstract class. The names of classes to whith encode()applies are in boldface.
(DCE XOM does not support the encoding of any OM classes.) drhecreate()
function applies to all concrete classes.

« OM_C_OBJECT
— OM_C_ENCODING

OSF® DCE Application Development Guide — Directory Services 19-1

XDS/XOM Supplementary Information

19.2

19.2.1

Table 19-1.

19-2

— OM_C_EXTERNAL

Class Definitions

The following subsections define the OM classes.

OM_C_ENCODING

An instance of clas®M_C_ENCODING is an object represented in a form suitable

for transmission between workspaces, for transport via a network, or for storage in
a file. Encoding can also be a suitable way of indicating to an intermediate service
provider (for example, a directory, or message transfer system) an object that it does
not recognize.

This class has the attributes of its superclads]_C_OBJECT in addition to the
specific attributes listed in Table 19-1.

Attributes Specific to OM_C_ENCODING
Attribute Value Syntax Value Value Value
Length Number | Initially
OM_OBJECT_ StringOM_S_ — 1 —
CLASS OBJECT_
IDENTIFIER_
STRING)
OM_OBJECT _ Stringt — 1 —
ENCODING
OM_RULES StringOM_S_ — 1 ber
OBJECT_
IDENTIFIER_
STRING)
1 If the Rules attribute isber or canonical-ber, the syntax of the present

attribute must be Strif®M_S_ENCODING_STRING).

OSF® DCE Application Development Guide — Directory Services

Object Management Package

*+ OM_OBJECT_CLASS
This attribute identifies the class of the object that@i#ect Encoding attribute
encodes. The class must be concrete.

* OM_OBJECT_ENCODING

This attribute is the encoding itself.

* OM_RULES

This attribute identifies the set of rules that are followed to produceOthject
Encoding attribute. Among the defined values of this attribute are those
represented as follows:

— OM_BER
This value is specified in ASN.1 as
{joint-iso-ccitt(2) asn1(1) basic-encoding(1)}

This value indicates the BER. (See Clause 25.2 of Recommendation
X.209, “Specification of Basic Encoding Rules for Abstract Syntax
Notation 1 (ASN.1),” CCITT Blue Book Fascicle VIII.4, International
Telecommunications Union, 1988. Also published by 1ISQS(3 8825)

— OM_CANONICAL_BER
This value is specified in ASN.1 as

{joint-iso-ccitt(2) mhs-motis(6) group(6) white(1) api(2) om(4)
canonical-ber(4)}

This value indicates the canonical BER. (See Clause 8.7 of Recommendation
X.509, “The Directory: Authentication Framework,CCITT Blue Book,
International Telecommunications Union, 1988. Also published by ISO as
ISO 9594-8

Note: In general, an instance of this class cannot appear as a value whose syntax is
Object C) if C is not OM_C_ENCODING, even if the class of the object
encoded iC.

OSF® DCE Application Development Guide — Directory Services 19-3

XDS/XOM Supplementary Information

19.2.2

Table 19-2.

19-4

OM_C_EXTERNAL

An instance of clas®M_C_ EXTERNAL is a data value and one or more information
items that describe the data value and identify its data type. This class corresponds to
ASN.1’s External type, and thus the class and the attributes specific to it are described
indirectly in the specification of ASN.1. (See Clause 34 of Recommendation X.208,
“Specification of Abstract Syntax Notation 1 (ASN.1)CCITT Blue BookFascicle

VIIL.4, International Telecommunications Union, 1988. Also published by ISO as
ISO 8824)

This class has the attributes of its supercl&dg, C_OBJECTIin addition to the OM
attributes specific to this class that are listed in Table 19-2.

Attributes Specific to OM_C_EXTERNAL
Attribute Value Syntax Value Value Value
Length Number | Initially

OM_ StringOM_S_ — Oort |—
ARBITRARY _ BIT_STRING)
ENCODING
OM_ASN1_ StringOM_S_ — oOort |—
ENCODING ENCODING_

STRING)
OM_DATA _ StringgOM_S _ — Oorl —
VALUE _ OBJECT _
DESCRIPTOR DESCRIPTOR_

STRING)
OM_DIRECT_ StringgOM_S — Oorl —
REFERENCE OBJECT _

IDENTIFIER _

STRING)
OM_INDIRECT_ OM_S_INTEGER |— Oorl —
REFERENCE
OM_OCTET_ StringgOM_S _ — Oor ! —
ALIGNED _ OCTET_ STRING)
ENCODING

OSF® DCE Application Development Guide — Directory Services

Object Management Package

Only one of these three attributes is present.

* OM_ARBITRARY_ENCODING

This attribute is a representation of the data value as a bit string.

* OM_ASN1_ENCODING

The data value. This attribute can be present only if the data type is an ASN.1
type.

If this attribute value’s syntax is an Object syntax, the data value’s representation
is that produced bpm_encode()when itsObjectparameter is the attribute value

and itsRulesparameter ider. Thus, the object’s class must be one to which
om_encode()applies.

* OM_DATA_VALUE_DESCRIPTOR

This attribute contains a description of the data value.

* OM_DIRECT_REFERENCE

This attribute contains a direct reference to the data type.
* OM_INDIRECT_REFERENCE

This attribute contains an indirect reference to the data type.
* OM_OCTET_ALIGNED_ENCODING

This attribute contains a representation of the data value as an octet string.

19.2.3 OM_C_OBJECT

The classOM_C_OBJECTrepresents information objects of any variety. This
abstract class is distinguished by the fact that it has no superclass and that all other
classes are its subclasses.

The attribute specific to this class is listed in Table 19-3.

OSF® DCE Application Development Guide — Directory Services 19-5

XDS/XOM Supplementary Information

Table 19-3. Attribute Specific to OM_C_OBJECT

Attribute Value Syntax Value Value Value
Length Number | Initially
OM_CLASS StringOM_S_ — 1 —
OBJECT_
IDENTIFIER_
STRING)
* OM_CLASS

This attribute identifies the object’s class.

19-6 OSF® DCE Application Development Guide — Directory Services

Index

A

abstract OM class . 5-25
abstract service 101
Abstract Service Definition . . . 6-16
Abstract Syntax Notation 1 . . 4-25
abstract syntaxes . . . 4-25
access control . . 6-13
acl.c . . 7-14
acl.h

header file . . . 7-35
acl2.c . 9-10
acl2.h

header file . . 9-36
address

O/R 14-24
ADMD . . 14-14
administration management domain 14-

14
administrative limit exceeded . 11-41
alias entries . . 4-12
API 10-4, 11-2
approximate match 11-32
ASN.1 19-3

abstract syntaxes . 4-25

OSF® DCE Application Development Guide — Directory Services

relating to Basic Encoding Rules

4-25
sample definition . 4-22
simple types . . 4-26
transfer syntaxes . 4-25

types . . 4-26
attribute 11-8, 11-10
adding 11-24
domain-defined . 14-22

error . . 119

list . 11-10
matching rules . . 6-12
multi-valued . . 6-12
OMsyntax 5-39
enumerated type . 5-39

object type . . 541

string type . . 541

value . . 6-12

OM type 18-17
syntax template . . 5-39

table . . 4-22

type . 11-8, 17-7, 18-17
describing . 18-5

directory 4-5

mandatory . . 4-21

oM . 52

optional . . 4-21

selected directory . 12-2

value 539

oM 11-9, 18-7

value length . . 6-12
Attribute Value Assertion 4-11, 11-11
authenticated bind . 6-7
authentication . 6-13
automatic connection management 6-9
automatic continuation 11-18

Index—1

Index

Index—2

AVA 4-11, 11-11
Basic Encoding Rules . . 4-27
BER . 4-27, 10-9
bind

authenticated 6-7

credentials. 6-8
Boolean 18-5, 18-18
C

naming conventions . . . 5-8
cache update process . . 4-33
canonical-ber . . 19-3
CCITT . . 19-4
chaining 4-31
chaining prohibited . 11-16
character set

local 186
character string 17-3, 18-15, 18-19

length 18-19

type . 17-6
class

abstract OM . . 5-25

concrete OM . . 5-25

oM 193191

OM hierarchy . 5-24

OM inheritance . . 5-24

OM object . 5-23
closure

package . . 5-35
common results 11-12
communications error . 11-13
compare result . 11-13
concrete OM class 5-25, 5-26

context . . 6-10, 10-1, 11-14
common parameters . . 6-11
GDS
package . 15-10
local controls . 6-11
service controls . . 6-11
continuation reference . 10-14, 11-19
controls
service 15-12
DAP . . 4-29
DDA 14-22
default
context . 10-8, 11-19
directory session . 10-7
session . 10-7
descriptor list . 5-11
initializing . . 5-45
OM_descriptor data structure 5-
43
representation of public object 5-
11
DB 44 49
structureof 44
directory 6-37
access control . 6-13
alias entries . 4-12
attribute table . 4-22
attribute types 4-5, 4-21
authentication . 6-13

OSF® DCE Application Development Guide — Directory Services

Index

automatic connection
management . . . 6-9
building a distinguished name 5-
14
class . 14-28
class definitions 6-11
connection management
functions 6-1, 6-6
context 6-10
defining subclasses . . . 4-24
distinguished name . . . 4-9
example ofentry 4-8
filter 6-27
GDS Standard Schema . . 4-14
information model . . . 4-3
modify operations 6-37
modifying entries 6-37
name verification 4-14
naming attributes 4-16
object entries 4-7
object identifiers 4-5
objects 43
octT417
operation functions . . . 6-16
read operations 6-17
reading anentry 6-18
relationship between schemas and
theDIT 4-24
relative distinguished name 4-11
search 631
search criteria 6-27
search operation 6-27
search operations 6-26
selected attribute types . . 6-11
selected object classes . . 6-11
service functions 6-1
service package 6-12
session 6-6
SRT415
structure of the DIB . . . 4-4

Directory Access Protocol

Directory Information Base .
Directory Information Tree .

Directory Service Agent .
Directory System Protocol
Directory User Agent .
distinguished encoding
distinguished name .

as a public object .

. 4-29
.. 44
. 4-14
. 4-28

. . 4-30
. 4-29

. 10-9

4-9, 5-14
. 5-14

example of distinguished name4-

9
relative . . 4-11
Distributed Management Environment
16-1
distribution list . 14-1
DIT 49424
GDS Standard Schema . . 4-14
DL . . 14-1
DMD 11-18
DME support . 16-1
domain management 14-22
domain-defined attribute . 14-22
DSA 4-28
address . . 11-7, 11-48
name . 11-48
DSP . . 4-30
DUA - . 4-28
cache . . 4-33, 4-34, 6-15
cache" . 4-36
EIT 14-5
elements . 17-3
elements, string 18-14
encoded information type . 14-5
encoding 18-16
Index—3

OSF® DCE Application Development Guide — Directory Services

Index

entries . 11-43, 11-44
entry
modification . 11-24
list . 11-25
Enum(*) . 17-2
enumerated type . 5-39
enumeration . . 18-7
errors
directory service
attribute . . 119
communications . 11-13
library 11-33
name . 11-38
security . 11-46
service 11-46
system 11-49
update 11-50
example.c . .72
extensions 11-28
external type . 194
facsimile telephone number . 12-16
filter 6-27,6-31, 11-29
item 11-30
item type 11-32
type 11-30
final substring . 11-33
from entry 11-22, 11-36

Index—4

GDS
as distributed service . . 4-28
authenticated bind . . . 4-40
binding with credentials . 4-40
chaining 431
DAP 429

Directory User Agent cache 4-33
DSA-DUA relationship . 4-28

DspP 430
DUA . 15-15
DUAcache 4-33
extension package 5-33, 6-15
package 6-13

context 15-10

session 15-15
referral 4-30
security 440
Standard Schema

attribute table . . . 4-22

naming attributes . 4-16
structured object classes4-

16

standard schema 4-14
OoCT41

SRT 415
XDSAPI 42
XOMAPI. 42
GDSP (GDS package) . 15-15
Global Directory Service 4-2

H

header files

OSF® DCE Application Development Guide — Directory Services

Index

XDS API
XOM API .
high priority .

identifier
information type .

encoded
initial substring
integers

intermediate data type .

ISO .
item .

L

length, string
length-unspecified
limit problem
list

info
local scope
low priority .

M

management domain
matched

max outstanding operations .

. 7-35
. 5-56
11-17

11-29
11-24
. 14-5
11-33
18-16
. 18-3
19-3, 19-4
11-31

. 17-3
18-14
11-41

11-34, 11-37
11-17
11-17

14-22
11-14
10-13

MD . .
MDUP .
medium priority

message handling system

message store

message transfer agent

metacharacters .
in CDS .
in DNS .
in GDS .
MHS

14-22
. 14-1

..o 11-17

. 14-1
. 14-5
. 14-1
. 2-17
. 2-17
. 2-17
. 2-17

directory user package5-34, 14-1

mnemonic O/R address

modification type .
MS .
MTA

N

name

maximum sizes .

resolution phase

valid characters .

naming

attributes

rules .
network addresses
no limit exceeded
numeric O/R address

O

O/R .

OSF® DCE Application Development Guide — Directory Services

14-24
11-24
. 14-5
. 14-1

11-37
. 2-20

11-39
. 2-14

. 4-16

. 2-14
11-42

11-41
14-25

14-5, 14-27

Index-5

Index

object

OCT .

OM

Index—6

address . . 14-24
mnemonic address 14-24
class attribute 4-7
class hierarchy . . 5-24
class table 417
directory 43

dynamically-defined static public

7-49
encoding OM . 19-3
entries . 4-7, 6-18

example of internal structure 5-3
identifier

directory 45
OoCT . 4-20
OMclass b5-7
identifier, XDS package . 4-6
management 5-2
name 11-9, 11-14, 11-22, 11-35,
11-45

OM class inheritance . 5-24
partially-defined static public7-47

predefined static public . 7-46
private 18-9, 18-17
public 5-10, 18-5, 18-9, 18-17

representation of public object 5-
11

selected attribute types . . 6-11
selected classes . . 6-11
subordinate 5-46, 11-35
type . 541
value 53
Ce e . 4-17
acronyms of super class . 4-18
attributes . 4-21
class inheritance . 4-19
partial representation of . 4-18
attribute types 5-2, 5-7
classes 5-23, 11-2, 19-3

abstract . . 5-25
concrete . . 5-25
defining . . 5-28
hierarchy . 5-24
inheritance . . 5-24
initial value . 5-29
mapping class definition5-
6
object identifier . . 5-7
OM attribute . . 5-29
value length . 5-29
value number . . 5-29
value syntax . 5-29
objects 52
syntax b2
value syntax . . 6-12
operation
directory service . . 101
not started . . . 11-16, 11-40
progress . 11-16, 11-20, 11-39
optional functionality 11-18, 11-49
originator/recipient . 14-5
osl
application contexts . 12-12
application entity . 11-8, 12-11
communications . 11-8
presentation address . 12-11
package 531
basic directory contents 5-32, 6-4
closure . 5-35
directory service 5-31, 6-4
ds_version 532
GDS . 5-31, 6-4, 6-13

OSF® DCE Application Development Guide — Directory Services

Index

GDS extension 5-33
MHS directory user 5-31, 5-34,
6-4
negotiating feature . . . 5-32
service 112
strong authentication 5-31, 5-33
Xbs 103
partial outcome qualifier 11-35, 11-40,
11-45
position
string. 17-3
postal address 12-17
postal O/R address 14-25
prefer chaining. 11-17
presentation
address 1141
selector 11-42
priority 11-17
private management domain . 14-15
private object 522
PRMD 14-15
public object 5-10
building for ds_search() . 6-31
client-generated 5-19
comparison with private objects5-
22
creating. 6-20
dynamically-defined static 7-49
partially-defined static . . 7-47
predefined static 7-46
representation by using descriptor
list511
service-generated 5-19

OSF® DCE Application Development Guide — Directory Services

R

RDN 4-11,11-20, 11-21

resolved 11-20
read result 6-25, 11-42
referral . 4-30, 10-14, 11-43
relative distinguished name . . 11-36
relatve name 11-43
requestor 11-49
returncodes 18-14

service interface . . . 18-23
rules

OM object encoding . . . 19-3

S

search
criterion 12-17
guide 12-19
info 11-44
selected attribute types 12-2
service
controls . 15-10, 15-12
interface data types . . . 5-42
package 11-2
service-generated descriptor . . 18-7
session 101
default directory 10-7
directory 6-6
GDS
package 15-15
multiple concurrent . . . 6-7
selector 11-42
shadow update process 4-33
size limit 11-18
Index—7

Index

SRT 4-15, 4-16
standards . 10-1, 11-2
status

directory 10-12
storage management . 5-36
string . 17-3, 18-18

length 17-3, 18-14

position . . 17-3

type . 541
string(*) . 17-3
strings

in directory service . 17-3

strong authentication package5-31, 5-33

Structure Rule Table . 4-15
structured O/R address 14-25
structured object classes . . 4-16
subclasses 12-14
substrings . 11-32
superclasses . e ..o 1214

oM 12-15,135
syntax

template 5-39, 17-2
target object . . 11-20
teldir.c . e . 7-45
teletex terminal identifier . 12-20
telex number 12-21
terminal O/R address

. 14-26
time limit . 11-18

exceeded 11-18, 11-41
transfer syntax . . 4-25
types

and values . 11-24

Index—8

U

unstructured O/R address 14-25
value
OM attribute . . 18-7
OM data 18-18
workspace 5-2, 5-35, 18-20
X.500
directory information model 4-3
naming concepts 4-9
X/Open
Directory Service 4-2
OSl-Abstract-Data Manipulation
4-2
XbsS. 61
APl 4261
acle 71
bind credentials . . 6-8

OSF® DCE Application Development Guide — Directory Services

Index

directory connection
management
functions . . 6-6
examplec 7-1
GDS package . . . 6-13
MHS directory user
package . . 6-4

modifying entries . 6-37
performing a read
operation . . 6-23
sample programs . 7-45
teldirc 7-45
XDS interface
management
functions 6-1, 6-2
definitons 6-9
directory read operations . 6-17
dynamically-defined static public
objects 7-49
header files 7-35
interface class definitions . 6-9
interface management functions
6-1

management functions . . 6-2
partially-defined static public
objects 7-47
predefined static public objects7-

46
programming guidelines . 7-2
sample programs 7-1
XOM 51
A 2)
initializing descriptors 5-

45

macros 6-18, 6-29
OMclass 5-23
OM class hierarchy 5-24
OM class inheritance 5-24
OM functions . . 5-48
workspace 5-2
header files 5-56
macros 556
xom.h header file. 556
Index—9

OSF® DCE Application Development Guide — Directory Services

